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Abstract: In this paper, we consider some Poisson-type equations arising from the study of 

electromagnetic wave propagation in metals and metamaterials, where sign-changing 

coefficients in these equations lead to challenges that fall outside standard frameworks. We 

apply the T-isomorphism method, expanding on the approach in [1], to analyze Poisson-type 

equations in fully asymmetric configurations. These configurations require a new 

construction of isomorphism T. Finally, we obtain the well-posedness of these problems 

under certain parameters.  
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1. Introduction 

Partial differential equations (PDEs) are a central mathematical tool for modeling and analyzing 

various phenomena in fields such as physics, engineering, biology, and economics. These equations 

describe relationships involving unknown functions of multiple variables and their partial derivatives. 

Many physical processes, such as heat diffusion, fluid mechanics, and electromagnetic wave 

propagation, are governed by PDEs. Finding solutions to these equations, either analytically or 

numerically, is critical for understanding the behavior of complex systems and predicting their 

evolution. 

The variational formulation is a powerful tool for PDEs, especially in the context of physics and 

engineering problems. Generally, by using test functions and Green’s formulas, the equation can be 

transformed into the related variational formulation. Then, the well-posedness of the variational 

formulation can be proven by applying the Lax-Milgram theorem and related theories. One can see 

more concepts and theories related to Green’s formulas, Sobolev spaces and the Lax-Milgram 

theorem in reference[2-7]. 

We are interested in some problems arising in the study of electromagnetic wave propagation in 

the presence of metals or certain types of metamaterials after referencing several papers and books 

([8-10]), and a detailed description of the background of this problem can be found in . Roughly 

speaking, variations in the electromagnetic field within a material or metamaterials are governed by 

Maxwell’s equations, which involve physical coefficients like dielectric permittivity 𝜀  and 𝜇 

magnetic permeability 𝜇 and cause these coefficients to become negative. 

In fact, studying Maxwell’s equations in media combining positive and negative materials raises 

unique challenges. The sign-changing parameters lead to PDEs that do not fit into the standard 
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frameworks, and the Lax-Milgram cannot be applied directly in this case since we lack the coercivity. 

We classify such problems as non-coercive problems. 

In this paper, we apply the T-isomorphism method to analyze these problems, also introduced in 

[1]. More specifically, we study Poisson-type equations that are formally the same as in [1], but in 

fully asymmetric configurations, which is a fundamental difference from the study in [1]. In fully 

asymmetric configurations, it is not possible to use a similar method as in [1] to construct the 

isomorphism T, which requires us to construct a completely different isomorphism T to solve these 

problems. In conclusion, we obtain the well-posedness of these problems under some parameters and 

asymmetric parameters that are related. 

2. Preliminaries 

In this paper, 𝛺 is assumed to be a bounded domain with a regular boundary. The outward unit normal 

vector on ∂𝛺 is denoted by 𝑛 = (𝑛𝑖), and the Lebesgue measures in 𝛺 and on ∂𝛺 are represented by 

𝑑𝑥 and 𝑑𝑠, respectively. 

2.1. Hilbert Space 

In this subsection, we introduce the Hilbert space. Firstly, we give the definitions of the linear form 

and bilinear form. 

 

Definition 2.1.  A linear form 𝐿 on a real vector space 𝑉 is a function that takes a single variable 

from the vector space 𝑉 and maps it to a real number, while satisfying specific properties for any 

scalar 𝑘  and any vectors 𝑢 and 𝑣 , as described by the following equations. 
𝐿(ℓ𝑣) = ℓ𝐿(𝑣),

𝐿(𝑢 + 𝑣) = 𝐿(𝑢) + 𝐿(𝑣).
  

Definition 2.2.  A bilinear form 𝑏 on a real vector space 𝑉 is a function that takes two variables 

from 𝑉 × 𝑉 and maps them to a real number, which satisfies certain properties for any scalar ℓ and 

any vectors 𝑢, 𝑣, 𝑢1, 𝑢2, 𝑣1, 𝑣2, 

𝑏(ℓ𝑢, 𝑣) = 𝑏(𝑢, ℓ𝑣) = ℓ𝑏(𝑢, 𝑣),

𝑏(𝑢1 + 𝑢2, 𝑣) = 𝑏(𝑢1, 𝑣) + 𝑏(𝑢2, 𝑣),

𝑏(𝑢, 𝑣1 + 𝑣2) = 𝑏(𝑢, 𝑣1) + 𝑏(𝑢, 𝑣2).
 

Based on the definition of bilinear form, we can introduce the following definition of inner product 

space. 

Definition 2.3.  A real inner product space is a real vector space equipped with an inner product. 

The inner product is a bilinear form ⟨⋅,⋅⟩: 𝑉 × 𝑉 → ℝ  that satisfies the following properties: 

⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩ for all𝑢, 𝑣 ∈ 𝑉;

⟨𝑣, 𝑣⟩ ≥ 0 for all𝑣 ∈ 𝑉;

⟨𝑣, 𝑣⟩ = 0if and only if𝑣 = 0.

 

Then we introduce the following definition of Hilbert space. 

Definition 2.4.  We define a real Hibert space as a complete real inner product space on 𝑉, with a 

scaler product which is noted as ⟨𝑎, 𝑏⟩. More precisely, it is complete for the norm associated to this 

scalar product, which is ∥ 𝑎 ∥𝑉= √⟨𝑎, 𝑎⟩𝑉 , for all𝑎 ∈ 𝑉. 

2.2. Sobolev Space 

We give following the definition of the Sobolev space 𝐻𝑛 , where 𝑛 ∈ ℕ+. 

Remark 2.5.  Let 𝛺 be an open set of ℝ𝑁. Then we are able to define the Sobolev space 𝐻1(𝛺) 
by 
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𝐻1(𝛺) = {𝑣 ∈ 𝐿2(𝛺) | 
∂𝑣
∂𝑥𝑖

∈ 𝐿2(𝛺)for all𝑖 ∈ {1,… , 𝑁}} 

where 
∂𝑣

∂𝑥𝑖
 is the ith weak partial derivative of 𝑣. To generalize, we further define 𝐻𝑛(𝛺) (𝑛 ≥ 2) by 

𝐻𝑛(𝛺) = {𝑣 ∈ 𝐿2(𝛺)such that ∂𝛼𝑣 ∈ 𝐿2(𝛺)for all𝛼with|𝛼| ≤ 𝑛} 

with 

∂𝛼𝑣(𝑥) =
∂|𝛼|𝑣

∂𝑥1
𝛼1⋯∂𝑥𝑁

𝛼𝑁
(𝑥), 

where ∂𝛼𝑣 is taken in the weak sense. Here 𝛼 = (𝛼1, … , 𝛼𝑁) is multi-index with 𝛼𝑖 ≥ 0 and |𝛼| =
∑ 𝛼𝑖
𝑁
𝑖=1 . Moreover,the inner product is written as ⟨𝑢, 𝑣⟩ = ∫ (𝑢(𝑥)𝑣(𝑥) + ∇𝑢(𝑥) ⋅ ∇𝑣(𝑥))

𝛺
𝑑𝑥. 

Meanwhile, the norm is given in following form ∥ 𝑣 ∥𝐻1(𝛺)= (∫ ((|𝑣(𝑥)|2 + |∇𝑣(𝑥)|2)𝑑𝑥)
1

2
𝛺

 

After discussing the general case of 𝐻1(𝛺), we start to introduce a specific subspace of 𝐻1(𝛺), 
noted as 𝐻0

1(𝛺). 
Definition 2.6. Let 𝛺 be a bounded region domain. The Sobolev space 𝐻0

1(𝛺) is defined as the 

closure of the space of functions 𝐶𝑐
∞(𝛺), which are of class 𝐶∞(𝛺) and have compact support in 𝛺, 

in the function space 𝐻1(𝛺). 𝐻0
1(𝛺) is actually the subspace of 𝐻1(𝛺) which consists of functions 

that cancel on the edge ∂𝛺 where ∂𝛺 is equal to 0 for functions of 𝐶𝑐
∞(𝛺). 

Remark 2.7.  Since 𝐻0
1(𝛺) is a closed subspace of 𝐻1(𝛺), 𝐻0

1(𝛺) is also a Hilbert space. 

Proposition 2.8.  (Poincaré inequality) Let 𝛺 be a regular bounded open set of 𝐶1. There exists 

a constant 𝐶 ≥ 0 such that, for any function 𝑣 ∈ 𝐻0
1(𝛺), ∫ |𝑣(𝑥)|2

𝛺
𝑑𝑥 ≤ 𝐶 ∫ |∇𝑣(𝑥)|2

𝛺
𝑑𝑥 

After discussing the definition and properties of Sobelev space 𝐻0
1(𝛺) , we will move on to 

investigating the equivalent norm. 

