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Abstract: Solving differential equations is an extensive topic in various fields, such as fluid 

mechanics and mathematical finance. The recent resurgence in deep neural networks has 

opened up a brand new track for numerically solving these equations, with the potential to 

better deal with nonlinear problems and overcome the curse of dimensionality. The Physics-

Informed Neural Network (PINN) is one of the fundamental attempts to solve differential 

equations using deep learning techniques. This paper aims to briefly review the application 

of PINNs and their variants in solving differential equations through a few simple examples, 

and to provide practitioners interested in this direction with a quick introduction to the 

relevant topic. 
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1. Introduction 

Differential equations are equations involving unknown functions of one or more independent 

variables and their derivatives. Solving these equations is an extensive topic in various fields such as 

fluid mechanics and mathematical finance, with new applications continually emerging. Since most 

differential equations cannot be solved analytically, the advent of computers in the mid-1900s 

eventually led to the development of numerical methods for solving complex equations, such as 

nonlinear ones or those defined over intricate geometries. Despite the popularity and power of 

traditional numerical methods involving finite differences and finite elements, limitations of these 

methods still exist, including having difficulty in handling nonlinear problems and obtaining fast 

solutions that are precise enough for high-dimensional problems. 

The recent resurgence in deep neural networks has opened up a brand new track for numerically 

solving differential equations, especially under circumstances when traditional methods are prone to 

failure. Specifically, these methods involving neural networks particularly excel in handling nonlinear 

equations [1] as well as high-dimensional problems [2], and can adapt to complex geometries 

provided suitable sampling methods are developed [3]. 

This report will mainly focus on the implementation of solving differential equations with physics-

informed neural networks (PINNs). In Section 2, we will introduce some preliminary knowledge 

relevant to the paper. In Section 3, we will apply the method to solving onevariable ordinary 

differential equations (ODEs) and discuss the limitations of the approach when solutions with high 

frequency get involved. The example of a 2D elliptic partial differential equation (PDE) will be 

displayed in Section 4 together with an extension of the method for solving 3D wave equations. 
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Finally, Section 5 will provide a simple summary of our work with some possible directions for 

improvements of the method. All codes in this paper are available through the link given in the 

Appendix. 

2. PINNs: Physics-Informed Neural Networks 

The Physics-Informed Neural Networks (PINNs) provide a general unsupervised framework for 

solving differential equations with deep neural networks. Over the recent decades, the method has 

been widely studied and plays a significant role in solving inverse problems [4] and equation 

discovery [5]. Given a differential equation with the initial and boundary conditions that the solution 

satisfies 

 𝒟[u(x)] = 𝑓(x) for x ∈ Ω ⊂ ℝd, (1) 

 ℬ𝑘[u(x)] = 𝑔𝑘(x) for x ∈ Γk ⊂ ∂Ω, (2) 

where 𝒟 and ℬ𝑘  are differential operators and u(x) is the solution of the equation. PINNs aim to train 

a neural network, i.e., the output of a multilayer perceptron [6], 𝜑𝜃(x), to approximate the solution 

u(x) by minimizing the loss function ℒ(𝜃) for a batch of points {𝐱𝑖}𝑖=1

𝑁𝑝 ⊂ Ω and {𝐱𝑘,𝑗}𝑗=1

𝑁𝑏,𝑘⊂ Γk , 

 min ℒ
θ

(θ) = ℒ𝑝(θ) + ℒ𝑏(θ), (3) 

 ℒ𝑝(θ) =
1

𝑁𝑝
∑ ‖ 𝒟[𝜑𝜃(𝐱𝒊)] − 𝑓(𝐱𝒊) ‖2𝑁𝑝

𝑖=1
 (4) 

 ℒ𝑏(θ) = ∑
𝜆𝑘

𝑁𝑏,𝑘
∑ ‖ ℬ[𝜑𝜃(𝐱𝒌,𝒋)] − 𝑔𝑘(𝐱𝒌,𝒋) ‖

2𝑁𝑏,𝑘

𝑗=1𝑘  (5) 

where λk > 0 are pre-specified parameters; ℒp(θ) and ℒb(θ) are referred to as the physics loss and the 

boundary loss respectively. 

