

Solving Differential Equations with Physics-Informed Neural
Networks

Chenghao Dong1,a,*

1Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

a. chenghao.dong@kellogg.ox.ac.uk

*corresponding author

Abstract: Solving differential equations is an extensive topic in various fields, such as fluid

mechanics and mathematical finance. The recent resurgence in deep neural networks has

opened up a brand new track for numerically solving these equations, with the potential to

better deal with nonlinear problems and overcome the curse of dimensionality. The Physics-

Informed Neural Network (PINN) is one of the fundamental attempts to solve differential

equations using deep learning techniques. This paper aims to briefly review the application

of PINNs and their variants in solving differential equations through a few simple examples,

and to provide practitioners interested in this direction with a quick introduction to the

relevant topic.

Keywords: neural networks, PINNs, differential equations, Fourier features.

1. Introduction

Differential equations are equations involving unknown functions of one or more independent

variables and their derivatives. Solving these equations is an extensive topic in various fields such as

fluid mechanics and mathematical finance, with new applications continually emerging. Since most

differential equations cannot be solved analytically, the advent of computers in the mid-1900s

eventually led to the development of numerical methods for solving complex equations, such as

nonlinear ones or those defined over intricate geometries. Despite the popularity and power of

traditional numerical methods involving finite differences and finite elements, limitations of these

methods still exist, including having difficulty in handling nonlinear problems and obtaining fast

solutions that are precise enough for high-dimensional problems.

The recent resurgence in deep neural networks has opened up a brand new track for numerically

solving differential equations, especially under circumstances when traditional methods are prone to

failure. Specifically, these methods involving neural networks particularly excel in handling nonlinear

equations [1] as well as high-dimensional problems [2], and can adapt to complex geometries

provided suitable sampling methods are developed [3].

This report will mainly focus on the implementation of solving differential equations with physics-

informed neural networks (PINNs). In Section 2, we will introduce some preliminary knowledge

relevant to the paper. In Section 3, we will apply the method to solving onevariable ordinary

differential equations (ODEs) and discuss the limitations of the approach when solutions with high

frequency get involved. The example of a 2D elliptic partial differential equation (PDE) will be

displayed in Section 4 together with an extension of the method for solving 3D wave equations.

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

137

Finally, Section 5 will provide a simple summary of our work with some possible directions for

improvements of the method. All codes in this paper are available through the link given in the

Appendix.

2. PINNs: Physics-Informed Neural Networks

The Physics-Informed Neural Networks (PINNs) provide a general unsupervised framework for

solving differential equations with deep neural networks. Over the recent decades, the method has

been widely studied and plays a significant role in solving inverse problems [4] and equation

discovery [5]. Given a differential equation with the initial and boundary conditions that the solution

satisfies

 𝒟[u(x)] = 𝑓(x) for x ∈ Ω ⊂ ℝd, (1)

 ℬ𝑘[u(x)] = 𝑔𝑘(x) for x ∈ Γk ⊂ ∂Ω, (2)

where 𝒟 and ℬ𝑘 are differential operators and u(x) is the solution of the equation. PINNs aim to train

a neural network, i.e., the output of a multilayer perceptron [6], 𝜑𝜃(x), to approximate the solution

u(x) by minimizing the loss function ℒ(𝜃) for a batch of points {𝐱𝑖}𝑖=1

𝑁𝑝 ⊂ Ω and {𝐱𝑘,𝑗}𝑗=1

𝑁𝑏,𝑘⊂ Γk ,

 min ℒ
θ

(θ) = ℒ𝑝(θ) + ℒ𝑏(θ), (3)

 ℒ𝑝(θ) =
1

𝑁𝑝
∑ ‖ 𝒟[𝜑𝜃(𝐱𝒊)] − 𝑓(𝐱𝒊) ‖2𝑁𝑝

𝑖=1
 (4)

 ℒ𝑏(θ) = ∑
𝜆𝑘

𝑁𝑏,𝑘
∑ ‖ ℬ[𝜑𝜃(𝐱𝒌,𝒋)] − 𝑔𝑘(𝐱𝒌,𝒋) ‖

2𝑁𝑏,𝑘

𝑗=1𝑘 (5)

where λk > 0 are pre-specified parameters; ℒp(θ) and ℒb(θ) are referred to as the physics loss and the

boundary loss respectively.

