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Abstract: Combinational Equivalence Checking (CEC) is a critical process in digital circuit 

design, ensuring that two versions of a circuit are functionally equivalent. Functionally 

Reduced And-Inverter Graphs (FRAIGs) are a data structure extensively used in CEC, 

representing Boolean functions as directed acyclic graphs with AND gates and inverters. The 

main advantage of FRAIGs is their ability to integrate structural hashing with functional 

reduction, allowing for the elimination of functionally equivalent nodes during graph 

construction. However, conventional FRAIG approaches face challenges with scalability in 

complex circuits. To overcome these limitations, we propose three novel methods: improved 

sampling techniques that refine random simulation and SAT-based methods for early 

identification of equivalent nodes; advanced graph partitioning strategies that enable parallel 

processing and localized equivalence checking to accelerate computation; and support node 

analysis combined with probability distribution modeling to reduce unnecessary checks. 

Extensive experiments show the effectiveness and efficiency of our proposed methods.  

Keywords: Logic Synthesis, And-Inverter Graphs, Combinational Equivalence Checking, 

Graph Partition. 

1. Introduction 

Combinational Equivalence Checking (CEC) [1-5] is a crucial process in digital circuit design, 

particularly in the verification of integrated circuits. As circuit designs become increasingly complex, 

ensuring that two versions of a circuit—typically a pre-optimized version and a post-optimized 

version—are functionally equivalent presents a significant challenge. CEC is employed to verify that 

these circuits produce identical outputs for all possible input combinations. This process is essential 

in design flows where design transformations, such as logic synthesis, optimization, or technology 

mapping, may alter the circuit’s structure but should not affect its functional behavior. The 

verification relies on various mathematical techniques, including Boolean algebra, Binary Decision 

Diagrams (BDDs), and satisfiability (SAT) solving, to efficiently determine the equivalence of large-

scale designs. Consequently, CEC plays a pivotal role in maintaining the integrity and reliability of 

digital systems throughout the design lifecycle. 

Functionally Reduced And-Inverter Graphs (FRAIGs) [6] are a data structure extensively used in 

CEC. FRAIGs represent Boolean functions as directed acyclic graphs, where nodes correspond to 

logical operations, specifically AND gates and inverters. The main advantage of FRAIGs lies in their 

ability to integrate structural hashing with functional reduction, allowing for the elimination of 

functionally equivalent nodes during the graph construction process. This results in a more compact 
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representation, which reduces both memory usage and computational complexity. FRAIGs are 

particularly valuable for applications such as logic optimization, technology mapping, and 

equivalence checking, where efficient management of large circuits is critical. By incorporating 

simulation and SAT solving techniques, FRAIGs ensure that equivalent subgraphs are merged, thus 

minimizing redundancy. As a result, FRAIGs have become a fundamental tool in modern Electronic 

Design Automation (EDA) workflows, significantly enhancing the performance and scalability of 

circuit synthesis and verification processes. 

 

Figure 1: An example of equivalence nodes checking. Here, each node represents And gate and dash 

edge represents Not gate. The truth value of each node is the 2𝑘-bit value of all different possible 

inputs value, here 𝑘 is the number of prime inputs. For two nodes with same truth value, they are 

combinational equivalence. Here nodes 4,6,7 are equivalence nodes in blue. 

Despite their advantages, FRAIGs present several challenges and limitations in the context of 

digital circuit synthesis and verification. A notable drawback is the potential increase in complexity 

during the graph construction process, especially for circuits with large fan-in or fan-out. Although 

FRAIGs are designed to reduce redundancy through functional reduction, the tasks of merging 

equivalent subgraphs and managing hash tables can introduce substantial computational overhead, 

particularly for very large designs. Moreover, FRAIGs may encounter difficulties when dealing with 

certain types of circuit transformations or optimizations that do not align well with the graph-based 

representation. For example, while FRAIGs are effective for standard logic optimizations, they may 

struggle with more complex transformations or dynamic changes in circuit structures. Additionally, 

the efficiency of FRAIGs can be affected by the trade-off between the granularity of functional 

reduction and the resulting graph size, where overly aggressive reduction may lead to a loss of 

structural information necessary for accurate equivalence checking. Therefore, addressing these 

challenges requires ongoing research and refinement to improve the scalability and applicability of 

FRAIGs across diverse design scenarios. 