Definition 2.9.  Let X be a normed vector space. Two norms are equivalent if they both can be 

controlled by another norm. Specifically, the norms ∥⋅∥𝛼 and ∥⋅∥𝛽  are considered equivalent if there 

exist 𝑎, 𝑏 ∈ ℝ+, such that for any 𝑥 ∈ 𝑋, we have 𝑎 ∥ 𝑥 ∥𝛼≤∥ 𝑥 ∥𝛽≤ 𝑏 ∥ 𝑥 ∥𝛼 . 
Combine Definition 2.9 and Proposition 2.8, we can infer the following corollary. 

Corollary 2.10.  The norm of 𝐻0
1(𝛺) can be also defined as ∥ 𝑣 ∥𝐻01(𝛺): = (∫ |∇𝑣(𝑥)|2

𝛺
𝑑𝑥)

1

2 =∥

∇𝑣 ∥𝐿2(𝛺). 

Then we move on to the introduction of the Rellich–Kondrachov theorem. 

Theorem 2.11.  (Rellich–Kondrachov Theorem) For any bounded sequence in 𝐻1(𝛺), we can 

extract a sub-sequence that converges in 𝐿2(𝛺). 
Then we introduce the following Green’s formulae, which are also regarded as integration by parts 

in high-dimensional spaces. 

Theorem 2.12.  (Green’s formulae) If 𝑢,𝑤 ∈ 𝐻1(𝛺), then we have ∫ 𝑢
𝛺

∂𝑤

∂𝑥𝑖
𝑑𝑥 = −∫

∂𝑢

∂𝑥𝑖𝛺
𝑤𝑑𝑥 +

∫ 𝑢
∂𝛺

𝑤𝑛𝑖𝑑𝑠. Moreover, given 𝑢 ∈ 𝐻2(𝛺) and 𝑤 ∈ 𝐻1(𝛺), we are able to derive ∫ 𝛥
𝛺

𝑢𝑤𝑑𝑥 = −∫
𝛺

∇𝑢 ⋅ ∇𝑤𝑑𝑥 + ∫
∂𝑢

∂𝑛∂𝛺
𝑤𝑑𝑠. 

With all the above definitions and explanations of each theorem, we now introduce Lax-Milgram 

theorem. 
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2.3. Lax-Milgram Theorem 

Some Poisson-type equations can be reformulated using equations (2.3) and (2.4) to derive their 

variational formulation. Lax-Milgram theorem is an essential tool for obtaining the well-posedness 

of a variational formula in a real Hilbert space, denoted as 𝑉 . The well-posedness of a PDE’s 

variational formulation in a Hilbert space is generally equivalent to the well-posedness of the original 

PDE. We can analyze the given variational formulation’s well-posedness by utilizing the Lax-

Milgram theorem. 

We consider the following variational formulation: 

Find𝑢 ∈ 𝑉such that𝑎(𝑢, 𝑣) = 𝐿(𝑣), ∀𝑣 ∈ 𝑉. 

Before introducing Lax-Milgarm theorem, we need to give the assumptions of 𝑎(𝑢, 𝑣) and 𝐿(𝑣), 
which are respectively 

1. Bounded linear form. More precisely, there exists 𝐶 > 0 such that 

|𝐿(𝑣)| ≤ 𝐶 ∥ 𝑣 ∥, ∀𝑣 ∈ 𝑉 

2. Bounded bilinear form. More precisely, there exists 𝐶 > 0 such that 

|𝑎(𝑢, 𝑣)| ≤ 𝐶 ∥ 𝑢 ∥𝑉∥ 𝑣 ∥𝑉 , ∀𝑢, 𝑣 ∈ 𝑉. 

3. coercivity of the bilinear form. More precisely, there exists 𝛼 > 0 such that 

𝑎(𝑣, 𝑣) ≥ 𝛼 ∥ 𝑣 ∥𝑉
2 , ∀𝑣 ∈ 𝑉. 

Theorem 2.13.  (Lax-Milgram Theorem) Given 𝑉 a real Hilbert space, If 𝐿(⋅) and 𝑎(⋅,⋅) satisfy 

(2.6), (2.7) and (2.8), then there is a unique solution to (2.5). 

2.4. T-isomorphism approach 

The Lax-Milgram theorem is very useful in the study of many Poisson-type equations, however, it 

cannot be applied directly to non-coercive problems. Non-coercive problems generally refer to issues 

in the variational formulation (2.2) where 𝑎(⋅,⋅) does not satisfy the condition (2.8). For non-coercive 

problems, we have another approach to analyse these problems, which we generally call the T-

isomorphism approach. See also . 

We then introduce the T-isomorphism approach.[9] 

Theorem 2.14.  Given 𝑉 a real Hilbert space. If 𝐿(⋅) is a bounded linear form on 𝑉 and 𝑎(⋅,⋅) is 

a bounded bilinear form on 𝑉. Also, we assume that there is an isomorphism 𝑇 of 𝑉 such that the 

bilinear form (𝑢, 𝑣) ↦ 𝑎(𝑢, 𝑇𝑣)  is coercive on 𝑉 × 𝑉 , then there exists a unique solution to 

variational formuation (2.5) . 

Proof. We refer to the proof of [10, Lemma 3.6]. 

3. Anaylsis of non-coercive problems 

3.1. Maxwell’s equation in metamaterials 

We aim to explore the well-posedness of a Maxwell equation tailored to a specific material. To 

accommodate this material type, we propose a generalized form of Maxwell’s equation. Consider a 

bounded and regular domain 𝛺 ⊂ ℝ2 . We partition 𝛺 into two subdomains 𝛺1, 𝛺2, such that 𝛺‾ =
𝛺‾1 ∪ 𝛺‾2  and 𝛺1 ∩ 𝛺2 = ∅. Currently, Maxwell’s equation is not able to describe the mixing of 

metamaterials on different subdomains, thereby we need the introduction of addit ional functions. 

Therefore, we assume 
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𝜎(𝑥, 𝑦) = {
𝜎1 if(𝑥, 𝑦) ∈ 𝛺1,

𝜎2 if(𝑥, 𝑦) ∈ 𝛺2.
 

In this case, 𝜎1, 𝜎2 are two constants where 𝜎1 > 0 and 𝜎2 < 0. We are interested in studying the 

well-posedness of the resulting non-coercive problem. 

Find𝑢 ∈ 𝐻1(𝛺)such that  − div(𝜎∇𝑢) = 𝑓 in𝛺. 

Here, 𝑓 ∈ 𝐿2(𝛺) denotes the source term. We also introduce the following notation 

𝜅 =
𝜎2
𝜎1
. 

Here 𝜅 is an essential indicator in the analysis section, which is crucial in the range of well-

posedness. We will consider the well-posedness of (3.1) in two different domains. The choice of 

functions 𝑓 and 𝜎 vary depending on the specific application of this equation. For more sophisticated 

models, we are interested in the wellposedness of a more general mathematical problem and so we 

introduce region of 𝛺. Let 𝛺 be the bounded domain of ℝ2 defined by 

𝛺 = {(𝑥, 𝑦) ∈ ℝ2such that-1 < 𝑥 < 2𝑛 − 1and0 < 𝑦 < 1}. 

Also, we have 𝛺‾ = 𝛺‾1 ∪ 𝛺‾2, and 

𝛺1 = {(𝑥, 𝑦) ∈ ℝ2such that-1 < 𝑥 < 0and0 < 𝑦 < 1},

𝛺2 = {(𝑥, 𝑦) ∈ ℝ2such that0 < 𝑥 < 2𝑛 − 1and0 < 𝑦 < 1}.
 

And we will also introduce the boundaries of two frontiers of the region of leftest and rightest 

respectively, for which we define 

𝛾1 = {−1} × (0,1), 𝛾2 = {2𝑛 − 1} × (0,1). 

Morever, We note 𝛴  as the boundary between 𝛺1  and 𝛺2 , 𝛤10 = (−1,0) × (0,0) ∪ (−1,1) ×
(0,1) as the left upward and downward frontiers of the domain, and 𝛤20 = (0,0) × (2𝑛 − 1,0) ∪
(0,1) × (2𝑛 − 1,1) as the right upward and downward frontiers of the domain. To solve the problem, 

we divide the region into two domains, where 

∂𝛺1 = 𝛾1 ∪ 𝛴 ∪ 𝛤10 , ∂𝛺2 = 𝛾2 ∪ 𝛴 ∪ 𝛤20 , 

and the boundaries of each domain is respectively 

𝛺1 = (−1,0) × (0,1), 𝛺2 = (0,2𝑛 − 1) × (0,1). 

