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Abstract: Throughout the evolution of  You Only Look Once (YOLO) series, staring from 

base YOLO to latest YOLOv11, each version takes advantages of different techniques and 

mechanism, incorporating innovations that enhance object detection capabilities by 

improving both speed and accuracy. From introduction of anchor boxes in YOLOv2 to multi-

scale predictions in YOLOv3 and Cross-Stage Partial Networks in YOLOv4, each iteration 

has brought unique improvements. In YOLOv7, two major advancements, Extended Efficient 

Layer Aggregation Network and Planned Re-parameterized Convolution, were introduced to 

address challenges in feature aggregation and parameter utilization, while maintaining 

optimal gradient flow. Additionally, advanced label assignment strategies, such as lead head 

guided label assigner and coarse-to-fine label assigner, further improve learning efficiency. 

These innovations enable YOLOv7 to set new standards in object detection, especially for 

applications in autonomous driving, video surveillance, medical imaging, and beyond. 
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1. Introduction 

In fact, object detection has been evolving over the past years, closely related to the deep learning. 

During the traditional object detection era, the Viola-Jones Detector and HOG Detector were the 

pioneering work that started the traditional object detection methods [https://viso.ai/deep-

learning/object-detection/]. With the emergence and popularity of deep learning, many different 

methods have emerged such as R-CNN, Fast R-CNN, YOLO, and SSD (Single Shot Multibox 

Detector). 

Object detection capabilities have been significantly enhanced through advancements in 

Convolutional Neural Networks (CNN) and Vision Transformers (ViT). In the past survey of object 

detection, researchers proposed many methods based of CNN and ViT. For example, Ren et al. [1] 

utilized Faster R-CNN for object detection back in 2015. Carion et al. [2] also proposed end-to-end 

object detection with transformers in 2020. Traditionally, object detection methods could be 

categorized into two-stage, one-stage detectors, and transformer-based methods. Two-stage detectors 

generates a set of possible object proposals from the input image, referred as the first stage. During 

the second stage, these region proposals are classified into different object types, and their bounding 

boxes are further refined to improve localization accuracy. One-stage detectors perform both region 

proposal generation and classification in one step. One-stage detectors predict class probabilities  and 

bounding boxes directly from the image without a separate proposal stage, predicting the bounding 
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boxes and class probabilities directly from the image. Unlike one-stage or two-stage detection 

methods, transformer-based methods abandon the traditional region proposal approach and does not 

rely on anchor boxes or sliding windows. Instead, these methods employ encoder-decoder 

architecture to output a fixed-size set of bounding boxes and class labels. 

Though one-stage object detectors are struggle with identifying irregularly shaped objects or a 

group of tiny objects, one-stage object detectors skip the region proposal phase and run detection 

directly over densely sampled locations, prioritizing inference speed and have greater structural 

simplicity and efficiency at the cost the performance compared to multi-stage and transformer-based 

detectors. The most widely used one-stage object detection models include YOLO, SSD, and 

RetinaNet.  

Among these typical models, the family of YOLO models has been evolving since it firstly 

introduced by Joseph Redmon et al. [3]. YOLO is well-known for its simplicity, speed, and high 

performance in real-time object detection. Furthermore, YOLO models could also complete tiny 

object detection task, one of the difficult tasks in computer vision due to the small object size and 

limited information available.  

The following sections in this paper would discuss the bae YOLO, YOLOv7 - one variant of 

YOLO that introduced computing scaling (scaling width, depth, and resolution) to optimize the model 

for different applications, and several applications of YOLO based models. 

2. YOLO Family 

2.1. Overview of Base YOLO 

Before the emergence of the first generation YOLO model, object detection work rely on classifiers 

to perform detection. YOLO treats object detection as a regression problem, predicting the bounding 

boxes coordinates and the associated class probabilities for the detected objects.  

Back to 2016, most methods like R-CNN focus on identifying possible object regions within an 

image, followed by running a classifier on each proposed region. After classification a post-

processing step refines the bounding boxes, removes duplicate detections, and adjusts the scores 

based on interactions with other objects in the scene [4]. As a novel object detection method at that 

time, YOLO transcends other detection methods like DPM and R-CNN for several reasons. YOLO 

is fast because there is no need for complex pipeline if regarding detection as a regression problem. 