2. Problem Background 

2.1. AIG and Subgraph 

In this section, we first define And-Inverter graph, k-input fanout-free, and support nodes. 

And-Inverter Graph. An And-Inverter Graph (AIG) [7] is a data structure to model 

combinational logic circuits. Let 𝐺 = (𝑉, 𝐸, 𝑃𝐼, 𝑃𝑂) be an AIG, where (𝑉, 𝐸) is a directed acyclic 

graph, 𝑃𝐼 is the set of primary input vertices, and 𝑃𝑂 is the set of primary output vertices. Each vertex 

𝑣 ∈ 𝑉 represents an And gate and 𝑣 ∈ 𝑃𝐼 represents a primary input. Edges represent wires and can 

either be regular or complemented. For each vertex 𝑣 ∈ 𝑉, 𝐹𝐼(𝑣) and 𝐹𝑂(𝑣) are the fanin and fanout 
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vertices of 𝑣, i.e., in-neighbors and out-neighbors. For each vertex 𝑣 ∈ 𝑉, |𝐹𝐼(𝑣)| = 2, and for each 

primary input vertex 𝑣 ∈ 𝑃𝐼, |𝐹𝐼(𝑣)| = 0. 

K-Input Fanout-Free Subgraph.Given a set 𝐼  of 𝑘  input vertices , a 𝑘 -input fanout-free 

subgraph 𝐺 = (𝑉, 𝐸, 𝐼, 𝑂) is also an AIG, where 𝐼 are the input vertices and 𝑂 ⊂ 𝑉 are the output 

vertices. A fanout-free window should satisfy following fanout-free rules, 

1. For each vertex 𝑣 ∈ 𝑉\𝐼, 𝐹𝐼(𝑣) ⊂ 𝑉. 

2. For each vertex 𝑣 ∈ 𝑉\𝑂, 𝐹𝑂(𝑣) ⊂ 𝑉. 

Support Nodes. Specifically, for any vertex 𝑣 ∈ 𝑉\(𝑂 ∪ 𝐼), its fanins and fanouts are also in the 

fanout-free subgraph. We call the vertices set fanout-free area. Roughly speaking, all vertices in a 

fanout-free window must be able to be fully expressed in the form of Boolean function by vertices of 

PI. Given 𝑘 vertices 𝐼, the k-input maximum fanout-free subgraph is fully expanded by inputs 𝐼, 
whose fanout-free area is maximum. 

Given a node 𝑣 ∈ 𝑉 in AIG 𝐺, a node 𝑠 is called support node of 𝑣 should satisfy, 

1. 𝑠 ∈ 𝑃𝐼. 
2. There exists a path from 𝑠 to 𝑣 in the AIG 𝐺. 

For the set of all support nodes 𝑠 ∈ 𝑆 is called the support set of node 𝑣. 

2.2. Equivalence Node Checking 

Functional Equivalence Nodes. For each two nodes 𝑢, 𝑣 ∈ 𝑉, the two nodes are called functional 

equivalence if for any input function, the value of nodes 𝑢 and 𝑣 keep equivalence. 

Theorem 1.   Equivalence node checking problem can be reduced to SAT satisfiability problem. 

Proof 1. To check the equivalence of nodes 𝑛1 and 𝑛2 in an AIG, we can express the outputs of 

these nodes as Boolean functions. Construct a Boolean formula that captures the equivalence of the 

outputs. Let 𝐹1  and 𝐹2  represent the Boolean functions for the outputs of nodes 𝑛1  and 𝑛2 , 

respectively. Define a new Boolean formula: 

 𝐹 = 𝐹1⊕𝐹2 (1) 

where ⊕ denotes the XOR operation. The formula 𝐹 is true if and only if 𝑛1 and 𝑛2 produce different 

outputs for some input combination. ◻ 

On the basis of Theorem 1, we can proof the NP-hardness of equivalence node checking and solve 

it by SAT-solver methods [8-10]. 

2.3. FRAIG 

Algorithm 1 Functionally Reduced AIG 

1: Input: An And-Inverter Graph G, an integer k. 

2: Output: Functionally Reduced AIG G′ . 

3: Initialize hash table H and random sample k inputs by Monte Carlo. 

4: Calculate truth value of each node. 

5: for each node v in G do 

6: Merge node v into the hash table H with same truth value. 