Finally, we make the definition of the Hilbert subspace 𝑉 of 𝐻1(𝛺) as follows for our further 

exploration of this analysis 𝑉 = 𝑉𝑝𝑒𝑟 , where “per” stands for periodic. Given two real values 𝜎1 > 0 

and 𝜎2 < 0, let 𝜎 be the function defined almost everywhere in 𝛺 by 𝜎(𝑥, 𝑦) = 𝜎𝑗 in 𝛺𝑗 for 𝑗 = 1,2. 

Finally, we define the Hilbert subspace 𝑉 of 𝐻1(𝛺) as follows 

𝑉𝑝𝑒𝑟 : = {𝑣 ∈ 𝐻
1(𝛺) | 𝑣 = 0on𝛤10 ∪ 𝛤20and𝑣(−1, 𝑦) = 𝑣(2𝑛 − 1, 𝑦)for all𝑦 ∈ (0,1)} 

For our analysis, we consider the following variational formulation, 

Find𝑢 ∈ 𝑉such that 𝑎(𝑢, 𝑣) = 𝐿(𝑣), 

where 
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𝑎(𝑢, 𝑣) = 𝜎∫∇
𝛺

𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥 = 𝜎1∫ ∇
𝛺1

𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥 + 𝜎2∫ ∇
𝛺2

𝑢(𝑥) ⋅ ∇𝑣(𝑥)𝑑𝑥, 

𝐿(𝑣) = ∫𝑓
𝛺

(𝑥)𝑣(𝑥)𝑑𝑥.

 

Remark 3.1. In fact, by applying the Rellich-Kondrachov Theorem 2.11, we can also deduce the 

Poincaré inequality (2.1) for all functions in 𝑉𝑝𝑒𝑟 . So the norm of 𝑉𝑝𝑒𝑟  can be defined as follows: 

∥ 𝑣 ∥𝑉𝑝𝑒𝑟: = (∫ |∇𝑣(𝑥)|2
𝛺

𝑑𝑥)
1

2 =∥ ∇𝑣 ∥𝐿2(𝛺). 

3.2. Summary of main results 

Through our analysis of these two equations, we were able to reach several conclusions. The main 

results are presented below. We first resolve the case where both constants are positive, then present 

results for more sophisticated domains and boundary conditions. We conclude with a general result 

inspired by the Riesz representation theorem. 

Theorem 3.2.  Consider the case when 𝑛 = 1, where 𝛺 = (−1,1). Specifically, we divide the 

region into 𝛺1 = (−1,0) × (0,1)  and 𝛺2 = (0,1) × (0,1) . For this geometry, the variational 

formulation (3.2) admits a unique solution when 𝜅 ≠ −1. 

Theorem 3.3.  Consider the case when 𝑛 = 2, where 𝛺 = (−1,3). Specifically, we divide the 

region into 𝛺1 = (−1,0) × (0,1)  and 𝛺2 = (0,3) × (0,1) . For this geometry, the variational 

formulation (3.2) admits a unique solution when 𝜅 ∈ (−∞,−3) ∪ (−
1

3
, 0). 

Theorem 3.4.  Consider the generalized case when 𝑛 ∈ ℤ, where 𝛺 = (−1,2𝑛 − 1)and we divide 

the region into 𝛺1 = (−1,0) × (0,1)  and 𝛺2 = (0,2𝑛 − 1) × (0,1) . For this geometry, the 

variational formulation (3.2) admits a unique solution when 𝜅 ∈ (−∞, 1 − 2𝑛) ∪ (−
1

2𝑛−1
, 0). 

3.3. Proof of main results 

3.4. Proof of Theorem 3.1 

In fact, this case has been essentially proven in [1]. Since we have a symmetric configuration when 

𝑛 = 1, we can directly apply the same method as in [1,(3.6)] to construct an appropriate isomorphism 

𝑇, and then we can follow the proof of [1] to show that the variational formulation (3.2) admits a 

unique solution when 𝜅 ≠ −1. 

 

Figure 1: Configuration for case 𝑛 = 1 

3.5. Proof of Theorem 3.2 

First of all, we construct 𝛺1 and 𝛺2 and divide 𝛺2 into several regions in the following subdomains 
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 𝛺2 = {

𝐶1, 𝐶1 ∈ (0,1) × (0,1),

𝐶2, 𝐶2 ∈ (1,2) × (0,1),

𝐶3, 𝐶3 ∈ (2,3) × (0,1).

  

 

Figure 2: Configuration for case 𝑛 = 2 

To achieve the solution for solving the well-posedness of this case when 𝑛 = 2, we ought to create 

a T-isomorphism and use the Lax-Milgram Theorem. We have to directly construct 𝑇𝑣(𝑥, 𝑦) on 𝛺 so 

that it is always continuous on 𝛺2, which is denoted as follows: 

 𝑇𝑣(𝑥, 𝑦) =

{
 

 
𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶1,

−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶3.

  

Lemma 3.5.  𝑇𝑣 is continuous on 𝛴, {1} × (0,1) and {2} × (0,1) . 
Proof. Firstly, we are instructed to calculate both the left and right limits on ∑ to prove the 

continuity of 𝑇𝑣. To prove that the weak partial derivative of 𝑇𝑣 exists in 𝛺, we show the continuity 

of 𝑇𝑣 on the boundaries between the domains 𝛺1, 𝐶1, 𝐶2 and 𝐶3. 

i. For (𝑥, 𝑦) ∈ 𝛺1, we have 

 
lim

(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑇𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦).
  

ii.For (𝑥, 𝑦) ∈ 𝐶1 , we have 

 

lim
(𝑥,𝑦)∈𝐶1
𝑥→0+

𝑇𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝐶1
𝑥→0+

(−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥, 𝑦))

= − lim
(𝑥,𝑦)∈𝐶1
𝑥→0+

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝐶1
𝑥→0+

𝑣(−𝑥, 𝑦)

= − lim
(𝑥,𝑦)∈𝐶1
𝑥→0+

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦).

  

Therefore, 𝑇𝑣(𝑥, 𝑦) is continuous on 𝛴 . Then, we will verify its continuity on the boundary 

between 𝐶1 and 𝐶2. 

iii. For (𝑥, 𝑦) ∈ 𝐶1 , we have 

 

lim
(𝑥,𝑦)∈𝐶1
𝑥→1−

𝑇𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝐶1
𝑥→1−

(−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥, 𝑦))

= − lim
(𝑥,𝑦)∈𝐶1
𝑥→1−

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝐶1
𝑥→1−

𝑣(−𝑥, 𝑦)

= − lim
(𝑥,𝑦)∈𝐶1
𝑥→1−

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝛺1
𝑥→−1+

𝑣(𝑥, 𝑦).

  

iv.For (𝑥, 𝑦) ∈ 𝐶2, we have 
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lim
(𝑥,𝑦)∈𝐶2
𝑥→1+

𝑇𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝐶2
𝑥→1+

(−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2, 𝑦))

= − lim
(𝑥,𝑦)∈𝐶2
𝑥→1+

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝐶2
𝑥→1+

𝑣(𝑥 − 2, 𝑦)

= − lim
(𝑥,𝑦)∈𝐶2
𝑥→1+

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝛺1
𝑥→−1+

𝑣(𝑥, 𝑦).

  

Since 𝑇𝑣(𝑥, 𝑦) is continuous on the boundary between 𝐶1 and 𝐶2 for every 𝑣(𝑥, 𝑦) ∈ 𝑉per, we are 

able to obtain that −lim(𝑥,𝑦)∈𝐶1
𝑥→1−

𝑣(𝑥, 𝑦) = −lim(𝑥,𝑦)∈𝐶2
𝑥→1+

𝑣(𝑥, 𝑦) . Therefore, lim(𝑥,𝑦)∈𝐶1
𝑥→1−

𝑇𝑣(𝑥, 𝑦) =

lim(𝑥,𝑦)∈𝐶2
𝑥→1+

𝑇𝑣(𝑥, 𝑦) . Moreover, we should confirm whether 𝑇𝑣  is continuous on the boundary 

between 𝐶2 and 𝐶3. So we should verify the continuity on the boundary between 𝐶2 and 𝐶3. 

v.For (𝑥, 𝑦) ∈ 𝐶2, we have 

lim
(𝑥,𝑦)∈𝐶2
𝑥→2−

𝑇𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝐶2
𝑥→2−

(−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2, 𝑦))

= − lim
(𝑥,𝑦)∈𝐶2
𝑥→2−

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝐶2
𝑥→2−

𝑣(𝑥 − 2, 𝑦)

= − lim
(𝑥,𝑦)∈𝐶2
𝑥→2−

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦).

