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Abstract: In this study, we employ Long Short-Term Memory (LSTM) networks to predict 

stock prices using historical data from Tesla Inc. spanning 10 years. The research emphasizes 

the importance of LSTM's capability to model complex temporal dependencies in financial 

time-series data, outperforming traditional statistical methods. Various feature combinations 

and time steps are tested, identifying a 30-day window as the optimal setup. Key evaluation 

metrics, including Mean Squared Error (MSE), training loss, and validation loss, are utilized 

to assess model performance. The results show that LSTM networks are particularly effective 

for short-term stock price predictions, while longer-term forecasts experience decreasing 

accuracy. This work contributes to the growing body of knowledge on deep learning 

applications in financial markets, offering practical insights for investors and financial 

institutions. 
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1. Introduction 

In today’s financial environment, accurately predicting stock market prices presents a significant 

economic challenge. The volatility and complexity of financial markets require advanced analytical 

methods for effectively forecasting future price movements. While traditional statistical methods 

have been effective, they often struggle to capture the inherent nonlinear patterns and long-term 

dependencies in financial time-series data. To address these complex issues, machine learning 

techniques, particularly Recurrent Neural Networks (RNNs) and their variants, have gained 

increasing importance. 

Recurrent Neural Networks (RNNs) are a class of neural networks designed to recognize patterns 

in data sequences, such as time series. Among the various types of RNNs, Long Short-Term Memory 

(LSTM) networks have received significant attention for their ability to retain information over 

extended periods. This capability is particularly valuable in financial time-series forecasting, where 

past events can significantly influence future trends. 

The primary objective of this study is to accurately predict stock market prices using LSTM 

networks. The significance of addressing this issue lies in its potential impact on investment strategies, 

risk management, and economic stability. LSTM networks are more effective at modeling the 
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complex temporal dependencies present in financial data than traditional methods. Therefore, 

addressing this problem offers multiple benefits, providing substantial advantages for individual 

investors, financial institutions, and the broader economy. Accurate predictions can lead to more 

informed investment decisions, optimizing returns and minimizing investor risk. Additionally, it 

enhances the ability of financial institutions to develop robust trading algorithms and strategies, 

ultimately contributing to the efficiency and stability of financial markets. 

2. Literature Review 

In recent years, with the rapid development of deep learning technology, many scholars have explored 

its application in financial time-series forecasting, particularly through the use of RNN and LSTM 

models for stock price prediction. Selvin et al. [1] proposed a sliding window model based on LSTM, 

RNN, and CNN for stock price prediction. Using minute-level stock data from the National Stock 

Exchange (NSE) of India, they compared the performance of the three deep learning models and 

found that the CNN performed best at capturing market dynamics. Sunny, Maswood, and Alharbi [2] 

developed a stock price prediction framework using LSTM and Bidirectional LSTM (BI-LSTM) 

models. Their research showed that BI-LSTM outperformed traditional LSTM models in prediction 

accuracy. Jeenanunta, Chaysiri, and Thong [3] studied the use of LSTM and Deep Belief Network 

(DBN) models to predict the daily stock prices of the top five companies listed on Thailand’s SET50 

index. The results indicated that the LSTM model performed better at predicting low-volatility stocks, 

while DBN excelled at predicting high-volatility stocks. Srivastava and Mishra [4] proposed an 

improved LSTM model for predicting the stock prices of Tesla Inc., demonstrating that the LSTM 

model had superior accuracy compared to traditional methods such as simple averaging, linear 

regression, and ARIMA. Wang, Liu, Wang, and Liu [5] explored the application of the LSTM 

algorithm in stock market prediction and significantly improved prediction accuracy by optimizing 

the gradient descent algorithm and using dropout techniques. Patel, Patel, and Darji [6] compared the 

performance of RNN and LSTM models in stock price prediction, finding that RNN outperformed 

LSTM in terms of accuracy. Zhang, Gu, Chang, and Ye [7] proposed a model combining Deep Belief 

Networks (DBN) and LSTM to predict stock price fluctuations, demonstrating that this combined 

model significantly outperformed traditional methods in prediction performance through experiments 

involving 36 Chinese A-share companies. Finally, Zhao, Zeng, Liang, Kang, and Liu [8] proposed a 

stock price trend prediction model based on RNN, LSTM, and GRU, incorporating an attention 

mechanism to improve model performance. Their research showed that the GRU and LSTM models 

significantly outperformed RNN in prediction accuracy, with the inclusion of the attention 

mechanism further improving prediction precision. 