7: for each bucket B in H do 

8: for each two nodes u,v in B do 

9: if Not SatSolver(u xor v) then 

10: Merge nodes u,v in G′ . 

11: Return G′ . 
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In this section, we discuss the traditional method Functionally Reduced AIG (FRAIG for short). The 

pseudocode presented in Algorithm 1 describes the process of reducing a Functionally Reduced And-

Inverter Graph (FRAIG). The primary goal of this algorithm is to simplify the graph by merging 

nodes that are functionally equivalent, thereby minimizing redundancy while preserving the 

functional behavior of the original circuit. 

 

Figure 2: An example of FRAIG. Here, {000,001,010} are the sample inputs of PI nodes. The blue 

nodes are same with 000, and orange nodes are same as 010 in FRAIG method.  

The algorithm takes as input an And-Inverter Graph (AIG) 𝐺 and an integer 𝑘, which represents 

the number of random input samples by Monte Carlo. The output is a functionally reduced AIG, 

denoted by 𝐺′. The algorithm begins by initializing a hash table 𝐻 and selecting 𝑘 random input 

samples. The hash table 𝐻 is used to store nodes from the graph 𝐺 based on their truth values. In the 

first loop, each node 𝑣 in 𝐺 is processed and inserted into the hash table 𝐻 such that nodes with the 

same truth values are grouped together in the same bucket. The second loop iterates over each bucket 

𝐵 in the hash table 𝐻. For every pair of nodes 𝑢 and 𝑣 within the same bucket, the algorithm checks 

whether the nodes are functionally equivalent using a SAT solver. If the SAT solver determines that 

the nodes are functionally equivalent, the nodes are merged in the output graph 𝐺′. Finally, the 

algorithm returns the reduced graph 𝐺′, which contains the minimized representation of the original 

circuit. 

This approach leverages the efficiency of structural hashing and SAT solving to reduce the 

complexity of large circuits, making it particularly useful in electronic design automation (EDA) 

workflows. The use of random sampling and functional reduction ensures that the resulting graph 𝐺′ 

retains the necessary functional properties while minimizing unnecessary redundancy.  

Figure 2 shows an example of FRAIG. First, the FRAIG samples {000,001,010} as the input of 

PI nodes a, b, c. After that, we can calculate the truth value of all nodes, as that nodes a, 1,2,4,5,6,7 

are same as 000, and nodes c, 3 are same as 010. It takes C7
2 = 21 times SAT-solver to check the 

equivalence of nodes with 000, and C2
2 = 1 times to check 010 value. So, it totally takes 22 times of 

SAT-solver. 

3. Improved Sampling Methods 

Algorithm 2 Improved FRAIG 

1: Input: An And-Inverter Graph G, an integer k. 

2: Output: Functionally Reduced AIG G′ . 

3: Initialize hash table H and random sample k inputs. 

4: Calculate truth value of each node. 

5: for each node v in G do 

6: Merge node v into the hash table H with same truth value. 
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7: Let B0 is the bucket of nodes with all zero truth. 

8: for each node v in B0 do 

9: if Sat-Solver(v) is True then 

10: Add the solution inputs into sample inputs list. 

11: Re-sampling the truth value. 

12: for each bucket B in H do 

13: for each two nodes u,v in B do 

14: if Not Sat-Solver(u xor v) then 

15: Merge nodes u,v in G′ . 

16: Return G′ . 

3.1. Sampling Improvement 

To further improve the effectiveness of FRAIG in sampling, we propose a new algorithm shown in 

Algorithm 2. It is a method for the functional reduction of an And-Inverter Graph (AIG) 𝐺  by 

identifying and merging nodes with equivalent functionality. The algorithm starts by initializing a 

hash table 𝐻 and selecting a random sample of 𝑘 input vectors. Each node 𝑣 in 𝐺 is processed by 

computing its truth value, after which it is inserted into the hash table 𝐻 such that nodes with identical 

truth values are grouped together into buckets. The bucket 𝐵0, which contains nodes with an all-zero 

truth value, is then specifically examined. For each node 𝑣  in 𝐵0, a SAT solver is employed to 

determine whether 𝑣 can produce a non-zero output under any input condition. If the SAT solver 

returns True, indicating the existence of such inputs, these inputs are added to the sample input list, 

thus refining the input space and allowing for a more accurate assessment of node equivalence in 

subsequent steps. The algorithm proceeds by re-sampling the truth values based on this updated input 