 

vi.For (𝑥, 𝑦) ∈ 𝐶3, we have 

lim
(𝑥,𝑦)∈𝐶3
𝑥→2+

𝑇𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝐶3
𝑥→2+

(−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2, 𝑦))

= − lim
(𝑥,𝑦)∈𝐶3
𝑥→2+

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝐶3
𝑥→2+

𝑣(−𝑥 + 2, 𝑦)

= − lim
(𝑥,𝑦)∈𝐶3
𝑥→2+

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦).

 

Similarly, since 𝑇𝑣(𝑥, 𝑦) is continuous on the boundary between 𝐶2 and 𝐶3 for every 𝑣(𝑥, 𝑦) ∈
𝑉per , we are able to obtain −lim(𝑥,𝑦)∈𝐶2

𝑥→2−
𝑣(𝑥, 𝑦) = −lim(𝑥,𝑦)∈𝐶3

𝑥→2+

𝑣(𝑥, 𝑦) . Therefore, 

lim(𝑥,𝑦)∈𝛺1
𝑥→0+

𝑇𝑣(𝑥, 𝑦) = lim(𝑥,𝑦)∈𝐶3
𝑥→2+

𝑇𝑣(𝑥, 𝑦). ◻ 

Lemma 3.6.  𝑇 is an isomorphism of 𝑉𝑝𝑒𝑟. 

Proof. According to Lemma 3.5, we know that 

 

∥ 𝑇𝑣 ∥𝑉per

2 =∥ ∇(𝑇𝑣) ∥𝐿2(𝛺1)
2 +∥ ∇(𝑇𝑣) ∥𝐿2(𝛺2)

2

=∥ ∇(𝑇𝑣) ∥𝐿2(𝛺1)
2 +∥ ∇(𝑇𝑣) ∥𝐿2(𝐶1)

2 +∥ ∇(𝑇𝑣) ∥𝐿2(𝐶2)
2 +∥ ∇(𝑇𝑣) ∥𝐿2(𝐶3)

2

≤ 𝐶 ∥ ∇𝑣 ∥𝐿2(𝛺)
2

= 𝐶 ∥ 𝑣 ∥𝑉per

2 .

  

Therefore, ∥ 𝑇𝑣 ∥𝑉per
≤ 𝐶 ∥ 𝑣 ∥𝑉per

 for all 𝑣 ∈ 𝑉per. In other words, 𝑇𝑣 is continuous on 𝑉per. After 

verifying the continuity of 𝑇𝑣(𝑥, 𝑦), we need to check whether 𝑇𝑣 is bijective or not. To prove the 

assumption of the bijectivity of 𝑇, we reference the technique of proving 𝑇 ∘ 𝑇 = Id, in this case, 

𝑇(𝑇𝑣) = 𝑣. 
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𝑇𝑣(𝑥, 𝑦) =

{
 

 
𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶1,

−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶3.

 

𝑇(𝑇𝑣(𝑥, 𝑦)) =

{
 

 
𝑇𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶1,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(𝑥 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶3.

 

Given that for all (𝑥, 𝑦) ∈ 𝛺1, 

𝑇(𝑇𝑣(𝑥, 𝑦)) = 𝑇𝑣(𝑥, 𝑦) = 𝑣(𝑥, 𝑦). 

For all (𝑥, 𝑦) ∈ 𝐶1, we have 

𝑇(𝑇𝑣(𝑥, 𝑦)) = −𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥, 𝑦)

= −(−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥, 𝑦)) + 2𝑣(−𝑥, 𝑦)

= 𝑣(𝑥, 𝑦).

 

For all (𝑥, 𝑦) ∈ 𝐶2, we have 

𝑇(𝑇𝑣(𝑥, 𝑦)) = −𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(𝑥 − 2, 𝑦)

= −(−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2, 𝑦)) + 2𝑣(𝑥 − 2, 𝑦)

= 𝑣(𝑥, 𝑦).

 

For all (𝑥, 𝑦) ∈ 𝐶3, we have 

𝑇(𝑇𝑣(𝑥, 𝑦)) = −𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥 + 2, 𝑦)

= −(−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2, 𝑦)) + 2𝑣(−𝑥 + 2, 𝑦)

= 𝑣(𝑥, 𝑦).

 

Therefore, for all (𝑥, 𝑦) ∈ 𝛺 where 𝛺 = 𝛺1 ∪ 𝐶1 ∪ 𝐶2 ∪ 𝐶3, we have 𝑇(𝑇𝑣(𝑥, 𝑦)) = 𝑣(𝑥, 𝑦).  

Thereby, we prove that 𝑇 is bijective. Thus, 𝑇 is an isomorphism of 𝑉𝑝𝑒𝑟 . Now, we may apply 

standard techniques to verify that 𝑎(𝑣, 𝑇𝑣) is coercive for some 𝜅, hence calculating the specific 

values of 𝜅 where the variational formulation (3.2) admits a unique solution. Now we introduce 𝑅1𝑣 

and we define it as 

𝑅1𝑣(𝑥, 𝑦) = {

2𝑣(−𝑥, 𝑦), (𝑥, 𝑦) ∈ 𝐶1,

2𝑣(𝑥 − 2, 𝑦), (𝑥, 𝑦) ∈ 𝐶2,

2𝑣(−𝑥 + 2, 𝑦), (𝑥, 𝑦) ∈ 𝐶3.

 

Therefore, 

𝑎(𝑣, 𝑇𝑣) = 𝜎1∫ |∇𝑣(𝑥)|2

𝛺1

𝑑𝑥𝑑𝑦 + 𝜎2∫ ∇
𝛺2

𝑣(𝑥) ⋅ ∇(𝑇𝑣2(𝑥))𝑑𝑥𝑑𝑦

= 𝜎1∫ |∇𝑣(𝑥)|2

𝛺1

𝑑𝑥𝑑𝑦 − 𝜎2∫ ∇
𝛺2

𝑣(𝑥)2 + 2𝜎2∫ (∇𝑣 ⋅ ∇𝑅1𝑣)
𝛺2

𝑑𝑥𝑑𝑦

= 𝜎1∫ |∇𝑣(𝑥)|2

𝛺1

𝑑𝑥𝑑𝑦 − 𝜎2∫ |∇𝑣(𝑥)|2

𝛺2

𝑑𝑥𝑑𝑦 + 2𝜎2∫ ∇
𝛺2

𝑣(𝑥) ⋅ ∇(𝑅1𝑣(𝑥))𝑑𝑥𝑑𝑦.
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In this circumstance, we are able to calculate 

∫ |∇(𝑅1𝑣(𝑥))|
2

𝛺2

𝑑𝑥𝑑𝑦

= ∫ |∇(𝑣(−𝑥, 𝑦))|
2

𝐶1

𝑑𝑥𝑑𝑦 + ∫ |∇(𝑣(𝑥 − 2, 𝑦))|
2

𝐶2

𝑑𝑥𝑑𝑦 + ∫ |∇(𝑣(−𝑥 + 2, 𝑦))|
2

𝐶3

𝑑𝑥𝑑𝑦

= 3∫ |∇(𝑣(𝑥, 𝑦)|2

𝛺1

𝑑𝑥𝑑𝑦.

 

Therefore, by applying Young’s Inequality, it is evident that 

2 |∫ (∇𝑣 ⋅ ∇(𝑅1𝑣(𝑥)))
𝛺2

𝑑𝑥𝑑𝑦|

≤ 2 ∥ ∇𝑣 ∥𝐿2(𝛺2)⋅∥ ∇𝑅1𝑣 ∥𝐿2(𝛺2)

≤ 2√3 ∥ ∇𝑣 ∥𝐿2(𝛺1)⋅∥ ∇𝑣 ∥𝐿2(𝛺1)

≤ √3𝛿−1 ∥ ∇𝑣 ∥𝐿2(𝛺1)
2 + √3𝛿 ∥ ∇𝑣 ∥𝐿2(𝛺1)

2 .

 

Then we substitute the inequality above into the original calculation of 𝑎(𝑣, 𝑇𝑣) and we can derive 

𝑎(𝑣, 𝑇𝑣) ≥ (𝜎1 + √3𝜎2𝛿
−1) ⋅∥ ∇𝑣 ∥𝐿2(𝛺1)

2 − 𝜎2(1 − √3𝛿) ∥ ∇𝑣 ∥𝐿2(𝛺2)
2 . 

Since for 𝑎(𝑣, 𝑇𝑣), it should always be greater or equal to 0. Thereby, we have 

{
𝜎1 + √3𝜎2𝛿

−1 > 0,

1 − √3𝛿 > 0.
 