To avoid the problem of vanishing gradients, the activation function for each hidden neuron in 

PINNs should be non-linear and infinitely differentiable. Therefore, the Tanh activation will be 

chosen for all neurons in hidden layers throughout the experiments in this paper. The derivatives 

involved in the loss (4) and (5) can be easily obtained using modern learning frameworks such as 

PyTorch and TensorFlow with automatic differentiation [7, 8]. 

There are mainly two ways to impose the initial and boundary conditions on the neural network 

output 𝜑𝜃. One way is to apply the general formulation (3) and increase the value of λk, which leads 

to PINNs with soft conditions. Another choice is to use the neural network as a part of the solution 

ansatz so that the network’s output will always satisfy the required boundary (resp., initial) conditions. 

The latter method eventually results in PINNs with hard conditions. 

Once a hard constraint is asserted on the network’s output, the boundary loss ℒb(θ) will no longer 

be needed as its contribution to the total loss ℒ(𝜃) will always be zero. Therefore, the problem will 

become fully unsupervised and the loss that the network aiming to minimize will be reduced to  

 min ℒ
θ

(θ) = ℒ𝑝(θ) (6) 

if we choose to impose the initial and boundary conditions in a hard manner. 
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3. Solving Ordinary Differential Equations 

3.1. Examples with Dirichlet Boundary Conditions 

In this section, we will consider solving the following second-order ODE with Dirichlet boundary 

conditions (which is also referred to as the type 1 condition throughout this paper for clarity) 

 𝑦′′(𝑥)  =  𝑓(𝑥, 𝑦, 𝑦′) for x ∈ [𝑎, 𝑏] , (7) 

 𝑦(𝑎) = 𝑦𝑎  and 𝑦(𝑏) = 𝑦𝑏 . (8) 

PINNs with hard boundary conditions will be applied to obtain the solution of the equation. Let 

�̂�𝜃(𝑥) be the original output of the network. The modified output satisfying the Dirichlet boundary 

conditions is given as 

 𝜑𝜃(𝑥) = �̂�𝜃(𝑥) +
𝑏−𝑥

𝑏−𝑎
⋅ [ 𝑦𝑎 − �̂�𝜃(𝑎) ] +

𝑥−𝑎

𝑏−𝑎
⋅ [ 𝑦𝑏 − �̂�𝜃(𝑏) ], (9) 

with a reduced loss function defined over a series of sampled points {𝑥𝑖}
𝑖=1

𝑁𝑝 ⊂ [𝑎, 𝑏] given as 

 ℒ(𝜃) =
1

𝑁𝑝
∑ ‖𝜑

𝜃

′′
(𝑥𝑖) − 𝑓 (𝑥𝑖, 𝜑𝜃(𝑥𝑖), 𝜑

𝜃

′
(𝑥𝑖))‖

2
𝑁𝑝

𝑖=1
. (10) 

The test examples we used to illustrate the method in Section 3.4 are listed in Table 1 for a = 0 

and b = 1. 

Table 1: Known solutions for Dirichlet boundary condition examples. 

Index Forcing Function True Solution Target Interval 

i 𝑓(𝑥, 𝑦, 𝑦′) 𝑦true (a, b) 

1 −𝑦 𝑠𝑖𝑛(𝑥) (0, 1) 

2 𝑦2 − [1 + 𝑥(1 − 𝑥)]2 − 2 1 + 𝑥(1 − 𝑥) (0, 1) 

3 𝑦 𝑒𝑥 (0, 1) 

4 𝑒𝑥[(1 − 16𝜋2)sin(4𝜋𝑥) + 8𝜋cos(4𝜋𝑥)] 𝑒𝑥sin(4𝜋𝑥) (0, 1) 