space. For each bucket 𝐵 in the hash table 𝐻, the algorithm compares pairs of nodes 𝑢 and 𝑣 within 

the bucket. The SAT solver is used to check if the XOR of their outputs 𝑢 ⊕ 𝑣 is unsatisfiable, which 

would indicate that 𝑢 and 𝑣 are functionally equivalent. If they are found to be equivalent, these nodes 

are merged in the reduced AIG 𝐺 ′. This process iteratively reduces the AIG by eliminating redundant 

nodes, leading to a more optimized representation. The algorithm concludes by returning the 

functionally reduced AIG 𝐺 ′ , where equivalent nodes have been effectively merged, thereby 

optimizing the graph’s structure while maintaining its functional correctness. 

Our Improved FRAIG method builds upon the standard FRAIG method by introducing several 

enhancements aimed at increasing the efficiency and accuracy of the functional reduction process. 

Both algorithms share the fundamental goal of reducing an And-Inverter Graph (AIG) by merging 

nodes that are functionally equivalent, thereby optimizing the graph’s structure. In the standard 

FRAIG approach, nodes are typically hashed based on their simulated values across a set of random 

input vectors, and equivalence is determined using SAT solvers. The FRAIG algorithm focuses on 

identifying and merging nodes that consistently produce identical outputs across these inputs, relying 

heavily on simulation and SAT solving techniques. The "Improved FRAIG" algorithm refines this 

process by incorporating a re-sampling step, which dynamically adjusts the set of input vectors based 

on the outcomes of SAT solver checks. This step is particularly crucial in ensuring that the input 

space is adequately explored, thereby reducing the likelihood of missing functionally equivalent 

nodes. Additionally, the "Improved FRAIG" algorithm explicitly processes nodes with an all-zero 

truth value by using a SAT solver to identify non-trivial cases where these nodes can produce non-

zero outputs. By refining the input vector set and more thoroughly exploring node equivalences, the 

"Improved FRAIG" algorithm offers a more robust and precise reduction process, potentially leading 

to a more optimized AIG with fewer redundant nodes compared to the standard FRAIG approach. 
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3.2. Tree-like Nodes and Recoverage Nodes 

In the optimization and verification of And-Inverter Graphs (AIGs), tree-like nodes and recoverage 

nodes exhibit distinct behaviors when processed by a SAT solver. Tree-like nodes are characterized 

by their simple, acyclic structure, where each node has a unique path from the root to the leaves. This 

simplicity allows SAT solvers to efficiently determine the functional equivalence or redundancy of 

tree-like nodes, as the absence of cycles reduces the complexity of the logic to be evaluated. 

Specifically, SAT solvers can quickly verify whether two tree-like nodes are functionally equivalent 

by comparing their outputs directly, leveraging the fact that their logical structure does not involve 

shared subgraphs or feedback loops. 

On the other hand, recoverage nodes typically arise in more complex AIG structures, often 

involving shared subgraphs, multiple connections, or cycles. These nodes are encountered when 

certain nodes need to be revisited or reevaluated after optimization operations, such as node merging 

or functional simplification, have been applied. The complexity of recoverage nodes poses a greater 

challenge for SAT solvers, as these nodes may require a more thorough exploration of the logical 

space to ensure functional correctness. In particular, SAT solvers must handle the potential 

reintroduction of logic that was previously optimized away, necessitating the solver to perform 

additional iterations and potentially employ advanced techniques such as conflict analysis and 

learning to verify the accuracy of the recovered logic. 

In summary, tree-like nodes allow for straightforward SAT solver processing due to their simple, 

acyclic nature, resulting in lower computational complexity. Conversely, recoverage nodes require 

more intricate handling by the SAT solver, as they involve complex logical structures that may 

necessitate re-sampling and more intensive verification to maintain the integrity of the AIG during 

optimization. 

 

Figure 3: An example of our sampling method. 

Figure 3 shows an example of our sampling method. After the results of random sampling of 

FRAIG shown in Figure 2, we calculate the inputs {11,01,11} for PIs 𝑎, 𝑏, 𝑐  that makes nodes 

𝑎, 1,2,4,5,6,7 are 1. Note that only nodes 5 and 6 need SAT-solver because their recoverage structure. 