After simplification, we have 

{
 
 

 
 𝛿 >

−√3𝜎2
𝜎1

,

𝛿 <
√3

3
.

 

We now have the following result: when 
𝜎2

𝜎1
> −

1

3
, with reference to Theorem 2.14 this variational 

formulation (3.2) has a unique solution. This suggests that 𝑎(𝑣, 𝑇𝑣) is coercive in this case, which 

also implies that it admits a unique solution. However, 
𝜎2

𝜎1
> −

1

3
 is not the only range for which this 

variational formulation (3.2) admits a unique solution, because 𝜎1 and 𝜎2 are in equal status and can 

be reversed. Since this question is an exploration of the asymmetric region, we need to directly 

construct another 𝑇𝑣 ∈ 𝐻1(𝛺) , denoted as 𝑇′𝑣 , to find out the corresponding range of 

circumstances under which the variational formulation (3.2) has a unique solution. The following 

process is the construction of 𝑇′𝑣, where 𝑇′𝑣: 𝑉𝑝𝑒𝑟 → 𝑉𝑝𝑒𝑟 , where 𝑝 and 𝑞 are constants. 

𝑇′𝑣(𝑥, 𝑦) = {
𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2.
 

where 𝑤(𝑥, 𝑦) = 𝑣(−𝑥, 𝑦) + 𝑝𝑣(𝑥 + 2, 𝑦) + 𝑞𝑣(−𝑥 + 2, 𝑦) . Similarly, to begin with, we should 

verify that the 𝑇′𝑣 is continuous on 𝛴, so as to obtain the values of both 𝑝 and 𝑞. 
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lim
(𝑥,𝑦)∈𝛺2
𝑥→0+

𝑇′𝑣(𝑥, 𝑦) = − lim
(𝑥,𝑦)∈𝛺2
𝑥→0+

𝑣(𝑥, 𝑦)

lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

(𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦)) = lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

(𝑣(𝑥, 𝑦) − 2𝑣(−𝑥, 𝑦) − 2𝑝𝑣(𝑥 + 2, 𝑦) − 2𝑞𝑣(−𝑥 + 2, 𝑦))

= lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦) − 2 lim
(𝑥,𝑦)∈𝐶1
𝑥→0+

𝑣(𝑥, 𝑦) − 2𝑝 lim
(𝑥,𝑦)∈𝐶2
𝑥→2−

𝑣(𝑥, 𝑦) − 2𝑞 lim
(𝑥,𝑦)∈𝐶3
𝑥→2+

𝑣(𝑥, 𝑦).

 

Since the 𝑇′𝑣 is continuous on 𝛴, we have 

lim
(𝑥,𝑦)∈𝛺2
𝑥→0+

𝑇′𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

(𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦)),
 

which implies that 

− lim
(𝑥,𝑦)∈𝛺2
𝑥→0+

𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦) − 2 lim
(𝑥,𝑦)∈𝐶1
𝑥→0+

𝑣(𝑥, 𝑦) − 2𝑝 lim
(𝑥,𝑦)∈𝐶2
𝑥→2−

𝑣(𝑥, 𝑦) − 2𝑞 lim
(𝑥,𝑦)∈𝐶3
𝑥→2+

𝑣(𝑥, 𝑦).
 

Therefore, we derive the relationship 𝑝 + 𝑞 = 0. We might as well assume 𝑝 = 1 and 𝑞 = −1 to 

simplify our analysis for this variational formulation (3.2) which has a unique solution. In this case, 

𝑇′𝑣 is manifested as follows: 

{
𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2,
 

where 𝑤(𝑥, 𝑦) = 𝑣(−𝑥, 𝑦) + 𝑣(𝑥 + 2, 𝑦) − 𝑣(−𝑥 + 2, 𝑦). 
Now we show that 𝑇′ is an isomorphism of 𝑉𝑝𝑒𝑟  

 

Lemma 3.7.  𝑇′ is an isomorphism of 𝑉𝑝𝑒𝑟 . 

Proof. Since 𝑇′𝑣  is continuous on 𝛴 , we can compute directly the norm of 𝑇′𝑣  in 𝑉𝑝𝑒𝑟  as 

follows: 

∥ 𝑇′𝑣 ∥𝑉𝑝𝑒𝑟
2 =∥ ∇(𝑇′𝑣) ∥𝐿2(𝛺1)

2 +∥ ∇(𝑇′𝑣) ∥𝐿2(𝛺2)
2

=∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺2)
2 +∥ −∇𝑣(𝑥, 𝑦) + 2∇𝑣(−𝑥, 𝑦) + 2∇𝑣(𝑥 + 2, 𝑦) − 2∇𝑣(−𝑥 + 2, 𝑦) ∥𝐿2(𝛺1)

2 .
 

By applying the triangle inequality and the fact that ∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺1)=∥ ∇𝑣(−𝑥, 𝑦) ∥𝐿2(𝛺2) due 

to the periodicity of 𝑣, we obtain: 

∥ 𝑇′𝑣 ∥𝑉𝑝𝑒𝑟
2 ≤∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺2)

2 + 2 ∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺1)
2 + 8 ∥ ∇𝑣(−𝑥, 𝑦) ∥𝐿2(𝛺2)

2

≤ 9(∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺1)
2 +∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺2)

2 )

= 9 ∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺)
2 .

 

Therefore, ∥ ∇𝑇′𝑣(𝑥, 𝑦) ∥𝐿2(𝛺)≤ 3 ∥ 𝑣(𝑥, 𝑦) ∥𝐿2(𝛺), which indicates that 𝑇′𝑣 is continuous on 

𝐻1(𝛺). 
For the next step, we ought to show that 𝑇′ is bijective. To do this, it is necessary to verify that 

𝑇′(𝑇′𝑣) = 𝑣. We have 

 𝑇′𝑣(𝑥, 𝑦) = {
𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2,
 (3.3) 
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 𝑇′ (𝑇′𝑣(𝑥, 𝑦)) = {
𝑇′𝑣(𝑥, 𝑦) − 2𝑇′𝑤(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑇′𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2,
 (3.4) 

where 𝑤(𝑥, 𝑦) = 𝑣(−𝑥, 𝑦) + 𝑣(𝑥 + 2, 𝑦) − 𝑣(−𝑥 + 2, 𝑦) 
For all (𝑥, 𝑦) ∈ 𝛺1, we have 

𝑇′𝑣(𝑥, 𝑦) − 2𝑇′𝑤(𝑥, 𝑦) = 𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦) + 2𝑤(𝑥, 𝑦)

= 𝑣(𝑥, 𝑦)
 

For all (𝑥, 𝑦) ∈ 𝛺2, we have 

−𝑇′𝑣(𝑥, 𝑦) = 𝑣(𝑥, 𝑦) 

Therefore, 𝑇 is bijective. Thus, 𝑇 is an isomorphism of 𝑉𝑝𝑒𝑟 . ◻ 

At last, we ought to prove that 𝑎(𝑣, 𝑇′𝑣) is coercive. 

𝑇′𝑣(𝑥, 𝑦) = {
𝑣(𝑥, 𝑦) − 2𝑅2𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2,
 

where we denote 𝑅2𝑣(𝑥, 𝑦) as 𝑅2𝑣(𝑥, 𝑦) = 𝑣(−𝑥, 𝑦) + 𝑣(𝑥 + 2, 𝑦) − 𝑣(−𝑥 + 2, 𝑦). 

𝑎(𝑣, 𝑇𝑣′) = 𝜎1∫ |∇𝑣(𝑥)|2

𝛺1

𝑑𝑥𝑑𝑦 + 𝜎2∫ ∇
𝛺2

𝑣(𝑥) ⋅ ∇(𝑇𝑣(𝑥))𝑑𝑥𝑑𝑦

= −𝜎2∫ |∇𝑣(𝑥)|2

𝛺2

𝑑𝑥𝑑𝑦 + 𝜎1∫ |∇𝑣(𝑥)|2

𝛺1

𝑑𝑥𝑑𝑦 − 2𝜎1∫ ∇
𝛺1

𝑣(𝑥) ⋅ ∇(𝑅2𝑣(𝑥))𝑑𝑥𝑑𝑦.
 