3. Methodology 

3.1. Model Overview 

In this study, we employed a deep learning model based on Long Short-Term Memory (LSTM) neural 

networks to predict stock prices. LSTM networks are widely recognized for their ability to effectively 

capture both long-term dependencies and short-term fluctuations in time series data, making them 

particularly suitable for sequence prediction tasks. We implemented the LSTM model using the 

PyTorch framework, leveraging its robust computational capabilities and flexible model definition 

features to ensure optimal performance and scalability. 
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3.2. Data Preprocessing 

Data preprocessing is a critical step in ensuring the success of the model. First, we selected a set of 

feature columns from the raw dataset that were deemed valuable for prediction. These columns reflect 

the main trends and fluctuations in the historical price data. Subsequently, we split the dataset into 

training and test sets using the train_test_split function from the sklearn library. This division is 

crucial for validating the model on different data, thereby avoiding overfitting. 

Before feeding the data into the model, it is typically normalized to scale the features to a standard 

range (e.g., 0 to 1), which enhances the stability and convergence speed of model training. 

Additionally, we employed a sliding window method to generate time series inputs. This method 

involves creating input sequences, each containing a continuous segment of time data mapped to the 

corresponding target price. 

3.3. Model Architecture 

The LSTM model is composed of the following key components: 

3.3.1. LSTM Layer 

The LSTM layer is the core component of the model, responsible for processing the input time series 

data and capturing temporal dependencies. The LSTM layer uses a gating mechanism that controls 

the flow of information, such as the Input Gate, Forget Gate, and Output Gate. These gates 

collectively determine how information is updated at each time step. 

The mathematical formulas for an LSTM unit are as follows: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)  

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

Where: 

it is the Input Gate, controlling the extent to which new information enters the cell state. 

ft is the Forget Gate, determining which information in the current cell state needs to be discarded. 

ot is the Output Gate, controlling the influence of the cell state on the hidden state output. 

Ct is the cell state, storing the long-term dependencies of the time series. 

ht is the hidden state, containing the output information passed from the previous time step to the 

next. 

3.3.2. Linear Layer 

After the LSTM layer processes the data, the output is passed through a linear layer. The linear layer 

maps the LSTM output to predict the stock price. This layer typically performs a linear regression 

operation, represented by the formula: 

𝑦𝑡 = 𝑊 ⋅ ℎ𝑡 + 𝑏 

Where yt is the predicted stock price, W is the weight matrix, ht is the hidden state output from 

the LSTM layer, and b is the bias term. 
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3.4. Training Process 

The model’s training process involves the following key steps: 

3.4.1. Loss Function 

Mean Squared Error (MSE) was used as the loss function to measure the difference between predicted 

and actual stock prices. The formula for MSE is: 

MSE=
1

𝑛
∑ (𝑦𝑖

𝑛
𝑖=1 −�̂�𝑖)2 

Where yi is the actual stock price, ŷi is the predicted price, and n is the number of samples. 

3.4.2. Optimizer 

To optimize the model parameters, we used the Adam optimizer, which is known for its efficiency 

and adaptive learning rate properties. Adam combines the advantages of the momentum method and 

RMSProp, allowing it to adjust the learning rate dynamically for each parameter based on the first 

and second moments of the gradients. This ensures faster convergence and better stability during 

training. 

The Adam optimizer updates the model’s weights using the following formulas: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 , 𝑣𝑡 =

𝑣𝑡

1 − 𝛽2
𝑡 

𝜃𝑡 = 𝜃𝑡−1 − 𝛼
�̂�𝑡

√𝑣𝑡 + 𝜖
 

Where: 

gt is the gradient at time step t;  

mt is the exponentially decaying average of past gradients (momentum);  

vt is the exponentially decaying average of past squared gradients; 

m̂t and  v̂t are bias-corrected estimates; 

α is the learning rate; 

θt represents the model parameters being updated; 

3.4.3. Training and Validation 

The model was trained on the training set, and its performance was validated using the test set. The 

training process involved multiple iterations (epochs) until the loss function converged to an 

acceptable level. After each epoch, the model’s performance was evaluated on the validation set to 

ensure it did not overfit and could generalize well to unseen data. 