YOLO reasons globally about the image when making predictions. YOLO effectively captures 

contextual details about objects during both training and testing. This helps YOLO avoid false 

positives on background regions, reducing errors in situations where other detectors might misidentify 

background regions as objects. It also learns representations that can generalize well, reducing the 

chance of failure when used on new domains or unexpected inputs. 

The architecture of YOLO is unified, predicting multiple bounding boxes and class probabilities 

in a single forward pass. Generally, the network decides the input image into an S x S grid. Each grid 

cell predicts bounding boxes, confidence scores, and class probabilities, based on the assumption 

whether it contains an object. The confidence scores reflect both the likelihood of the grid cell 

containing an object and how well the bounding box fits it. 
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Figure 1: Process of Base YOLO[3] 

YOLO utilizes a convolutional neural network design influenced by GoogLeNet [5], featuring 24 

convolutional layers followed by 2 fully connected layers. The base YOLO model is pre-trained on 

ImageNet for classification and then fine-tuned for object detection using the PASCAL VOC dataset 

[6]. YOLO specifically splits the image into a 7x7 grid, with each grid cell tasked with detecting 

objects whose center falls within the cell. For each grid cell, it predicts two bounding boxes and a set 

of class probabilities. The full network of base YOLO is shown in Figure 2. 

 

Figure 2: Base YOLO Architecture [3] 

The main advantage of the base YOLO model is its speed, processing images at 45 frames per 

second (FPS). Fast YOLO, which has fewer convolutional layers and filters, can process 155 FPS, 

outperforming slower region-based methods like Faster R-CNN[7], which can process fewer than 10 

FPS. Taking the performance of Fast YOLO on the PASCAL VOC dataset as an example, it achieves 

52.7% mAP while processing at 155 FPS. While the full achieves a higher 63.4% mAP. 

Although YOLO can quickly detect objects, it lags behind other methods like Faster R-CNN, 

especially in precise localization, particularly for small objects that are close together. YOLO's coarse 

grid structure limits its ability to detect multiple small, closely packed objects within a single grid 

cell, making it harder to manage varying object sizes and shapes. Since each grid is limited to 

predicting two bounding boxes, resulting in YOLO struggles with detection multiple objects within 
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a single grid cell. Also, YOLO’s architecture imposes significant spatial constraints on the bounding 

boxes, limiting its ability to handle objects of different shapes and aspect ratios. 

2.2. History of YOLO Family 

Over time, YOLO has undergone several iterations, each improving upon performance, speed, and 

scalability. YOLOv1 (introduced by Joseph Redmon et al. in 2016) revolutionized object detection 

by addressing it as a single neural network problem. YOLOv2, also known as YOLO9000, introduced 

several innovations, including batch normalization for more stable training and anchor boxes inspired 

by Faster R-CNN to handle varying object sizes and shapes. [8]. YOLOv2 maintained real-time 

detection speeds while enhancing accuracy and extending to 9000 classes, with multi-scale 

predictions in YOLOv3 allowing it to detect objects at small, medium, and large scales [9]. YOLOv3 

balanced accuracy and speed, making it popular for many real-time applications like surveillance [10]. 

YOLOv4 introduced a variety of techniques to enhance detection performance and make 

improvements in the architecture, such as Weighted Residual Connections (WRC), Cross-Stage 

Partial Connections (CSP), and others. [11]. YOLOv4 reached up to 43.5% mAP on the COCO 

dataset, running at over 100 FPS on GPUs. YOLOv5 was developed by the Ultralytics team, it became 

notable for its ease of implementation, with out-of-the-box support for PyTorch and introduction of 

a flexible model architecture [12]. YOLOv6, introduced by Meituan, focused on improving industrial 

applications. It introduced better optimization for edge devices and provided more robust models, 

especially for tasks requiring faster detection [13]. YOLOv7 employed compound scaling (adjusting 

width, depth, and resolution) to optimize the model for different tasks, from edge devices to high-end 

GPUs, using the Extended Efficient Layer Aggregation Network (E-ELAN) for improved multi-scale 

detection and feature extraction [14]. YOLOv8 was developed by Ultralyitics. It continued building 

on YOLOv5's foundation, introducing significant architectural and methodological innovations. 