3.2. Examples with Other Boundary Conditions 

The method we used in the previous section for equations with type 1 (Dirichlet) conditions can also 

be easily generalized to those with other boundary conditions. For example, it can be applied to the 

same equation with the following type 2 condition 

 𝑦(𝑎) = 𝑦𝑎 𝑎𝑛𝑑 𝑦′(𝑏) = 𝑦𝑏  (11) 

with ansatz 

 φ
θ
(𝑥) = �̂�𝜃(𝑥) + 𝑦𝑎 − �̂�𝜃(𝑎) + (𝑥 − 𝑎) ⋅ [ 𝑦𝑏 − �̂�𝜃

′ (𝑏) ], (12) 

and type 3 condition 

 y(a) + y′(a) = 𝑦𝑎  𝑎𝑛𝑑 y′(b) = 𝑦𝑏  , (13) 

with ansatz 

 φ
θ
(𝑥) = �̂�𝜃(𝑥) + 𝑦𝑎 − [ �̂�𝜃(𝑎) + �̂�𝜃

′ (𝑎) ] + (𝑥 − 𝑎 − 1) ⋅ [ 𝑦𝑏 − �̂�𝜃
′ (𝑏) ]. (14) 

The loss functions of these formulations remain the same as the one presented in the formula(10). 

Test examples used for these examples are summarized in Table 2. 
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Table 2: Known solutions for examples involving conditions of type 2 and 3. 

Index Forcing Function True Solution Target Interval 

i 𝑓(𝑥, 𝑦, 𝑦′) 𝑦true (a, b) 

5 −𝑦[𝑦2 + (𝑦’)2] cos(𝑥) (0, 1) 

6 −2𝑥𝑦’ − 2𝑦 2exp(−𝑥^2) (0, 1) 

7 1 − (𝑦’)2 ln[cosh(𝑥)] (0, 1) 

8 −𝑦 sin(𝑥) (0, 1) 

3.3. Example with ODE Systems 

Finally, we generalize the method to solve systems of second-order ODEs. Consider the equation (7) 

and (8) once again with type 1 Dirichlet boundary conditions for some y, f ∈ ℝd, d ≥ 2. The solution 

ansatz and the loss function are the same as the one presented in formulas (9) and (10) in vectorized 

form. The only change we need to specify is that the output layer of the network now consists of d 

neurons. 

For the numerical experiment, we consider the following system of equations 

 𝑢′′(𝑥) = 𝑥(𝑢 − 1) − 𝑣 − (0.5𝜋)2 sin(0.5𝜋𝑥) − 2, (15) 

 𝑣′′(𝑥) = 𝑣 − 𝑥2(1 − 𝑥) − 6𝑥 + 2, (16) 

for x ∈ [0,1] with y(x) = [u(x),v(x)]T  under the Dirichlet boundary condition. The solution of the 

system is now given by u(x) = x(1-x) + sin(0.5𝜋x) and v(x) = x2(1 − x). 

3.4. Numerical Results 

Solutions of the sample equations listed in Table 1, Table 2 and equations (15) – (16) are obtained by 

training a simple 3-layer neural network with only one hidden layer composed of 50 neurons using 

the Adam optimizer with a batch size of 32 [9]. For each model, only 1000 points (2000 points for 

solving the ODE system) are sampled from the interval. 

For the convenience of comparing the convergence of solving different equations, the L2 losses 

L2(θ) are recorded instead of the physics loss ℒp, defined as 

 [𝐿2(𝜃)]2 =  ∫
Ω

‖𝜑𝜃(𝐱)  −  𝑦true(𝐱) ‖2 𝑑𝐱 (17) 

The final results are displayed in the above Figure 1. Note that for most of the examples where the 

true solutions are monotonic functions over the target interval, the method performs a rapid 

convergence and achieves an accuracy below 10−2 within only 100 training epochs. However, for a 

solution with a relatively high latent frequency, for instance, y4, the method tends to converge in a 

much slower way. 
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Figure 1: Solutions of Section 3 sample equations generated by PINNs with dots in figures 

representing the exact value. 

3.5. Scaling to Higher Frequencies 

In previous examples, we notice that the PINNs tend to converge faster for functions with lower 

frequencies. Indeed, literature suggests neural networks prioritize learning lower-frequency functions 

[10]. Furthermore, the capability of these networks to fit high-frequency functions is also bounded 

by the number of neurons and trainable parameters. 