In summary, this methodology provides a detailed explanation of the technical implementation of 

the LSTM-based stock price prediction model, including data preprocessing, model architecture, 

mathematical principles, and key steps in the training process. Using these methods, we developed a 

deep learning model that effectively predicts stock prices. 
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4. Results 

In this experiment, we used the historical stock prices of Tesla Inc. (TSLA) over a 10-year period. 

The dataset was sourced from Yahoo Finance, a trusted source of financial data. The dataset includes 

daily records of Tesla’s stock prices, covering the opening price, highest price, lowest price, closing 

price, adjusted closing price, and trading volume. 

This dataset provides a comprehensive view of Tesla’s stock performance over a significant period, 

making it well-suited for long-term trend analysis and predictive modeling. 

4.1. Identifying Feature and Label Columns 

In this step, we defined the combinations of feature columns (factors) and label columns (target 

variables) for our predictive modeling experiment. The objective was to explore how different feature 

combinations influence the accuracy of predicting Tesla’s stock price. 

 Feature Columns (F): These are the inputs to our model used to learn and make predictions. 

 Label Columns (L): These are the outputs or target variables that the model aims to predict. 

The columns are labeled as follows(example): 

Table 1: Example labeled columns 

Date Open(1) High(2) Low(3) Close(4) Adj Close(5) Volume(6) 

2010-06-29 19 25 17.54 23.89 23.89 18766300 

 F1: Open Price - The price at which the stock opened on a given day. 

 F2: High Price - The highest price reached during the day. 

 F3: Low Price - The lowest price reached during the day. 

 F4: Close Price - The price at which the stock closed on a given day. 

 F5: Adjusted Close Price - The closing price adjusted for splits and dividends. 

 L1: Close Price - Used as a label in one of the setups. 

 L4: Close Price - Used as a label in another setup. 

We tested two different setups: 

4.1.1. Setup A 

 Feature Columns: F1, F2, F3, F4 (Open, High, Low, Close) 

 Label Column: L1 (Close Price) 

 Representation: (F1, F2, F3, F4) → L1 

In this setup, we used the stock’s opening, highest, lowest, and closing prices as features to predict 

the next day’s closing price. This setup examines how these primary trading metrics can predict the 

closing price. 

4.1.2. Setup B 

 Feature Columns: F1, F2, F3, F4, F5 (Open, High, Low, Close, Adjusted Close) 

 Label Columns: L1 (Close Price), L4 (Close Price) 

 Representation: (F1, F2, F3, F4, F5) → (L1, L4) 
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These setups allowed us to compare the effectiveness of different feature combinations in 

predicting the stock’s closing price. We assessed the performance of each setup using the Mean 

Squared Error (MSE), training loss, and validation loss. 

4.2. Determine the Suitable “Time Step” 

In this step, we experimented with different time steps to determine the most effective window of 

historical data for predicting Tesla’s stock price. The time steps tested were 20, 30, 40, 50, and 60 

days. The goal was to identify the time step that minimized the Mean Squared Error (MSE), training 

loss, and validation loss. 

Table 2: Performance Metrics Across Time Steps 

Time 

Step 
A: (F1 - F4) - L1 B: (F1 - F5) - L1&L4  

  MSE Train loss Valid loss MSE Train loss Valid loss 

20 0.06561169 0.002442 0.001591 
[0.05275779 

0.12036391] 
0.0032 0.002221 

30 0.04700987 0.002275 0.001337 
[0.05503776 

0.10871002] 
0.002957 0.002055 

40 0.05845572 0.002408 0.001552 
[0.05964431 

0.1225173] 
0.002875 0.002235 

50 0.06196832 0.002181 0.001286 
[0.0594098 

0.13030252] 
0.00289 0.002057 

60 0.05386019 0.002406 0.001352 
[0.04302618 

0.10403401] 
0.002895 0.001946 

Results 

 Setup A (F1, F2, F3, F4) → L1: 

o Time Step 30: 