Other nodes are tree-like structure which could efficiently get the truth value. After that, our sampling 

method could detect nodes 1,4,6,7 with truth value 00010 and nodes 𝑎, 2 with truth value 00011. It 

takes 𝐶4
2 = 6 times of SAT-solver to check the equivalence with truth value 00010 and 1 time to 

check 00011. Totally, our method takes 2 + 6 + 1 = 9 SAT-solver, which is less than FRAIG. 
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4. Graph Partition Methods 

4.1. Prime Output Partition 

Algorithm 3 Baseline PO partition 

Require: An AIG G, an integer P. 

Ensure:  A set of Subgraphs S. 

1: 𝑘 =
|𝑃𝑂|

𝑃
  

2: for i in P do 

3: Random select k nodes set O in PO 

4: Remove O in PO 

5: Add nodes in O to Wi 

6: Construct Subgraph Wi  from O by BFS; 

7: Add Wi  in S 

8: return S 

 

Baseline PO partition. Algorithm 3 presents a method for partitioning an And-Inverter Graph (AIG) 

into subgraphs. The algorithm takes as input an AIG 𝐺 and an integer 𝑃, which represents the number 

of partitions. The goal of the algorithm is to generate a set of subgraphs 𝑆 by dividing the primary 

outputs (POs) of the AIG into approximately equal-sized partitions. 

The algorithm begins by calculating the number of primary outputs 𝑘 that should be included in 

each partition. This value is computed as 𝑘 =
|𝑃𝑂|

𝑃
, where |𝑃𝑂| denotes the total number of primary 

outputs in the AIG. 

Next, the algorithm iteratively constructs each subgraph. For each iteration 𝑖 from 1 to 𝑃, the 

following steps are performed: 

1. A random set of 𝑘 primary output nodes 𝑂 is selected from the remaining primary outputs. 

2. The selected nodes 𝑂 are then removed from the set of primary outputs to avoid duplication in 

future iterations. 

3. The nodes in 𝑂 are added to a new subgraph 𝑊𝑖 . 

4. The subgraph 𝑊𝑖  is constructed by performing a Breadth-First Search (BFS) starting from the 

nodes in 𝑂, expanding to include all reachable nodes in the subgraph. 

5. The constructed subgraph 𝑊𝑖  is added to the set of subgraphs 𝑆. 

After all 𝑃 iterations are completed, the algorithm returns the set of subgraphs 𝑆. 

The key idea behind this algorithm is to ensure that each partition contains a balanced number of 

primary outputs while leveraging BFS to construct the corresponding subgraphs. The use of random 

selection ensures that the partitioning is not biased, providing a baseline approach for further 

partitioning techniques. The removal of nodes from the primary output set after selection ensures that 

each node is only included in one partition, maintaining the disjoint nature of the subgraphs. The BFS 

step guarantees that each subgraph is fully connected and includes all nodes that are functionally 

related to the primary outputs in the partition. 
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Figure 4: An example of support based partition. For the prime output nodes, 4,5 have same support 

nodes {𝑎, 𝑏, 𝑐} and 6,7 have same support nodes {𝑏, 𝑐, 𝑑}. So, our method could partition the graph 

into two subgraphs 𝐺1 = {𝑎, 𝑏, 𝑐, 1,2,4,5} and 𝐺2 = {𝑏, 𝑐, 𝑑, 2,3,6,7}. 

Algorithm 4 Support based clustering 

Require:  An AIG G, an output node Oi , an integer k. 

Ensure:  A set of output nodes O. 

1:  for Oj  in PO do 

2: 𝑆𝑖𝑚(𝑂𝑖, 𝑂𝑗) =
|𝑠𝑢𝑝(𝑂𝑖)∩𝑠𝑢𝑝(𝑂𝑗)|

|𝑠𝑢𝑝(𝑂𝑖)∪𝑠𝑢𝑝(𝑂𝑗)|
  

3: Sort all the outputs by Similarity, and select top k − 1 output nodes O. 

4: return O 

 

Support based clustering. To further improve the efficiency and effectiveness of PO partition, 

we propose a support set based cluster method shown in Algorithm 4. It clusters output nodes in the 

AIG 𝐺 based on the similarity of their support sets. The input to this algorithm is an AIG 𝐺, a specific 

output node 𝑂𝑖, and an integer 𝑘, which specifies the number of output nodes to be clustered together. 