To avoid the problem of vanishing gradients, the activation function for each hidden neuron in

PINNs should be non-linear and infinitely differentiable. Therefore, the Tanh activation will be

chosen for all neurons in hidden layers throughout the experiments in this paper. The derivatives

involved in the loss (4) and (5) can be easily obtained using modern learning frameworks such as

PyTorch and TensorFlow with automatic differentiation [7, 8].

There are mainly two ways to impose the initial and boundary conditions on the neural network

output 𝜑𝜃. One way is to apply the general formulation (3) and increase the value of λk, which leads

to PINNs with soft conditions. Another choice is to use the neural network as a part of the solution

ansatz so that the network’s output will always satisfy the required boundary (resp., initial) conditions.

The latter method eventually results in PINNs with hard conditions.

Once a hard constraint is asserted on the network’s output, the boundary loss ℒb(θ) will no longer

be needed as its contribution to the total loss ℒ(𝜃) will always be zero. Therefore, the problem will

become fully unsupervised and the loss that the network aiming to minimize will be reduced to

 min ℒ
θ

(θ) = ℒ𝑝(θ) (6)

if we choose to impose the initial and boundary conditions in a hard manner.

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

138

3. Solving Ordinary Differential Equations

3.1. Examples with Dirichlet Boundary Conditions

In this section, we will consider solving the following second-order ODE with Dirichlet boundary

conditions (which is also referred to as the type 1 condition throughout this paper for clarity)

 𝑦′′(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′) for x ∈ [𝑎, 𝑏] , (7)

 𝑦(𝑎) = 𝑦𝑎 and 𝑦(𝑏) = 𝑦𝑏 . (8)

PINNs with hard boundary conditions will be applied to obtain the solution of the equation. Let

�̂�𝜃(𝑥) be the original output of the network. The modified output satisfying the Dirichlet boundary

conditions is given as

 𝜑𝜃(𝑥) = �̂�𝜃(𝑥) +
𝑏−𝑥

𝑏−𝑎
⋅ [ 𝑦𝑎 − �̂�𝜃(𝑎) ] +

𝑥−𝑎

𝑏−𝑎
⋅ [ 𝑦𝑏 − �̂�𝜃(𝑏) ], (9)

with a reduced loss function defined over a series of sampled points {𝑥𝑖}
𝑖=1

𝑁𝑝 ⊂ [𝑎, 𝑏] given as

 ℒ(𝜃) =
1

𝑁𝑝
∑ ‖𝜑

𝜃

′′
(𝑥𝑖) − 𝑓 (𝑥𝑖, 𝜑𝜃(𝑥𝑖), 𝜑

𝜃

′
(𝑥𝑖))‖

2
𝑁𝑝

𝑖=1
. (10)

The test examples we used to illustrate the method in Section 3.4 are listed in Table 1 for a = 0

and b = 1.

Table 1: Known solutions for Dirichlet boundary condition examples.

Index Forcing Function True Solution Target Interval

i 𝑓(𝑥, 𝑦, 𝑦′) 𝑦true (a, b)

1 −𝑦 𝑠𝑖𝑛(𝑥) (0, 1)

2 𝑦2 − [1 + 𝑥(1 − 𝑥)]2 − 2 1 + 𝑥(1 − 𝑥) (0, 1)

3 𝑦 𝑒𝑥 (0, 1)

4 𝑒𝑥[(1 − 16𝜋2)sin(4𝜋𝑥) + 8𝜋cos(4𝜋𝑥)] 𝑒𝑥sin(4𝜋𝑥) (0, 1)