In fact, once the solution involves high-frequency terms, regular PINNs may take a significant 

amount of time to converge to adequate accuracy even for relatively simple equations. One solution 

to this challenge of accelerating convergence when scaling PINNs to higher frequencies is introducing 

Random Fourier Features (RFF) into the training process [11]. 

The effect of these Fourier features can be viewed as an additional initialization step for the 

network input. Instead of passing the value of the independent variables x directly into the network 

𝜑𝜃(x), we first convert the input into a series of triangular signals with a pre-specified, fixed random 

Gaussian matrix G using the map 

 RFF(x) = [ cos(2πGx), sin(2πGx) ]T, (18) 

where the components of G are drawn independently from a normal distribution N(0,σ2). 

We carry out the numerical experiment to study the effect of such an improvement by considering 

a simple equation y′′(x) = −(nπ)2y with Dirichlet boundary conditions imposed over the interval [0,1] 

whose solution is given by y = sin(nπx). The results are summarized in Figure 2. 

The experiment mainly reveals several key observations. First, we see the network converges much 

faster for y with a lower frequency when n = 1. To achieve convergence for such a function, only a 

regular PINN with a structure of 3 layers and one hidden layer containing 16 neurons is needed, which 

in all provides (1 + 1) × 16 + (16 + 1) × 1 = 49 trainable parameters. 

However, the structure soon becomes inexpressive for n = 5 as the function’s frequency increases. 

We see the regular network starts to become expressive again when two more hidden layers are added 

(5 layers in total) to the architecture, and when the number of neurons for each hidden layer is 

increased to 32. The number of trainable parameters now becomes (1 + 1) × 32 + (32 + 1) × 32 × 2 + 

(32 + 1) × 1 = 2209. 
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In comparison, over two thousand new parameters are added to the model to strengthen the 

expressiveness of the network, while the frequency only increases from 0.5 to 2.5. Luckily, the 

situation can be alleviated by adding Fourier features to the network structure and evaluating 

𝜑𝜃(RFF(x)) instead. With a Gaussian matrix G sampled from R8×1, the error of the network’s output 

quickly converges to a scale of O(10−2) for a 3-layer network with a hidden layer of width 16. This 

time, only (2 × 8 + 1) × 16 + (16 + 1) × 1 − 49 = 240 new trainable parameters are needed to strengthen 

the network expressiveness. 

 

Figure 2: Apply PINNs to high-frequency functions. REGPINN stands for regular PINNs, and 

RFFPINN represents PINNs with random Fourier features. 

4. Solving Partial Differential Equations 

4.1. 2D Elliptic Equation 

In this section, we apply the PINNs to solving 2D Laplace equations with Dirichlet boundary 

conditions over rectangular regions Ω = [𝑎, 𝑏]  ×  [𝑐, 𝑑], 
 𝑢𝑥𝑥(𝑥, 𝑦) + 𝑢𝑦𝑦(𝑥, 𝑦)  =  𝑓(𝑥, 𝑦) for (x,y) ∈ Ω, (19) 

and 

 𝑢(𝑎, 𝑦) = 𝑢𝑎(𝑦), 𝑢(𝑏, 𝑦) = 𝑢𝑏(𝑦),  (20) 

 𝑢(𝑥, 𝑐)  = 𝑢𝑐(𝑥),   𝑢(𝑥, 𝑑) = 𝑢𝑑(𝑥) (21) 

To be more specific, we specify the rectangular region to be Ω = [0,1] × [0,1] and set the true 

solution to be 𝑢𝑡𝑟𝑢𝑒(𝑥, 𝑦) = sin(2πx)sin(3πy), so that it satisfies the equation for 𝑓(𝑥, 𝑦) = −13π2 

sin(2πx)sin(3πy) and u0(y) = u1(y) = u0(x) = u1(x) = 0. 