For each output node 𝑂𝑗 in the set of primary outputs (PO), the algorithm calculates the similarity 

between the support sets of 𝑂𝑖  and 𝑂𝑗 . The similarity is defined as the ratio of the size of the 

intersection of the support sets to the size of their union: 

 𝑆𝑖𝑚(𝑂𝑖, 𝑂𝑗) =
|𝑠𝑢𝑝(𝑂𝑖)∩𝑠𝑢𝑝(𝑂𝑗)|

|𝑠𝑢𝑝(𝑂𝑖)∪𝑠𝑢𝑝(𝑂𝑗)|
. (2) 

Once the similarity scores are computed, the algorithm sorts all the output nodes by similarity to 

𝑂𝑖 and selects the top 𝑘 − 1 most similar output nodes to form a cluster with 𝑂𝑖. The algorithm then 

returns this set of clustered output nodes. 

This approach is particularly useful in large-scale AIGs where managing complexity through 

partitioning can significantly reduce computational overhead in subsequent processing tasks, such as 

SAT-solving or equivalence checking. 

4.2. K-input Subgraph Partition 

Algorithm 5 k-input support calculation 

Require:  An AIG G, an integer B . 

Ensure:  A set of supports of all vertices 𝑠𝑢𝑝(𝑣), a set of nodes S. 

1:  𝑆 ≠ ∅; 

2:  for v in V by tupo order do 

3:         if v is PI then 
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4:               𝑠𝑢𝑝(𝑣) = {𝑣}; 
5:         else 

6:               if 𝐹𝐼1(𝑣) in S then 

7:                      𝑆1 = {𝐹𝐼1(𝑣)}; 

8:               else 

9:                      𝑆1 = 𝑠𝑢𝑝 (𝐹𝐼1(𝑣)); 

10:             if 𝐹𝐼2(𝑣) in S then 

11:                      𝑆2 = {𝐹𝐼2(𝑣)}; 

12:             else 

13:                      𝑆2 = 𝑠𝑢𝑝 (𝐹𝐼2(𝑣)); 

14:             𝑠𝑢𝑝(𝑣) = 𝑆1 ∪ 𝑆2; 

15:       if |𝑠𝑢𝑝(𝑣)| > B| then 

16:                𝑆 = 𝑆 ∪ {𝑣} 
17:  return sup, S; 

 

K-input support calculation.Algorithm 5 computes the support set for each vertex in an And-

Inverter Graph (AIG) 𝐺 and identifies the nodes that have support sets larger than a given threshold 

𝐵. The input to the algorithm is an AIG 𝐺 and an integer 𝐵, which represents the maximum allowable 

size of a support set. 

The algorithm begins by initializing an empty set 𝑆, which will store nodes whose support sets 

exceed the threshold 𝐵. For each vertex 𝑣 in the AIG, processed in topological order, the algorithm 

determines the support set of 𝑣 based on its fan-in nodes. If 𝑣 is a primary input (PI), its support set 

is simply {𝑣}. For non-PI vertices, the support set 𝑠𝑢𝑝(𝑣) is calculated by taking the union of the 

support sets of its fan-in nodes 𝐹𝐼1(𝑣) and 𝐹𝐼2(𝑣). If either fan-in node is already in set 𝑆, indicating 

that its support set exceeded the threshold 𝐵, the support set for that node is limited to just itself, to 

prevent further growth of support sets. 

If the size of the support set 𝑠𝑢𝑝(𝑣) exceeds 𝐵, vertex 𝑣 is added to set 𝑆. The algorithm continues 

this process for all vertices in the graph. Finally, the algorithm returns the support sets for all vertices, 

along with the set 𝑆 of nodes whose support sets exceeded the threshold. 

 

Algorithm 6 k-input subgraph partition 

Require:  An AIG G, an integer B . 

Ensure:  A set of subgraphs. 

1:  Calculate all the k-input supports by Algorithm 5 and get the set S; 

2:  𝑃𝑂′ = 𝑃𝑂 ∪ 𝑆; 

3:  Apply Algorithm 4 to partition the subgraphs of PO′ ; 

4:  return ; 

 

K-input subgraph partition.Algorithm 6 partitions an And-Inverter Graph (AIG) 𝐺 into a set of 

subgraphs based on the results from the 𝑘-input support calculation. The input to the algorithm is the 

AIG 𝐺 and an integer 𝐵, which is the threshold for the support set size. 