3.2. Examples with Other Boundary Conditions

The method we used in the previous section for equations with type 1 (Dirichlet) conditions can also

be easily generalized to those with other boundary conditions. For example, it can be applied to the

same equation with the following type 2 condition

 𝑦(𝑎) = 𝑦𝑎 𝑎𝑛𝑑 𝑦′(𝑏) = 𝑦𝑏 (11)

with ansatz

 φ
θ
(𝑥) = �̂�𝜃(𝑥) + 𝑦𝑎 − �̂�𝜃(𝑎) + (𝑥 − 𝑎) ⋅ [ 𝑦𝑏 − �̂�𝜃

′ (𝑏) ], (12)

and type 3 condition

 y(a) + y′(a) = 𝑦𝑎 𝑎𝑛𝑑 y′(b) = 𝑦𝑏 , (13)

with ansatz

 φ
θ
(𝑥) = �̂�𝜃(𝑥) + 𝑦𝑎 − [ �̂�𝜃(𝑎) + �̂�𝜃

′ (𝑎) ] + (𝑥 − 𝑎 − 1) ⋅ [ 𝑦𝑏 − �̂�𝜃
′ (𝑏) ]. (14)

The loss functions of these formulations remain the same as the one presented in the formula(10).

Test examples used for these examples are summarized in Table 2.

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

139

Table 2: Known solutions for examples involving conditions of type 2 and 3.

Index Forcing Function True Solution Target Interval

i 𝑓(𝑥, 𝑦, 𝑦′) 𝑦true (a, b)

5 −𝑦[𝑦2 + (𝑦’)2] cos(𝑥) (0, 1)

6 −2𝑥𝑦’ − 2𝑦 2exp(−𝑥^2) (0, 1)

7 1 − (𝑦’)2 ln[cosh(𝑥)] (0, 1)

8 −𝑦 sin(𝑥) (0, 1)

3.3. Example with ODE Systems

Finally, we generalize the method to solve systems of second-order ODEs. Consider the equation (7)

and (8) once again with type 1 Dirichlet boundary conditions for some y, f ∈ ℝd, d ≥ 2. The solution

ansatz and the loss function are the same as the one presented in formulas (9) and (10) in vectorized

form. The only change we need to specify is that the output layer of the network now consists of d

neurons.

For the numerical experiment, we consider the following system of equations

 𝑢′′(𝑥) = 𝑥(𝑢 − 1) − 𝑣 − (0.5𝜋)2 sin(0.5𝜋𝑥) − 2, (15)

 𝑣′′(𝑥) = 𝑣 − 𝑥2(1 − 𝑥) − 6𝑥 + 2, (16)

for x ∈ [0,1] with y(x) = [u(x),v(x)]T under the Dirichlet boundary condition. The solution of the

system is now given by u(x) = x(1-x) + sin(0.5𝜋x) and v(x) = x2(1 − x).

3.4. Numerical Results

Solutions of the sample equations listed in Table 1, Table 2 and equations (15) – (16) are obtained by

training a simple 3-layer neural network with only one hidden layer composed of 50 neurons using

the Adam optimizer with a batch size of 32 [9]. For each model, only 1000 points (2000 points for

solving the ODE system) are sampled from the interval.

For the convenience of comparing the convergence of solving different equations, the L2 losses

L2(θ) are recorded instead of the physics loss ℒp, defined as

 [𝐿2(𝜃)]2 = ∫
Ω

‖𝜑𝜃(𝐱) − 𝑦true(𝐱) ‖2 𝑑𝐱 (17)

The final results are displayed in the above Figure 1. Note that for most of the examples where the

true solutions are monotonic functions over the target interval, the method performs a rapid

convergence and achieves an accuracy below 10−2 within only 100 training epochs. However, for a

solution with a relatively high latent frequency, for instance, y4, the method tends to converge in a

much slower way.

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

140

Figure 1: Solutions of Section 3 sample equations generated by PINNs with dots in figures

representing the exact value.

3.5. Scaling to Higher Frequencies

In previous examples, we notice that the PINNs tend to converge faster for functions with lower

frequencies. Indeed, literature suggests neural networks prioritize learning lower-frequency functions

[10]. Furthermore, the capability of these networks to fit high-frequency functions is also bounded

by the number of neurons and trainable parameters.