The solution ansatz is given in the formula (22) to impose the boundary condition in a hard manner, 

 

𝜑𝜃(𝑥, 𝑦)  =  �̂�𝜃(𝑥, 𝑦) +
𝑏−𝑥

𝑏−𝑎
⋅ [𝑢𝑎(𝑦) − �̂�𝜃(𝑎, 𝑦)] +

𝑥−𝑎

𝑏−𝑎
⋅ [𝑢𝑏(𝑦) − �̂�𝜃(𝑏, 𝑦)]

+
𝑑−𝑦

𝑑−𝑐
⋅ [𝑢𝑐(𝑥) − �̂�𝜃(𝑥, 𝑐)] +

𝑦−𝑐

𝑑−𝑐
⋅ [𝑢𝑑(𝑥) − �̂�𝜃(𝑥, 𝑑)]

−
(𝑏−𝑥)(𝑑−𝑦)

(𝑏−𝑎)(𝑑−𝑐)
⋅ [𝑢𝑎(𝑐) − �̂�𝜃(𝑎, 𝑐)] −

(𝑥−𝑎)(𝑑−𝑦)

(𝑏−𝑎)(𝑑−𝑐)
⋅ [𝑢𝑏(𝑐) − �̂�𝜃(𝑏, 𝑐)]

−
(𝑏−𝑥)(𝑦−𝑐)

(𝑏−𝑎)(𝑑−𝑐)
⋅ [𝑢𝑎(𝑑) − �̂�𝜃(𝑎, 𝑑)] −

(𝑥−𝑎)(𝑦−𝑐)

(𝑏−𝑎)(𝑑−𝑐)
⋅ [𝑢𝑏(𝑑) − �̂�𝜃(𝑏, 𝑑)],

 (22) 

with the loss function 
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 ℒ(𝜃) =
1

𝑁𝑝
∑ ‖

𝜕2𝜑𝜃

𝜕𝑥2 (𝑥𝑖, 𝑦𝑖) +
𝜕2𝜑𝜃

𝜕𝑦2 (𝑥𝑖, 𝑦𝑖) − 𝑓(𝑥𝑖 , 𝑦𝑖)‖
2𝑁𝑝

𝑖=1
. (23) 

We trained a 3-layer network over 2000 sampled points with a batch size of 32 using the Adam 

optimizer to obtain the solution of the equation (19) – (21); the loss changes are tracked and recorded 

in the right column of Figure 3 alongside the changes in the L2 loss.  

 

Figure 3: The plots on the left column give the changes in both the physics loss and the L2 loss while 

training the PINN to solve the sample elliptic equation (19) – (21); The plots on the right column give 

the changes in physics losses while training the network to solve the sample wave equation in Section 

4.2. 

The output of the PINN and its error corresponding to the true solution are shown in Figure 4. For 

most of the points, the absolute error is controlled within a scale of O(10−2), indicating a relatively 

good approximation. 

 

Figure 4: The solution of sample elliptic equation (19) – (21) generated by the PINN (plot 1) with 

prediction error displayed in plot 2 and 3. 

4.2. 3D Wave Equation 

The method is also generalized to solve 3D wave equations with 2 spatial dimensions. Consider 

finding u(x,y,t) over a target region Ω = [0,a] × [0,b] × [0,T] which satisfies the equation, 
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 𝑢𝑡𝑡 = 𝑐2(𝑢𝑥𝑥 + 𝑢𝑦𝑦)  for  c > 0, (24) 

 𝑢(0, 𝑦, 𝑡) = 𝑢(𝑎, 𝑦, 𝑡) = 𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 𝑏, 𝑡) = 0 (25) 

 𝑢(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦) and 𝑢𝑡(𝑥, 𝑦, 0) = 𝜙(𝑥, 𝑦). (26) 

The analytical solution to this problem can be obtained via Fourier series expansions 