The algorithm begins by calculating the 𝑘-input supports for all vertices using the previously 

defined 𝑘-input support calculation algorithm (Algorithm), resulting in a set 𝑆 of vertices whose 

support sets exceed the threshold. The set of primary outputs (POs) is then updated to include the 

vertices in 𝑆, resulting in an augmented set 𝑃𝑂′. 
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Next, the algorithm applies a clustering algorithm (Algorithm 4) to partition the graph based on 

the updated set 𝑃𝑂′. The goal is to create subgraphs that are more manageable and can be processed 

independently. Finally, the algorithm returns the set of partitioned subgraphs. 

This algorithm partitions an AIG into subgraphs based on the 𝑘-input support sets calculated in 

the previous algorithm. By including the vertices with large support sets in the set of primary outputs, 

the algorithm ensures that the resulting subgraphs are well-formed and suitable for further processing. 

5. Experiment 

We implement our method in C++ using ABC library [11] and EPFL logic synthesis benchmark [12]. 

We select four relatively small circuits and seven large circuits from EPFL benchmarks [12] to present 

the scalability of our algorithms. The details of datasets are shown in Table 1. All experiments have 

been conducted on an Intel(r) Core(tm) i7-12700k processor with 32 GB RAM. We mark the running 

time as infinite, denoted as ‘-’ if the algorithm runs exceeding 3 hours. 

Table 1: Comparison of FRAIG and our sampling method on small AIGs. 

Dataset 
FRAIG Our Sampling 

# SAT Time(s) # SAT Time(s) 

Cavlc 

ctrl 

dec 

int2float 

499 

79 

186 

244 

0.49 

0.10 

0.13 

0.15 

27 

15 

11 

23 

0.06 

0.01 

0.01 

0.01 

 

Effective and efficiency of FRAIG and our sampling method. The experimental results 

presented in Table 1 compare the performance of the traditional FRAIG method with our proposed 

sampling method on small And-Inverter Graphs (AIGs). The comparison focuses on two key metrics: 

the number of SAT-solver calls (# SAT) and the computation time (in seconds). 

For the dataset "cavlc," the FRAIG method requires 499 SAT-solver calls, taking a total of 0.49 

seconds to complete the process. In contrast, our sampling method significantly reduces the number 

of SAT-solver calls to just 27 and completes in a much shorter time of 0.06 seconds. This trend of 

improved performance with our sampling method is consistent across all datasets. For instance, in the 

"ctrl" dataset, FRAIG uses 79 SAT-solver calls in 0.10 seconds, whereas our sampling method only 

requires 15 SAT-solver calls and completes in 0.01 seconds. Similarly, for the "dec" dataset, FRAIG 

requires 186 SAT-solver calls, consuming 0.13 seconds, compared to just 11 SAT-solver calls and 

0.01 seconds with our method. Finally, in the "int2float" dataset, FRAIG makes 244 SAT-solver calls 

in 0.15 seconds, while our sampling approach requires only 23 calls and finishes in 0.01 seconds. 

Overall, the results demonstrate that our sampling method consistently outperforms the traditional 

FRAIG approach across all tested datasets, reducing both the number of SAT-solver calls and the 

computation time. This indicates that our method is more efficient and scalable, particularly for 

handling small AIGs, where the reduction in SAT-solver calls directly translates to faster execution 

times. 

Table 2: Comparison of Strash and our 6-input Subgraph Partition 

Dataset 
Strash 6-input Subgraph Partition 

# RDC Time(s) 
#RDC

Time
 # RDC Time(s) 

#RDC

Time
 

div 0 0.01 0 849 0.96 883.85 

hyp 0 0.12 0 277 4.77 58.13 
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log2 0 0.01 0 203 0.94 216.17 

multiplier 0 0.01 0 157 0.67 234.63 

sixteen 18 3.73 4.83 28,024 58.34 480.35 

twenty 23 4.91 4.68 39,408 78.63 501.18 

twentytr 56 6.03 9.29 37,882 105.56 358.87 

Table 3: Comparison of FRAIG and our 
|𝑃𝐼|

2
-input Subgraph Partition 

Dataset 

FRAIG 
|𝑷𝑰|

𝟐
-input Subgraph Partition 

# RDC Time(s) 
#𝑅𝐷𝐶

Time
 # RDC Time(s) 