YOLOv8 achieves a mAP of 37.3% on the COCO dataset and a speed of 0.99ms on A100 TensorRT 

[15]. YOLOv9 introduced a new object detection framework, focusing on addressing information 

bottlenecks and improving gradient flow during training in deep neural networks [16]. This is 

achieved through the introduction of Programmable Gradient Information (PGI) and the creation of 

a lightweight network architecture called Generalized Efficient Layer Aggregation Network 

(GELAN). However, the challenges of non-maximum suppression (NMS) in previous YOLO 

versions introduced computation redundancy and inference latency. YOLOv10 eliminated 

redundancy and reduced inference latency by using an NMS-free training strategy, improving 

supervision during training with consistent dual assignments. [17]. YOLOv11 is the latest version in 

the Ultralytics YOLO series, building on the advancements made by previous YOLO models. 

Juan Terven and Diana Cordova-Esparze tracked the evolution of the YOLO family, examining 

the innovations and advancements introduced in each version, from the original YOLO to the latest 

iterations, including YOLOv8, YOLO-NAS, and YOLO models enhanced with transformer 

architectures on February, 2024 [18]. Since the emergences of YOLOv9 and YOLOv10,Chien-Yao 

Wang and Hong-Yuan Mark Liao also published a review of YOLO’s development from YOLOv1 

to YOLOv10 in August 2024. 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/87/2025.20335 

85 



 

 

 

Figure 3: Comparison between various YOLO models in terms of mAP and latency [19] 

2.3. YOLOv7 

YOLOv7 is crucial in the YOLO family because it introduced cutting-edge techniques to address 

common challenges in feature extraction and computational efficiency. Though later versions like 

YOLOv8 perform better, discussing YOLOv7 in detail helps highlight how modern object detection 

models are pushing the boundaries of performance and adaptability. 

YOLOv7 introduced two key architectural advancements that significantly improve object 

detection performance: E-ELAN and Planned Re-parameterized Convolution (RepConv). Extended 

Efficient Layer Aggregation Network (ELAN) [20] was not firstly introduced in YOLOv7 but 

improved in YOLOv7 to implement E-ELAN. Specifically, assuming there is a feature map of 2c 

channels passed from the previous module for a ELAN structure. In the ELAN structure, the 2c 

channels will be used directly or passed to convolution layers for merging finally. ELAN architecture 

provides several benefits that enhance the overall performance of the network, including better feature 

extraction, improved gradient flow, and more efficient parameter utilization.  E-ELAN enhances the 

learning capabilities of the network by improving parameter utilization. The key idea behind E-ELAN 

is to maintain the gradient path while expanding the network’s feature extraction capabilities through 

strategic use of group convolutions. 

For ELAN structure, if more computational blocks are stacked unlimitedly, the stability could be 

compromised, leading to the decrease of parameter utilization rate. E-ELAN addresses this by using 

expand, shuffle, and merge cardinality techniques to enable continuous learning improvement without 

altering the original gradient path. E-ELAN introduced group convolutions to increases the 

cardinality. After applying group convolutions, the feature maps are shuffled into different groups 

and then merged. This shuffling and merging mechanism allows the network to capture more diverse 

features across different layers, enhancing learning without changing the overall gradient 

transmission path.  

The structures of ELAN and E-ELAN are shown in Figure 4. Essentially, E-ELAN is equivalent 

to two parallel ELANs and adding the outputs. 
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Figure 4: ELAN vs. E-ELAN [14] 

YOLOv7 uses model scaling to adjust certain model attributes to create different versions that 

meet various inference speed requirements. Since the model of YOLOv7 is quite special, the splicing 

operation is used in its basic module ELAN. Special processing is required when scaling the model 

for this splicing-based model, so YOLOv7 uses a composite model scaling method while changing 

the width of the model. The enlarged model is more complex but more accurate, allowing it to be 

used in different usage scenarios. Among all models of YOLOv7, YOLOv7x is a scaling of YOLOv7. 

Taking the E-ELAN module in the two models as an example, the E-ELAN of YOLOv7x adds input 

to the convolutional layer and the splicing layer, which leads to the expansion of the depth and width 

of the model. 