 𝑢true(𝑥, 𝑦, 𝑡) = ∑ ∑ sin(𝜇𝑚𝑥)sin(𝜈𝑛𝑦)[𝐴𝑚𝑛cos(𝜆𝑚𝑛𝑡) + 𝐵𝑚𝑛sin(𝜆𝑚𝑛𝑡)]
∞

𝑚=1

∞

𝑛=1
, (27) 

where μ
𝑚

=
𝑚π

𝑎
, ν𝑛 =

𝑛π

𝑏
, λ𝑚𝑛 = 𝑐√μ

𝑚
2 + ν𝑛

2 , 𝐴𝑚𝑛 =
4

𝑎𝑏
∫

0

𝑎
∫

0

𝑏
𝑔(𝑥, 𝑦)sin(𝜇𝑚𝑥)sin(𝜈𝑛𝑦) d𝑦d𝑥  and 

𝐵𝑚𝑛 =
4

𝑎𝑏𝜆𝑚𝑛
∫

0

𝑎
∫

0

𝑏
𝜙(𝑥, 𝑦)sin(𝜇𝑚𝑥)sin(𝜈𝑛𝑦) d𝑦d𝑥. 

This time, the conditions are applied softly to train the network 𝜑𝜃(𝑥, 𝑦, 𝑡), with a loss function 

ℒ(𝜃) =
𝜆0

𝑁𝑝
∑ ‖[𝜕𝑡𝑡

2 𝜑𝜃 − 𝑐2(𝜕𝑥𝑥
2 𝜑𝜃 + 𝜕𝑦𝑦

2 𝜑𝜃)](𝑥𝑖, 𝑦𝑖 , 𝑡𝑖)‖
2𝑁𝑝

𝑖=1
+

𝜆1

𝑁𝑏,1
∑ ‖𝜑𝜃(0, 𝑦1,𝑗, 𝑡1,𝑗)‖

2𝑁𝑏,1

𝑗=1

+
𝜆2

𝑁𝑏,2
∑ ‖𝜑𝜃(𝑎, 𝑦2,𝑗, 𝑡2,𝑗)‖

2𝑁𝑏,2

𝑗=1
+

𝜆3

𝑁𝑏,3
∑ ‖𝜑𝜃(𝑥3,𝑗, 0, 𝑡3,𝑗)‖

2𝑁𝑏,3

𝑗=1
+

𝜆4

𝑁𝑏,4
∑ ‖𝜑𝜃(𝑥4,𝑗, 𝑏, 𝑡4,𝑗)‖

2𝑁𝑏,4

𝑗=1

+
𝜆5

𝑁𝑏,5
∑ ‖𝜑𝜃(𝑥5,𝑗, 𝑦5,𝑗, 0) − 𝑔(𝑥5,𝑗, 𝑦5,𝑗)‖

2𝑁𝑏,5

𝑗=1
+

𝜆6

𝑁𝑏,6
∑ ‖𝜕𝑡𝜑𝜃(𝑥6,𝑗, 𝑦6,𝑗, 0) − 𝜙(𝑥6,𝑗, 𝑦6,𝑗)‖

2𝑁𝑏,6

𝑗=1
.

(28) 

Specifically, we solved the equation for a = b = c = T = 1 and trained the network with λ0 = 5 and 

λk = 20 for k = 1,··· ,6. 2500 points from each of the five boundaries and the interior of the region 

were sampled to form a training data set of size 15000. The training loss changes were recorded in 

Figure 3, and the predictions of the PINN are given in Figure 5. Again, the scale of the absolute errors 

is approximately O(10−2). 

 

Figure 5: The solution of the sample wave equation generated by the PINN. 

5. Conclusion 

This paper mainly discusses the application of physics-informed neural networks, i.e., PINNs, to 

solving differential equations. We first apply the method to ODEs and ODE systems under different 

types of boundary conditions and find that the solution generated tends to converge slower for high-

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/87/2025.20346 

144 



 

 

frequency functions. We then fix the problem and improve the convergence pattern for networks 

fitting high-frequency solutions by adding random Fourier features to the network structure. Finally, 

we generalize our work to study the behaviour of PINNs over PDEs with two and three independent 

variables, where the general absolute errors between the network output and the ground truth are 

controlled within a scale of O(10−2). 