In this circumstance, we are able to calculate 

∫ |∇(𝑅2𝑣(𝑥))|
2

𝛺2

𝑑𝑥𝑑𝑦

= ∫ |∇(𝑣(−𝑥, 𝑦))|
2

𝐶1

𝑑𝑥𝑑𝑦 +∫ |∇(𝑣(𝑥 + 2, 𝑦))|
2

𝐶2

𝑑𝑥𝑑𝑦 +∫ |∇(𝑣(−𝑥 + 2, 𝑦))|
2

𝐶3

𝑑𝑥𝑑𝑦

= 3∫ |∇(𝑣(𝑥, 𝑦)|2

𝛺1

𝑑𝑥𝑑𝑦

 

Therefore, by applying Young’s Inequality, it is evident that 

2 |∫ (∇𝑣 ⋅ ∇(𝑅2𝑣(𝑥)))
𝛺2

𝑑𝑥𝑑𝑦|

≤ 2 ∥ ∇𝑣 ∥𝐿(𝛺2)
2 ⋅∥ ∇𝑅2𝑣 ∥𝐿(𝛺2)

2

≤ 2√3 ∥ ∇𝑣 ∥𝐿(𝛺1)
2 ⋅∥ ∇𝑣 ∥𝐿(𝛺1)

2

≤ √3𝛿−1 ∥ ∇𝑣 ∥𝐿(𝛺1)
2
2 + √3𝜎1𝛿 ∥ ∇𝑣 ∥𝐿(𝛺1)

2
2

 

Then we substitute the inequality above into the original calculation of 𝑎(𝑣, 𝑇𝑣) and we are able 

to derive 

𝑎(𝑣, 𝑇𝑣) ≥ (−√3𝜎1𝛿 + 𝜎1) ⋅∥ ∇𝑣 ∥𝐿(𝛺1)
2
2 + (−𝜎2 − √3𝜎1𝛿

−1) ∥ ∇𝑣 ∥
𝐿(𝛺2)
2
2

 

Since for 𝑎(𝑣, 𝑇𝑣), it should always be greater or equal to 0. Thereby, we have 
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{
−√3𝜎1𝛿 + 𝜎1 > 0

−𝜎2 − √3𝜎1𝛿
−1 > 0

 

{
 
 

 
 𝛿 <

√3

3

𝛿 > −
√3𝜎1
𝜎2

 

Therefore, after simplification of calculations, by Theorem 2.18 for 𝑇′𝑣(𝑥, 𝑦) , when 𝜅 ∈
(−∞,−3), the variational formulation 3.2 admits a unique solution. In conclusion, for the case of 

variational formulation when 𝑛 = 2 , it has a unique solution and satisfies the conditions of 

isomorphism when 𝜅 ∈ (−∞,−3) ∪ (−
1

3
, 0). 

3.6. Proof of Theorem 3.3 

After discussing the case when 𝑛 = 2, we may further investigate the generalized case when 𝑛 ∈ ℤ+, 

where 𝛺 = (−1,2𝑛 − 1) × (0,1). Under this circumstance, we aim to search for the range of 𝜅 that 

makes the generalized variational formulation has a unique solution. Recall that 𝑣  represents the 

restriction of 𝑣 to 𝛺. Then we define the new operator 𝑇 as follows. 

 

Figure 3: Configuration for case 𝑛 = 𝐙+ 

𝑇𝑣(𝑥, 𝑦) =

{
 
 
 
 

 
 
 
 
𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶1,

−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶3,

−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 4, 𝑦), if(𝑥, 𝑦) ∈ 𝐶4,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 4, 𝑦), if(𝑥, 𝑦) ∈ 𝐶5,

           ⋮
−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2𝑛 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑛−2,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2𝑛 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑛−1.

 

Similarly, we reference the technique used in the case where 𝑛 = 2 to prove the assumption of the 

continuous form. Notice that for this generalized case, we ought to prove that each boundary between 

𝛺1 and 𝐶1, 𝐶1 and 𝐶2, 𝐶2 and 𝐶3, …, 𝐶2𝑛−2 and 𝐶2𝑛−1 are continuous. To generalize and simplify the 

verification process, we might as well assume for all 𝑘 = 1,2,3⋯𝑛 and prove the continuity that fits 

every interface within this geometry. We denote that 𝐶0 is 𝛺1. Using the same method, we find both 

limits of each boundary between any 𝐶2𝑘−2 and 𝐶2𝑘−1. 

Lemma 3.8.  𝑇𝑣 is continuous on each boundary between any 𝐶2𝑘−2 and 𝐶2𝑘−1. 

Proof. 
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lim
(𝑥,𝑦)∈𝛺1
𝑥→(2𝑘−2)−

𝑇𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝐶(2𝑘−2)

𝑥→(2𝑘−2)−

(−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2𝑘 + 2, 𝑦))

= − lim
(𝑥,𝑦)∈𝐶(2𝑘−2)

𝑥→(2𝑘−2)−

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝐶(2𝑘−2)

𝑥→(2𝑘−2)−

𝑣(𝑥 − 2𝑘 + 2, 𝑦)

= − lim
(𝑥,𝑦)∈𝐶(2𝑘−2)

𝑥→(2𝑘−2)−

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦)

 

lim
(𝑥,𝑦)∈𝐶(2𝑘−1)

𝑥→(2𝑘−2)+

𝑇𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝐶(2𝑘−1)

𝑥→(2𝑘−2)+

(−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2𝑘 − 2, 𝑦))

= − lim
(𝑥,𝑦)∈𝐶(2𝑘−1)

𝑥→(2𝑘−2)+

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝐶(2𝑘−1)

𝑥→(2𝑘−2)+

𝑣(−𝑥 + 2𝑘 − 2, 𝑦)

= − lim
(𝑥,𝑦)∈𝐶(2𝑘−1)

𝑥→(2𝑘−2)+

𝑣(𝑥, 𝑦) + 2 lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦)

 

Since lim
(𝑥,𝑦)∈𝐶(2𝑘−2)

𝑥→(2𝑘−2)−

𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝐶(2𝑘−1)

𝑥→(2𝑘−2)+

𝑣(𝑥, 𝑦) , therefore, lim
(𝑥,𝑦)∈𝐶(2𝑘−2)

𝑥→(2𝑘−2)−

𝑇𝑣(𝑥, 𝑦) =

lim
(𝑥,𝑦)∈𝐶(2𝑘−1)

𝑥→(2𝑘−2)+

𝑇𝑣(𝑥, 𝑦). In conclusion, 𝑇𝑣(𝑥, 𝑦) is continuous on each boundary between any 𝐶2𝑘−2 and 

𝐶2𝑘−1. 

Lemma 3.9.  𝑇 is an isomorphism of 𝑉𝑝𝑒𝑟. 

Proof. From Lemma 3.8, we can compute directly 

∥ 𝑇𝑣 ∥𝑉𝑝𝑒𝑟
2 =∥ ∇(𝑇𝑣) ∥𝐿2(𝛺1)

2 +∥ ∇(𝑇𝑣) ∥𝐿2(𝛺2)
2

= ∑ ∥

2𝑛−1

𝑖=1

∇(𝑇𝑣) ∥𝐿2(𝐶𝑖)
2

≤ 𝐶 ∥ ∇𝑣 ∥𝐿2(𝛺)
2

= 𝐶 ∥ 𝑣 ∥𝑉𝑝𝑒𝑟
2 .

 

Therefore, we are able to derive 

∥ 𝑇𝑣 ∥𝑉𝑝𝑒𝑟≤ 𝐶 ∥ 𝑣 ∥𝑉𝑝𝑒𝑟 , 

which implies that 𝑇𝑣(𝑥, 𝑦) is continuous on 𝑉𝑝𝑒𝑟 . To verify the assumption of the bijectivity of 𝑇𝑣, 

we again reference the technique of proving 𝑇(𝑇𝑣) = 𝐼𝑑, in this case, 𝑇(𝑇𝑣) = 𝑣. Since 
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𝑇𝑣(𝑥, 𝑦) =

{
 
 
 
 

 
 
 
 
𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶1,

−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶3,

−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 4, 𝑦), if(𝑥, 𝑦) ∈ 𝐶4,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶5,

           ⋮
−𝑣(𝑥, 𝑦) + 2𝑣(𝑥 − 2𝑛 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑛−2,

−𝑣(𝑥, 𝑦) + 2𝑣(−𝑥 + 2𝑛 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑛−1.

 

Now we calculate each 𝑇(𝑇𝑣(𝑥, 𝑦)) for each region in the geometry, which is displayed in the 

following process. 

𝑇(𝑇𝑣(𝑥, 𝑦)) =

{
 
 
 
 

 
 
 
 
𝑇𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶1,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(𝑥 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶3,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(𝑥 − 4, 𝑦), if(𝑥, 𝑦) ∈ 𝐶4,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥 + 4, 𝑦), if(𝑥, 𝑦) ∈ 𝐶5,

           ⋮
−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(𝑥 − 2𝑛 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑛−2,

−𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥 + 2𝑛 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑛−1.