#𝑅𝐷𝐶

Time
 

div 15,933 51.99 306.46 11,991 3.32 3611.75 

hyp 7,028 608.47 11.55 4,007 32.58 122.99 

log2 2,397 108.49 22.09 2,222 17.83 124.62 

multiplier 2,369 81.60 29.03 1,791 14.58 122.84 

sixteen - - - 3,182,549 3994.37 796.76 

twenty - - - 4,455,435 5550.44 802.72 

twentytr - - - 5,015,018 7843.88 639.35 

 

The experimental results shown in Tables 2 and 3 compare the performance of different graph 

partitioning and reduction methods: the Strash method versus the 6-input Subgraph Partition and the 

FRAIG method versus the 
𝑛

2
-input Subgraph Partition, respectively. The comparison is based on three 

metrics: the number of nodes reduced by the algorithm (# RDC), computation time (in seconds), and 

the efficiency of node reduction per unit time (
#𝑅𝐷𝐶

Time
). 

Table 2 illustrates the comparison between Strash and the 6-input Subgraph Partition. The 6-input 

Subgraph Partition consistently outperforms the Strash method across all datasets. For instance, in 

the "div" dataset, Strash does not achieve any node reduction (0 RDC in 0.01 seconds), whereas the 

6-input Subgraph Partition reduces 849 nodes in 0.96 seconds, resulting in an efficiency of 883.85. 

This trend is observed across other datasets such as "hyp," "log2," "multiplier," "sixteen," "twenty," 

and "twentytr," where the 6-input Subgraph Partition method significantly increases the number of 

reduced nodes and maintains higher efficiency scores. For example, for the "twenty" dataset, the 6-

input Subgraph Partition method reduces 39,408 nodes in 78.63 seconds, achieving an efficiency of 

501.18, while Strash only reduces 23 nodes in 4.91 seconds with a much lower efficiency of 4.68. 

Table 3 compares the FRAIG method with the 
|𝑃𝐼|

2
-input Subgraph Partition method. The 

|𝑃𝐼|

2
-input 

Subgraph Partition method demonstrates superior performance in terms of node reduction and 

efficiency. For example, in the "div" dataset, FRAIG reduces 15,933 nodes in 51.99 seconds with an 

efficiency of 306.46. In contrast, the 
|𝑃𝐼|

2
-input Subgraph Partition method reduces 11,991 nodes in 

only 3.32 seconds, resulting in a significantly higher efficiency of 3611.75. Similar improvements 

are observed in other datasets such as "hyp," "log2," and "multiplier," where the 
|𝑃𝐼|

2
-input Subgraph 

Partition method consistently reduces more nodes in less time or achieves higher efficiency. Notably, 

for more complex datasets like "sixteen," "twenty," and "twentytr," FRAIG fails to produce results 

Table 2: (continued). 
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(indicated by "-") in limited time, while the 
|𝑃𝐼|

2
-input Subgraph Partition method demonstrates robust 

performance, reducing millions of nodes with efficiencies of 796.76, 802.72, and 639.35, respectively.  

In summary, the results indicate that both the 6-input and 
|𝑃𝐼|

2
-input Subgraph Partition methods 

significantly outperform their respective baselines (Strash and FRAIG) in terms of node reduction 

capabilities and computational efficiency across a variety of datasets, especially for larger and more 

complex graph structures. This demonstrates the effectiveness of the proposed subgraph partitioning 

strategies in optimizing graph reduction processes. 

6. Conclusion and Future Work 

In this paper, we have presented novel approaches to enhance the efficiency and accuracy of 

combinational equivalence checking using Functionally Reduced And-Inverter Graphs (FRAIGs). 

Our proposed methods, including improved sampling techniques and advanced graph partitioning 

strategies, have shown to significantly reduce computational complexity and improve the scalability 

of equivalence checking in large and complex circuits. By leveraging support node analysis and 

probability distribution modeling, we effectively reduced redundancy and enhanced the performance 

of the equivalence identification process. Future work will focus on further optimizing these 

techniques and exploring new algorithms to handle increasingly complex digital circuit designs. 

There also exist some direction to extend this paper in the future work. First, we could try to set 

different parameters of 𝑃 and 𝐵 for different datasets to get the more effective solution. Second, we 

could try to sampling a better initial input for FRAIG based on the probability distribution of different 

datasets to reduce the times of SAT-solver. 

References 
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