In fact, once the solution involves high-frequency terms, regular PINNs may take a significant

amount of time to converge to adequate accuracy even for relatively simple equations. One solution

to this challenge of accelerating convergence when scaling PINNs to higher frequencies is introducing

Random Fourier Features (RFF) into the training process [11].

The effect of these Fourier features can be viewed as an additional initialization step for the

network input. Instead of passing the value of the independent variables x directly into the network

𝜑𝜃(x), we first convert the input into a series of triangular signals with a pre-specified, fixed random

Gaussian matrix G using the map

 RFF(x) = [cos(2πGx), sin(2πGx)]T, (18)

where the components of G are drawn independently from a normal distribution N(0,σ2).

We carry out the numerical experiment to study the effect of such an improvement by considering

a simple equation y′′(x) = −(nπ)2y with Dirichlet boundary conditions imposed over the interval [0,1]

whose solution is given by y = sin(nπx). The results are summarized in Figure 2.

The experiment mainly reveals several key observations. First, we see the network converges much

faster for y with a lower frequency when n = 1. To achieve convergence for such a function, only a

regular PINN with a structure of 3 layers and one hidden layer containing 16 neurons is needed, which

in all provides (1 + 1) × 16 + (16 + 1) × 1 = 49 trainable parameters.

However, the structure soon becomes inexpressive for n = 5 as the function’s frequency increases.

We see the regular network starts to become expressive again when two more hidden layers are added

(5 layers in total) to the architecture, and when the number of neurons for each hidden layer is

increased to 32. The number of trainable parameters now becomes (1 + 1) × 32 + (32 + 1) × 32 × 2 +

(32 + 1) × 1 = 2209.

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

141

In comparison, over two thousand new parameters are added to the model to strengthen the

expressiveness of the network, while the frequency only increases from 0.5 to 2.5. Luckily, the

situation can be alleviated by adding Fourier features to the network structure and evaluating

𝜑𝜃(RFF(x)) instead. With a Gaussian matrix G sampled from R8×1, the error of the network’s output

quickly converges to a scale of O(10−2) for a 3-layer network with a hidden layer of width 16. This

time, only (2 × 8 + 1) × 16 + (16 + 1) × 1 − 49 = 240 new trainable parameters are needed to strengthen

the network expressiveness.

Figure 2: Apply PINNs to high-frequency functions. REGPINN stands for regular PINNs, and

RFFPINN represents PINNs with random Fourier features.

4. Solving Partial Differential Equations

4.1. 2D Elliptic Equation

In this section, we apply the PINNs to solving 2D Laplace equations with Dirichlet boundary

conditions over rectangular regions Ω = [𝑎, 𝑏] × [𝑐, 𝑑],
 𝑢𝑥𝑥(𝑥, 𝑦) + 𝑢𝑦𝑦(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) for (x,y) ∈ Ω, (19)

and

 𝑢(𝑎, 𝑦) = 𝑢𝑎(𝑦), 𝑢(𝑏, 𝑦) = 𝑢𝑏(𝑦), (20)

 𝑢(𝑥, 𝑐) = 𝑢𝑐(𝑥), 𝑢(𝑥, 𝑑) = 𝑢𝑑(𝑥) (21)

To be more specific, we specify the rectangular region to be Ω = [0,1] × [0,1] and set the true

solution to be 𝑢𝑡𝑟𝑢𝑒(𝑥, 𝑦) = sin(2πx)sin(3πy), so that it satisfies the equation for 𝑓(𝑥, 𝑦) = −13π2

sin(2πx)sin(3πy) and u0(y) = u1(y) = u0(x) = u1(x) = 0.