The planned Re-parameterized Convolution is applied to residual or concatenation-based modules, 

simplifying complex structures during training and improving the model’s performance without 

affecting inference speed. [21]. The author of YOLOv7 found that although re-parameterized 

convolution achieved good results on VGG, when directly applied to structures with residual modules 

such as ResNet [22] and DenseNet [23], the accuracy was greatly reduced. . Therefore, YOLOv7 uses 

the RepConvN structure, which removes the identity connection based on RepConv. YOLOv7 

employed planned RepConvN to optimize the network’s performance during both training and 
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inference by merging multiple computational modules into one during the inference stage, achieving 

a better balance between training efficiency and inference performance. 

YOLOv7 introduced lead head guided label assigner and coarse-to-fine head guided label assigner 

to optimize the label assignment process during training. These methods aim to enhance how labels 

are assigned to predicted bounding boxes, significantly impacting how well the model learns to detect 

and classify objects. The lead head guided label assigner improve the assignment of ground truth 

labels to the model’s predictions by focusing on the lead head during training. In object detection 

networks with multiple heads, the lead head is typically the one responsible for handling a specific 

scale or level of detail. The coarse-to-fine head guided label assigner is introduced to refine the label 

assignment process progressively during training. It focuses on moving from coarse to fine 

predictions, ensuring that the network hones in on the most accurate label assignments over time. 

2.4. Applications of YOLOv7 

YOLOv7’s real-time performance, efficiency, and accuracy make it a highly versatile model for a 

wide range of applications. Its ability to handle multiple scales, work in edge computing environments, 

and provide high high accuracy in challenging conditions has made it a good choice for industries 

like autonomous driving, medical imaging, surveillance, agriculture and tiny object detection, etc. 

 

Figure 5: Tiny Bird Detection using YOLOv7 

3. Discussion 

Object detection, as an important task in computer vision, has made significant progress but still faces 

many challenges, including: (1) Small target detection. Small target objects in the image have fewer 

pixels and less distinct features, making them difficult to detect. (2) Occlusion and partially visible 

targets: When a target is partially occluded, existing object detection algorithms may not be able to 

recognize it correctly. (3) Background interference: Complex information in the background may 

interfere with the judgment of the object detection model. (4) Category imbalance: Some categories 
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in the dataset have a much larger number of samples than others, resulting in the trained model being 

biased towards identifying those categories with larger sample sizes. (5) Real time requirements: In 

certain application scenarios, such as autonomous driving, object detection requires real-time 

processing, which places high demands on the speed of the algorithm. (6) Multi scale object detection: 

There may be objects of different sizes in the image, and the model needs to have good multi-scale 

detection capabilities. 

In the future, object detection technology will further develop towards real-time performance, 

robustness, multimodal fusion, interpretability, and other aspects to meet the needs of more complex 

application scenarios. For example, improving the detection accuracy of small targets by enhancing 

feature representation capabilities and introducing multi-scale feature fusion techniques; Processing 

object detection in occlusion situations through local feature matching or contextual information 

assistance. Meanwhile, with the improvement of hardware computing ability and the arrival of the 

big data era, object detection algorithms will become more efficient and intelligent. To this end, the 

promising directions also includes: explore how to train object detection in conjunction with other 

visual tasks such as segmentation, recognition, etc. to improve overall performance; Combining 

various modalities of data such as images, videos, and sounds to improve the robustness and accuracy 

of detection; Optimizing algorithm architecture and hardware acceleration schemes to improve the 

detection speed. 

4. Conclusion 

The evolution of the YOLO family from its inception to YOLOv11 represents a continuous pursuit 

of optimizing real-time object detection, focusing on improving both speed and accuracy. Each 

version has introduced significant architectural changes, making YOLO models one of the most 

widely-used object detection algorithms today. YOLOv7 stands out as a pivotal advancement in the 

evolution of real-time object detection models, pushing the boundaries of performance, speed, and 

efficiency. By integrating key innovations such as E-ELAN and RepConvN, YOLOv7 addresses 

challenges in feature aggregation, parameter utilization, and gradient flow, making it one of the most 

efficient models in terms of accuracy and computational demand. 
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