 

To prove the bijectivity of 𝑇, we again assume for all 𝑘 = 1,2,3,⋯ , 𝑛 and we are going to prove 

𝑇 ∘ 𝑇 = Id. We have: 

For all (𝑥, 𝑦) ∈ 𝛺1, 

𝑇(𝑇𝑣(𝑥, 𝑦)) = 𝑣(𝑥, 𝑦). 

For all (𝑥, 𝑦) ∈ 𝐶2𝑘−2, 

𝑇(𝑇𝑣(𝑥, 𝑦)) = −𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(𝑥 − 2𝑘 + 2, 𝑦)

= 𝑣(𝑥, 𝑦) − 2𝑣(𝑥 − 2𝑘 + 2, 𝑦) + 2𝑣(𝑥 − 2𝑘 + 2, 𝑦)

= 𝑣(𝑥, 𝑦).

 

For all (𝑥, 𝑦) ∈ 𝐶2𝑘−1, 

𝑇(𝑇𝑣(𝑥, 𝑦)) = −𝑇𝑣(𝑥, 𝑦) + 2𝑇𝑣(−𝑥 + 2𝑘 − 2, 𝑦)

= 𝑣(𝑥, 𝑦) − 2𝑣(−𝑥 + 2𝑘 − 2, 𝑦) + 2𝑣(−𝑥 + 2𝑘 − 2, 𝑦)

= 𝑣(𝑥, 𝑦).

 

In brief, it can be concluded as 

𝑇(𝑇𝑣(𝑥, 𝑦)) = {

𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑘−2,

𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑘−1.

 

Thereby, we show that 𝑇 is bijective. Thus, 𝑇 is an isomorphism of 𝑉𝑝𝑒𝑟 . ◻ 
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Similarly, now we may apply standard techniques to verify that 𝑎(𝑣, 𝑇𝑣) is coercive for some 𝜅, 

hence calculating the specific values of 𝜅 where the variational formulation is well-posed. Now we 

introduce 𝑅3𝑣 where 

𝑅3𝑣(𝑥, 𝑦) =

{
  
 

  
 
𝑣(−𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝐶1,

𝑣(𝑥 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2,

𝑣(−𝑥 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶3,

   ⋮
𝑣(𝑥 − 2𝑛 + 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑛−2,

𝑣(−𝑥 + 2𝑛 − 2, 𝑦), if(𝑥, 𝑦) ∈ 𝐶2𝑛−1.

 

Therefore, 

𝑎(𝑣, 𝑇𝑣) = 𝜎1∫ |∇𝑣(𝑥)|2

𝛺1

𝑑𝑥𝑑𝑦 + 𝜎2∫ ∇
𝛺2

𝑣(𝑥) ⋅ ∇(𝑇𝑣(𝑥))𝑑𝑥𝑑𝑦

= 𝜎1∫ |∇𝑣(𝑥)|2

𝛺1

𝑑𝑥𝑑𝑦 − 𝜎2∫ ∇
𝛺2

𝑣(𝑥)2𝑑𝑥𝑑𝑦 + 2𝜎2∫ (∇𝑣 ⋅ ∇𝑅3𝑣)
𝛺2

𝑑𝑥𝑑𝑦

= 𝜎1∫ |∇𝑣(𝑥)|2

𝛺1

𝑑𝑥𝑑𝑦 − 𝜎2∫ |∇𝑣(𝑥)|2

𝛺2

𝑑𝑥𝑑𝑦 + 2𝜎2∫ ∇
𝛺2

𝑣(𝑥) ⋅ ∇(𝑅3𝑣(𝑥))𝑑𝑥𝑑𝑦.

 

In this circumstance, we are able to calculate 

∫ |∇(𝑅3𝑣(𝑥))|
2

𝛺2

𝑑𝑥𝑑𝑦

=∑∫ |∇𝑣(−𝑥 + 2𝑗 − 2)|2

𝐶2𝑗−1

𝑛

𝑗=1

𝑑𝑥𝑑𝑦 +∑∫ |∇𝑣(𝑥 − 2𝑗)|2

𝐶2𝑗

𝑛−1

𝑗=1

𝑑𝑥𝑑𝑦

= (2𝑛 − 1)∫ |∇𝑣(𝑥, 𝑦)|2

𝛺1

𝑑𝑥𝑑𝑦.

 

Therefore, by applying Young’s Inequality, we have 

2 |∫ (∇𝑣 ⋅ ∇(𝑅3𝑣(𝑥)))
𝛺2

𝑑𝑥𝑑𝑦|

≤ 2 ∥ ∇𝑣 ∥𝐿(𝛺2)
2 ⋅∥ ∇𝑅3𝑣 ∥𝐿(𝛺2)

2

≤ 2√2𝑛 − 1 ∥ ∇𝑣 ∥𝐿(𝛺1)
2 ⋅∥ ∇𝑣 ∥𝐿(𝛺1)

2

≤ √2𝑛 − 1𝛿−1 ∥ ∇𝑣 ∥𝐿(𝛺1)
2
2 + √2𝑛 − 1𝛿 ∥ ∇𝑣 ∥𝐿(𝛺1)

2
2

 

Then we substitute the inequality above into the original calculation of 𝑎(𝑣, 𝑇𝑣) and we are able 

to derive 

𝑎(𝑣, 𝑇𝑣) ≥ (𝜎1 + √2𝑛 − 1𝜎2𝛿) ⋅∥ ∇𝑣 ∥𝐿(𝛺1)
2
2 − 𝜎2(1 − √2𝑛 − 1𝛿

−1) ∥ ∇𝑣 ∥
𝐿(𝛺2)
2
2

 

Since for 𝑎(𝑣, 𝑇𝑣), it should always be greater or equal to 0. Thereby, we have 

{
𝜎1 + √2𝑛 − 1𝜎2𝛿 > 0,

1 − √2𝑛 − 1𝛿−1 > 0.
 

After simplifying the calculation, we can deduce the range of 𝛿 
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{
𝛿 < −

𝜎1

√2𝑛 − 1𝜎2
,

𝛿 > √2𝑛 − 1.

 

We now have the following result: when 
𝜎2

𝜎1
∈ (

1

1−2𝑛
, 0), this variational formulation (3.2) admits 

a unique solution with reference to Theorem 2.18. This suggests that 𝑎(𝑣, 𝑇𝑣) is coercive in this case, 

which also implies that it admits a unique solution. However, 
𝜎2

𝜎1
∈ (

1

1−2𝑛
, 0) is not the only range for 

the geometry admitting a unique solution, because 𝜎1 and 𝜎2 are in equal status and can be reversed. 

Since this question is an exploration of the asymmetric region, we need to directly construct another 

𝑇𝑣 ∈ 𝐻1(𝛺), denoted as 𝑇′𝑣, to find out the corresponding range for the circumstances to achieve 

the variational formulation admitting a unique solution. The following process is the construction of 

𝑇′𝑣, where 𝑇′𝑣: 𝑉𝑝𝑒𝑟 → 𝑉𝑝𝑒𝑟 , and 𝑎1, 𝑎2, 𝑎3, … , 𝑎2𝑛−2, 𝑎2𝑛−1 are constants. Then, we construct 

𝑇′𝑣(𝑥, 𝑦) = {
𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2,
 

where 𝑤(𝑥, 𝑦) = 𝑣(−𝑥, 𝑦) + ∑ [𝑎2𝑖−1𝑣(𝑥 + 2𝑖, 𝑦) + 𝑎2𝑖𝑣(−𝑥 + 2𝑖, 𝑦)]
𝑛−1
𝑖=1 . Similarly, to begin with, 

we should verify that 𝑇′𝑣  is continuous on 𝛴 , so as to obtain the relationship among 

𝑎1, 𝑎2, 𝑎3, … , 𝑎2𝑛−2, 𝑎2𝑛−1. 

lim
(𝑥,𝑦)∈𝛺2
𝑥→𝛴

𝑇′𝑣(𝑥, 𝑦) = − lim
(𝑥,𝑦)∈𝛺2
𝑥→𝛴

𝑣(𝑥, 𝑦),

lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑇′𝑣(𝑥, 𝑦) = lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

(𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦))

= lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

(𝑣(𝑥, 𝑦) − 𝑣(−𝑥, 𝑦) −∑[

𝑛−1

𝑖=1

𝑎2𝑖−1𝑣(𝑥 + 2𝑖 − 2, 𝑦) +

𝑎2𝑖𝑣(−𝑥 + 2𝑖, 𝑦)] − 𝑎2𝑛−1𝑣(−𝑥 + 2𝑛 − 2, 𝑦))

= lim
(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑣(𝑥, 𝑦) − 2 lim
(𝑥,𝑦)∈𝐶1
𝑥→0+

𝑣(𝑥, 𝑦) − 2𝑎1 lim
(𝑥,𝑦)∈𝐶2
𝑥→0+

𝑣(𝑥 + 2, 𝑦) −

2𝑎2 lim
(𝑥,𝑦)∈𝐶1
𝑥→2+

𝑣(−𝑥 + 2, 𝑦) −⋯2𝑎2𝑛−2 lim
(𝑥,𝑦)∈𝐶2𝑛−2
𝑥→2𝑛−2+

𝑣(𝑥 + 2𝑛 − 2, 𝑦) −

2𝑎2𝑛−1 lim
(𝑥,𝑦)∈𝐶2𝑛−1
𝑥→(2𝑛−1)+

𝑣(−𝑥 + 2𝑛 − 2, 𝑦).