The solution ansatz is given in the formula (22) to impose the boundary condition in a hard manner,

𝜑𝜃(𝑥, 𝑦) = �̂�𝜃(𝑥, 𝑦) +
𝑏−𝑥

𝑏−𝑎
⋅ [𝑢𝑎(𝑦) − �̂�𝜃(𝑎, 𝑦)] +

𝑥−𝑎

𝑏−𝑎
⋅ [𝑢𝑏(𝑦) − �̂�𝜃(𝑏, 𝑦)]

+
𝑑−𝑦

𝑑−𝑐
⋅ [𝑢𝑐(𝑥) − �̂�𝜃(𝑥, 𝑐)] +

𝑦−𝑐

𝑑−𝑐
⋅ [𝑢𝑑(𝑥) − �̂�𝜃(𝑥, 𝑑)]

−
(𝑏−𝑥)(𝑑−𝑦)

(𝑏−𝑎)(𝑑−𝑐)
⋅ [𝑢𝑎(𝑐) − �̂�𝜃(𝑎, 𝑐)] −

(𝑥−𝑎)(𝑑−𝑦)

(𝑏−𝑎)(𝑑−𝑐)
⋅ [𝑢𝑏(𝑐) − �̂�𝜃(𝑏, 𝑐)]

−
(𝑏−𝑥)(𝑦−𝑐)

(𝑏−𝑎)(𝑑−𝑐)
⋅ [𝑢𝑎(𝑑) − �̂�𝜃(𝑎, 𝑑)] −

(𝑥−𝑎)(𝑦−𝑐)

(𝑏−𝑎)(𝑑−𝑐)
⋅ [𝑢𝑏(𝑑) − �̂�𝜃(𝑏, 𝑑)],

 (22)

with the loss function

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

142

 ℒ(𝜃) =
1

𝑁𝑝
∑ ‖

𝜕2𝜑𝜃

𝜕𝑥2 (𝑥𝑖, 𝑦𝑖) +
𝜕2𝜑𝜃

𝜕𝑦2 (𝑥𝑖, 𝑦𝑖) − 𝑓(𝑥𝑖 , 𝑦𝑖)‖
2𝑁𝑝

𝑖=1
. (23)

We trained a 3-layer network over 2000 sampled points with a batch size of 32 using the Adam

optimizer to obtain the solution of the equation (19) – (21); the loss changes are tracked and recorded

in the right column of Figure 3 alongside the changes in the L2 loss.

Figure 3: The plots on the left column give the changes in both the physics loss and the L2 loss while

training the PINN to solve the sample elliptic equation (19) – (21); The plots on the right column give

the changes in physics losses while training the network to solve the sample wave equation in Section

4.2.

The output of the PINN and its error corresponding to the true solution are shown in Figure 4. For

most of the points, the absolute error is controlled within a scale of O(10−2), indicating a relatively

good approximation.

Figure 4: The solution of sample elliptic equation (19) – (21) generated by the PINN (plot 1) with

prediction error displayed in plot 2 and 3.

4.2. 3D Wave Equation

The method is also generalized to solve 3D wave equations with 2 spatial dimensions. Consider

finding u(x,y,t) over a target region Ω = [0,a] × [0,b] × [0,T] which satisfies the equation,

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

143

 𝑢𝑡𝑡 = 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦) for c > 0, (24)

 𝑢(0, 𝑦, 𝑡) = 𝑢(𝑎, 𝑦, 𝑡) = 𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 𝑏, 𝑡) = 0 (25)

 𝑢(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦) and 𝑢𝑡(𝑥, 𝑦, 0) = 𝜙(𝑥, 𝑦). (26)

The analytical solution to this problem can be obtained via Fourier series expansions

 𝑢true(𝑥, 𝑦, 𝑡) = ∑ ∑ sin(𝜇𝑚𝑥)sin(𝜈𝑛𝑦)[𝐴𝑚𝑛cos(𝜆𝑚𝑛𝑡) + 𝐵𝑚𝑛sin(𝜆𝑚𝑛𝑡)]
∞

𝑚=1

∞

𝑛=1
, (27)

where μ
𝑚

=
𝑚π

𝑎
, ν𝑛 =

𝑛π

𝑏
, λ𝑚𝑛 = 𝑐√μ

𝑚
2 + ν𝑛

2 , 𝐴𝑚𝑛 =
4

𝑎𝑏
∫

0

𝑎
∫

0

𝑏
𝑔(𝑥, 𝑦)sin(𝜇𝑚𝑥)sin(𝜈𝑛𝑦) d𝑦d𝑥 and

𝐵𝑚𝑛 =
4

𝑎𝑏𝜆𝑚𝑛
∫

0

𝑎
∫

0

𝑏
𝜙(𝑥, 𝑦)sin(𝜇𝑚𝑥)sin(𝜈𝑛𝑦) d𝑦d𝑥.