However, there are still many aspects that our study fails to cover. For example, most of our 

example networks are trained under hard conditions. Nevertheless, finding a corresponding solution 

ansatz can be challenging for complex boundary conditions. Clearly, employing soft conditions is a 

more versatile approach in the general sense. Also, for more complicated practical problems, PINNs 

usually suffer from problems of high computational cost and slow convergence. 

To increase the flexibility of the method, one possible improvement is to consider conditioned 

PINNs, where the initial and boundary conditions, as well as other possible features of the equation, 

are also taken in as part of the network inputs to avoid retraining of similar models [12, 13]. In terms 

of reducing the computational cost, possible adjustments may be either employing more advanced 

network architectures [14], or letting networks prioritize learning sample points with higher loss 

values [15]. 
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[3] J. Berg and K. Nystr öm. “A Unified Deep Artificial Neural Network Approach to Partial Differential Equations in 

Complex Geometries”. In: ArXiv abs/1711.06464 (2017). url: https://api.semanticscholar. org/CorpusID:

38319575 (visited on 05/04/2024). 

[4] J. Adler and O. Oktem. “Solving Ill-posed Inverse Problems Using Iterative Deep Neural Networks”. In:  ̈Inverse 

Problems 33.12 (Nov. 2017), p. 124007. issn: 1361-6420. doi: 10.1088/1361-6420/aa9581. url:http://dx.doi.org/10.

1088/1361-6420/aa9581 (visited on 05/04/2024). 

[5] Z. Chen, Y. Liu, and H. Sun. “Physics-informed Learning of Governing Equations from Scarce Data”. In: Nature 

Communications 12 (2020). url: https://api.semanticscholar.org/CorpusID:239455737 (visited on 05/04/2024). 

[6] F. Rosenblatt. “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain.” 

In: Psychological review 65 6 (1958), pp. 386–408. url: https://api.semanticscholar.org/ CorpusID:12781225 

(visited on 05/05/2024). 

[7] A.G. Baydin et al. “Automatic Differentiation in Machine Learning: A Survey”. In: Journal of Machine Learning 

Research 18 (Apr. 2018), pp. 1–43. 

[8] PyTorch autograd.grad. url: https://pytorch.org/docs/stable/generated/torch.autograd.grad. html (visited on 05/04/

2024). 

[9] D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980[cs.LG]. 

[10] N. Rahaman et al. “On the Spectral Bias of Neural Networks”. In: International conference on machine learning. 

PMLR. 2019, pp. 5301–5310. 

[11] M. Tancik et al. “Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains”. 

In: NIPS ’20., Vancouver, BC, Canada, Curran Associates Inc., 2020. isbn: 9781713829546. 

[12] B. Moseley, A. Markham, and T. Nissen-Meyer. Solving the Wave Equation with Physics-Informed Deep Learning. 

June 2020. url: https://arxiv.org/abs/2006.11894 (visited on 05/05/2024). 

[13] S. Wang, H. Wang, and P. Perdikaris. “Learning the Solution Operator of Parametric Partial Differential Equations 

with Physics-Informed Deep Nets”. In: Science Advances 7 (Sept. 2021). doi: 10.1126/sciadv. abi8605. 

[14] Y. Zhu et al. “Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty 

Quantification without Labeled Data”. In: Journal of Computational Physics 394 (2019), pp. 56– 81. issn: 0021-

9991. doi: https://doi.org/10.1016/j.jcp.2019.05.024. url: https://www. sciencedirect.com/science/article/pii/

S0021999119303559 (visited on 05/05/2024). 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/87/2025.20346 

145 



 

 

[15] C. Wu et al. “A Comprehensive Study of Non-adaptive and Residual-based Adaptive Sampling for PhysicsInformed 

Neural Networks”. In: Computer Methods in Applied Mechanics and Engineering 403 (Jan. 2023), p. 115671. doi: 

10.1016/j.cma.2022.115671. 

Appendix 

All codes in this paper can be found via: https://github.com/abaaba337/MMSC-Computing-Case-

Study-PINN. 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/87/2025.20346 

146 