 MSE: 0.04701 

 Train Loss: 0.002275 

 Valid Loss: 0.001337 

 Setup B (F1, F2, F3, F4, F5) → (L1, L4): 

o Time Step 30: 

 MSE: [0.05503776, 0.10871002] 

 Train Loss: 0.002957 

 Valid Loss: 0.002055 

A time step of 30 days emerged as optimal for both setups, showing the lowest MSE, training loss, 

and validation loss. This suggests that 30 days of historical data offers a balanced and efficient 

window for predicting Tesla’s stock price. 

4.3. Select the Time Period for Stock Prices 

We evaluated the model’s performance across different time periods to determine the most suitable 

range of historical data for predicting Tesla’s stock price. The time periods tested were: 

 Half-year (0.5 year): August 2019 - January 2020 

 1 year: February 2019 - January 2020 
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 2 years: February 2018 - January 2021 

 5 years: February 2015 - January 2020 

 10 years: January 2010 - December 2019 

Table 3: Performance Metrics Across Different Historical Time Periods 

Years A: (F1 - F4) - L1 B: (F1 - F5) - L1&L4  

  MSE Train loss Valid loss MSE Train loss Valid loss 

0.5 1.83508375 0.02465 0.025958 
[2.15312831 

2.58944325] 
0.031666 0.031304 

1 1.70008188 0.020882 0.021573 
[2.05613878 

2.46843996] 
0.022363 0.023355 

2 1.62572682 0.01991 0.016375 
[1.56691839 

2.54057025] 
0.022356 0.019774 

5 0.33621527 0.008519 0.006221 
[0.50689581 

0.98420885] 
0.01201 0.009851 

10 0.04700987 0.002275 0.001337 
[0.05503776 

0.10871002] 
0.002957 0.002055 

Results 

 Setup A (F1, F2, F3, F4) → L1: 

o 10 Years: 

 MSE: 1.514898 

 Train Loss: 0.016772 

 Valid Loss: 0.014656 

 Setup B (F1, F2, F3, F4, F5) → (L1, L4): 

o 10 Years: 

 MSE: [1.331109, 2.001251] 

 Train Loss: 0.020389 

 Valid Loss: 0.016543 

The 10-year period emerged as the optimal choice for both setups, demonstrating the lowest MSE, 

train loss, and validation loss. This result indicates that the longest available historical data provides 

sufficient context for accurate predictions, capturing both short-term fluctuations and long-term 

trends. 

4.4. Varying Prediction Days 

In this step, we analyzed how the model’s predictions for Tesla’s stock price varied with different 

prediction horizons. The prediction days tested were 1, 5, 10, 15, 20, 25, and 30 days. 
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Table 4: Performance Metrics Across Different Prediction Days 

Prediction days (F1 - F4)L1 - A (F1 - F5)L1&L4 - B 

 
Open Open Close 

1 

MSE: 0.04401224 

 

MSE: 0.05880658 

 

MSE: 0.12691709 

 

5 

MSE: 0.22312771 

 

MSE: 0.27531077 

 

MSE: 0.35481763 

 

10 

MSE: 0.53628417 

 

MSE: 0.53810132 

 

MSE: 0.60469295 

 

15 

MSE: 0.66894851 

 

MSE: 0.69096178 

 

MSE: 0.78858355 

 

20 

MSE: 0.84486569 

 

MSE: 0.8356581 

 

MSE: 0.94040684 

 

25 

MSE: 0.92773771 

 

MSE: 0.96346316 

 

MSE: 1.04912824 
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30 

MSE: 1.0968706 

 

MSE: 1.11719375 

 

MSE: 1.22853315 

 

Analysis 

4.4.1. Short-Term Prediction (1 Day) 

 The model’s predictions for one day ahead are relatively close to the actual prices, reflecting the 

market’s immediate behavior. 