This time, the conditions are applied softly to train the network 𝜑𝜃(𝑥, 𝑦, 𝑡), with a loss function

ℒ(𝜃) =
𝜆0

𝑁𝑝
∑ ‖[𝜕𝑡𝑡

2 𝜑𝜃 − 𝑐2(𝜕𝑥𝑥
2 𝜑𝜃 + 𝜕𝑦𝑦

2 𝜑𝜃)](𝑥𝑖, 𝑦𝑖 , 𝑡𝑖)‖
2𝑁𝑝

𝑖=1
+

𝜆1

𝑁𝑏,1
∑ ‖𝜑𝜃(0, 𝑦1,𝑗, 𝑡1,𝑗)‖

2𝑁𝑏,1

𝑗=1

+
𝜆2

𝑁𝑏,2
∑ ‖𝜑𝜃(𝑎, 𝑦2,𝑗, 𝑡2,𝑗)‖

2𝑁𝑏,2

𝑗=1
+

𝜆3

𝑁𝑏,3
∑ ‖𝜑𝜃(𝑥3,𝑗, 0, 𝑡3,𝑗)‖

2𝑁𝑏,3

𝑗=1
+

𝜆4

𝑁𝑏,4
∑ ‖𝜑𝜃(𝑥4,𝑗, 𝑏, 𝑡4,𝑗)‖

2𝑁𝑏,4

𝑗=1

+
𝜆5

𝑁𝑏,5
∑ ‖𝜑𝜃(𝑥5,𝑗, 𝑦5,𝑗, 0) − 𝑔(𝑥5,𝑗, 𝑦5,𝑗)‖

2𝑁𝑏,5

𝑗=1
+

𝜆6

𝑁𝑏,6
∑ ‖𝜕𝑡𝜑𝜃(𝑥6,𝑗, 𝑦6,𝑗, 0) − 𝜙(𝑥6,𝑗, 𝑦6,𝑗)‖

2𝑁𝑏,6

𝑗=1
.

(28)

Specifically, we solved the equation for a = b = c = T = 1 and trained the network with λ0 = 5 and

λk = 20 for k = 1,··· ,6. 2500 points from each of the five boundaries and the interior of the region

were sampled to form a training data set of size 15000. The training loss changes were recorded in

Figure 3, and the predictions of the PINN are given in Figure 5. Again, the scale of the absolute errors

is approximately O(10−2).

Figure 5: The solution of the sample wave equation generated by the PINN.

5. Conclusion

This paper mainly discusses the application of physics-informed neural networks, i.e., PINNs, to

solving differential equations. We first apply the method to ODEs and ODE systems under different

types of boundary conditions and find that the solution generated tends to converge slower for high-

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

144

frequency functions. We then fix the problem and improve the convergence pattern for networks

fitting high-frequency solutions by adding random Fourier features to the network structure. Finally,

we generalize our work to study the behaviour of PINNs over PDEs with two and three independent

variables, where the general absolute errors between the network output and the ground truth are

controlled within a scale of O(10−2).

However, there are still many aspects that our study fails to cover. For example, most of our

example networks are trained under hard conditions. Nevertheless, finding a corresponding solution

ansatz can be challenging for complex boundary conditions. Clearly, employing soft conditions is a

more versatile approach in the general sense. Also, for more complicated practical problems, PINNs

usually suffer from problems of high computational cost and slow convergence.