 

Since the new variational formulation is continuous on 𝛴 , so lim(𝑥,𝑦)∈𝛺1
𝑥→0−

𝑇′𝑣(𝑥, 𝑦) =

lim(𝑥,𝑦)∈𝛺2
𝑥→0−

(𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦)) , and we derive the relationship 𝑎1 + 𝑎2 + 𝑎3 +⋯+ 𝑎2𝑛−2 +

𝑎2𝑛−1 = 0 . We might as well assume, for any 𝑘 ∈ ℕ, 𝑎2𝑘+1 = 1  and 𝑎2𝑘 = −1  to simplify our 

analysis for the well-posedness of this variational formula, where 𝑇′𝑣 is manifested below: 

𝑇′𝑣(𝑥, 𝑦) = {
𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2,
 

where we denote 𝑤(𝑥, 𝑦) = ∑ 𝑣𝑛
𝑗=1 (−𝑥 + 2𝑗 − 2) + ∑ 𝑣𝑛

𝑗=2 (𝑥 + 2𝑗 − 2). Now we can show that 𝑇′ 

is an isomorphism of 𝑉𝑝𝑒𝑟 . 
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Lemma 3.10.  𝑇′ is an isomorphism of 𝑉𝑝𝑒𝑟 . 

Proof. Since 𝑇′𝑣 is continuous on 𝛴, we can directly compute 

∥ 𝑇′𝑣 ∥𝑉𝑝𝑒𝑟
2 =∥ ∇(𝑇′𝑣) ∥𝐿2(𝛺1)

2 +∥ ∇(𝑇′𝑣) ∥𝐿2(𝛺2)
2

=∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺2)
2 +∥ ∇𝑣(𝑥, 𝑦) − 2∇𝑤(𝑥, 𝑦) ∥𝐿2(𝛺1)

2

≤ (2𝑛 − 1) ∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺)
2 .

 

Therefore, ∥ 𝑇′𝑣(𝑥, 𝑦) ∥𝑉𝑝𝑒𝑟≤ √2𝑛 − 1 ∥ ∇𝑣(𝑥, 𝑦) ∥𝐿2(𝛺) , which implies that 𝑇′𝑣  is 

continuous on 𝐻1(𝛺). For the next step, we ought to show that 𝑇′𝑣 is bijective by proving that 

𝑇′(𝑇′𝑣) = Id, in this case, 𝑇′(𝑇′𝑣) = 𝑣′. 

𝑇′𝑣(𝑥, 𝑦) = {
𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2.
 

𝑇′ (𝑇′𝑣(𝑥, 𝑦)) = {
𝑇′𝑣(𝑥, 𝑦) − 2𝑇′𝑤(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑇′𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2.
 

For all (𝑥, 𝑦) ∈ 𝛺1, we derive 

𝑇′𝑣(𝑥, 𝑦) − 2𝑇′𝑤(𝑥, 𝑦) = 𝑣(𝑥, 𝑦) − 2𝑤(𝑥, 𝑦) + 2𝑤(𝑥, 𝑦)

= 𝑣(𝑥, 𝑦).
 

For all (𝑥, 𝑦) ∈ 𝛺2, we have 

−𝑇′𝑣(𝑥, 𝑦) = 𝑣(𝑥, 𝑦). 

Therefore, 𝑇′ is bijective. Thus, 𝑇′ is an isomorphism of 𝑉𝑝𝑒𝑟 . 

At last, we ought to prove that 𝑎(𝑣, 𝑇′𝑣) is coercive. Now, we introduce 𝑅4𝑣 and we define it as 

𝑅4𝑣 = ∑ 𝑣𝑛
𝑗=1 (−𝑥 + 2𝑗 − 2) + ∑ 𝑣𝑛

𝑗=2 (𝑥 + 2𝑗 − 2). Now we have 

𝑇′𝑣(𝑥, 𝑦) = {
𝑣(𝑥, 𝑦) − 2𝑅4𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺1,

−𝑣(𝑥, 𝑦), if(𝑥, 𝑦) ∈ 𝛺2.
 

Then we get 

𝑎(𝑢, 𝑣) = 𝜎1∫ |∇𝑣1(𝑥)|
2

𝛺1

𝑑𝑥𝑑𝑦 + 𝜎2∫ ∇
𝛺2

𝑣2(𝑥) ⋅ ∇(𝑇𝑣2(𝑥))𝑑𝑥𝑑𝑦

= −𝜎2∫ |∇𝑣(𝑥)|2

𝛺2

𝑑𝑥𝑑𝑦 + 𝜎1∫ ∇
𝛺1

𝑣(𝑥)2 − 2𝜎1∫ (∇𝑣 ⋅ ∇𝑅4𝑣)
𝛺1

𝑑𝑥𝑑𝑦.
 

In this circumstance, we are able to calculate 

∫ |∇(𝑅4𝑣(𝑥))|
2

𝛺2

𝑑𝑥𝑑𝑦

=∑∫ |∇𝑣(−𝑥 + 2𝑗 − 2)|2

𝐶2𝑗−1

𝑛

𝑗=1

𝑑𝑥𝑑𝑦 +∑∫ |∇𝑣(𝑥 + 2𝑗)|2

𝐶2𝑗

𝑛−1

𝑗=1

𝑑𝑥𝑑𝑦

= (2𝑛 − 1)∫ |∇(𝑣(𝑥, 𝑦))|
2

𝛺2

𝑑𝑥𝑑𝑦.
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Therefore, by utilizing Young’s Inequality, we can derive 

2 |∫ (∇𝑣 ⋅ ∇(𝑅𝑣1(𝑥)))
𝛺2

𝑑𝑥𝑑𝑦|

≤ 2 ∥ ∇𝑣 ∥𝐿(𝛺2)
2 ⋅∥ ∇𝑅𝑣 ∥𝐿(𝛺2)

2

≤ 2√2𝑛 − 1 ∥ ∇𝑣 ∥𝐿(𝛺1)
2 ⋅∥ ∇𝑣 ∥𝐿(𝛺1)

2

≤ √2𝑛 − 1𝛿−1 ∥ ∇𝑣 ∥𝐿(𝛺1)
2
2 + √2𝑛 − 1𝛿 ∥ ∇𝑣 ∥𝐿(𝛺1)

2
2 .

 

Then we substitute the inequality above into the original calculation of 𝑎(𝑣, 𝑇𝑣) and we are able 

to obtain 

𝑎(𝑣, 𝑇𝑣) ≥ (𝜎1 − √2𝑛 − 1𝜎1𝛿) ⋅∥ ∇𝑣 ∥𝐿(𝛺1)
2
2 + (−𝜎2 − √2𝑛 − 1𝜎1𝛿

−1) ∥ ∇𝑣 ∥
𝐿(𝛺2)
2
2 . 

Since for 𝑎(𝑣, 𝑇𝑣), it should always be greater or equal to 0. Thereby, we have 

{
−√2𝑛 − 1𝛿 + 1 > 0,

−𝜎2 − √2𝑛 − 1𝜎1𝛿
−1 > 0.

 

With simplification of calculations, we have 

{
 
 

 
 𝛿 <

1

√2𝑛 − 1
,

𝛿 > −
√2𝑛 − 1𝜎1

𝜎2
.

 

Therefore, for 𝑇′𝑣(𝑥, 𝑦) , with reference to Theorem 2.18 when 𝜅 ∈ (−∞, 1 − 2𝑛) , the 

variational formulation (3.2) has a unique solution. In conclusion, for the general case of variational 

formulation (3.2) when 𝑛 ∈ ℤ+, it has a unique solution and satisfies the conditions of isomorphism 

if 𝜅 ∈ (−∞, 1 − 2𝑛) ∪ (
1

1−2𝑛
, 0). 
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