To increase the flexibility of the method, one possible improvement is to consider conditioned

PINNs, where the initial and boundary conditions, as well as other possible features of the equation,

are also taken in as part of the network inputs to avoid retraining of similar models [12, 13]. In terms

of reducing the computational cost, possible adjustments may be either employing more advanced

network architectures [14], or letting networks prioritize learning sample points with higher loss

values [15].

References

[1] M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics Informed Deep Learning (Part I): Data-driven Solutions

of Nonlinear Partial Differential Equations”. In: ArXiv abs/1711.10561 (2017). url: https: //api.semanticscholar.

org/CorpusID:394392 (visited on 05/04/2024).

[2] W. Ee and B. Yu. “The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational

Problems”. In: Communications in Mathematics and Statistics 6 (2017), pp. 1–12. url: https://api.semanticscholar.

org/CorpusID:2988078 (visited on 05/04/2024).

[3] J. Berg and K. Nystr öm. “A Unified Deep Artificial Neural Network Approach to Partial Differential Equations in

Complex Geometries”. In: ArXiv abs/1711.06464 (2017). url: https://api.semanticscholar. org/CorpusID:

38319575 (visited on 05/04/2024).

[4] J. Adler and O. Oktem. “Solving Ill-posed Inverse Problems Using Iterative Deep Neural Networks”. In: ̈Inverse

Problems 33.12 (Nov. 2017), p. 124007. issn: 1361-6420. doi: 10.1088/1361-6420/aa9581. url:http://dx.doi.org/10.

1088/1361-6420/aa9581 (visited on 05/04/2024).

[5] Z. Chen, Y. Liu, and H. Sun. “Physics-informed Learning of Governing Equations from Scarce Data”. In: Nature

Communications 12 (2020). url: https://api.semanticscholar.org/CorpusID:239455737 (visited on 05/04/2024).

[6] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.”

In: Psychological review 65 6 (1958), pp. 386–408. url: https://api.semanticscholar.org/ CorpusID:12781225

(visited on 05/05/2024).

[7] A.G. Baydin et al. “Automatic Differentiation in Machine Learning: A Survey”. In: Journal of Machine Learning

Research 18 (Apr. 2018), pp. 1–43.

[8] PyTorch autograd.grad. url: https://pytorch.org/docs/stable/generated/torch.autograd.grad. html (visited on 05/04/

2024).

[9] D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980[cs.LG].

[10] N. Rahaman et al. “On the Spectral Bias of Neural Networks”. In: International conference on machine learning.

PMLR. 2019, pp. 5301–5310.

[11] M. Tancik et al. “Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains”.

In: NIPS ’20., Vancouver, BC, Canada, Curran Associates Inc., 2020. isbn: 9781713829546.

[12] B. Moseley, A. Markham, and T. Nissen-Meyer. Solving the Wave Equation with Physics-Informed Deep Learning.

June 2020. url: https://arxiv.org/abs/2006.11894 (visited on 05/05/2024).

[13] S. Wang, H. Wang, and P. Perdikaris. “Learning the Solution Operator of Parametric Partial Differential Equations

with Physics-Informed Deep Nets”. In: Science Advances 7 (Sept. 2021). doi: 10.1126/sciadv. abi8605.

[14] Y. Zhu et al. “Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty

Quantification without Labeled Data”. In: Journal of Computational Physics 394 (2019), pp. 56– 81. issn: 0021-

9991. doi: https://doi.org/10.1016/j.jcp.2019.05.024. url: https://www. sciencedirect.com/science/article/pii/

S0021999119303559 (visited on 05/05/2024).

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

145

[15] C. Wu et al. “A Comprehensive Study of Non-adaptive and Residual-based Adaptive Sampling for PhysicsInformed

Neural Networks”. In: Computer Methods in Applied Mechanics and Engineering 403 (Jan. 2023), p. 115671. doi:

10.1016/j.cma.2022.115671.

Appendix

All codes in this paper can be found via: https://github.com/abaaba337/MMSC-Computing-Case-

Study-PINN.

Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/87/2025.20346

146