 Both setups show similar predictions for one-day horizons, indicating that the model effectively 

captures the immediate trend. 

4.4.2. Medium-Term Prediction (5-10 Days) 

 The predicted prices over 5 to 10 days begin to show more variation, reflecting short-term market 

fluctuations. 

 The predictions slightly diverge from the current price, as expected, highlighting the challenge of 

forecasting further into the future. 

4.4.3. Long-Term Prediction (15-30 Days) 

 As the prediction horizon extends to 15, 20, 25, and 30 days, the predicted prices show greater 

deviation from the starting price. 

 These predictions reflect broader market trends and volatility but also indicate potential 

uncertainties in longer-term forecasts. 

The analysis indicates that the model is most reliable for short-term predictions (1 to 5 days), where 

the predicted stock prices are closer to the actual values. As the prediction horizon extends, accuracy 

decreases, reflecting the increased uncertainty and complexity of long-term stock price forecasting. 

This pattern is typical in financial forecasting, where short-term predictions are generally more 

reliable. 

5. Discussion 

5.1. Feature Selection 

 Impact of Feature Combinations: The results indicate that different combinations of feature 

columns significantly affect the model’s performance. Specifically, Setup A (using F1-F4: Open, 

High, Low, Close) and Setup B (using F1-F5: Open, High, Low, Close, Adjusted Close) highlight 

the importance of including the adjusted close price. 

 Role of Adjusted Close Price (F5): Incorporating the adjusted close price (F5) in Setup B 

provided a more comprehensive view of the stock’s true value by accounting for corporate actions 

like splits and dividends. While this slightly improved the model’s ability to predict the closing 

Table 4: (continued). 
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price, it also introduced additional complexity. This complexity might be beneficial for long-term 

forecasts in some cases but may not significantly contribute to short-term predictions. 

 Predictive Power of Basic Trading Metrics: Setup A, which relied solely on basic trading 

metrics (Open, High, Low, Close), still produced strong results, suggesting that these fundamental 

price points are highly predictive, particularly for short-term forecasts. This raises the question of 

whether adding more features always leads to better predictions or if they might introduce 

unnecessary noise. 

5.2. Optimal Time Step 

 Finding the Balance: The experiment demonstrated that a 30-day time step offered the optimal 

balance between capturing relevant information and minimizing noise. A shorter time step (e.g., 

20 days) may overlook significant trends, while a longer time step (e.g., 40-60 days) might include 

extraneous data, thereby weakening the model’s predictive power. 

 Time Step and Market Behavior: The 30-day time step aligns well with typical market cycles, 

where monthly trends are frequently observed in financial data. This indicates that the model 

effectively utilized these natural cycles to enhance prediction accuracy. 

 Generalization Capability: The 30-day time step consistently performed well across different 

setups, suggesting its robustness across various feature combinations. This time step enabled the 

model to generalize more effectively, reducing both training and validation losses, which is critical 

for ensuring the model’s performance on unseen data. 

5.3. Time Period Analysis 

 Value of Long-Term Data: The 10-year time period proved to be the most effective in both setups, 

underscoring the importance of using extensive historical data. This extended time span provided 

the model with a rich dataset that encompassed a wide range of market conditions, from bull 

markets to bear markets, leading to more accurate predictions. 

 Trade-off Between Data Length and Model Complexity: While the 10-year dataset yielded the 

best performance, it also increased complexity, as the model had to process and learn from a 

significantly larger dataset. This presents an important consideration: although more data generally 

enhances accuracy, it also demands more sophisticated models and greater computational 

resources. 

 Capturing Long-Term Trends: Utilizing the full decade of data enabled the model to identify 

long-term trends and recurring patterns in Tesla’s stock prices, which are crucial for making 

accurate long-term predictions. However, for more volatile stocks, these long-term trends might 

be less stable, and the benefits may diminish. 

5.4. Prediction Horizon 

 Short-Term vs. Long-Term Predictions: The results clearly show that the model was most 

reliable for short-term predictions (1 to 5 days). This aligns with general market behavior, where 

short-term trends are easier to predict due to lower volatility and fewer unforeseen events. 

 Decreasing Accuracy Over Time: As the prediction horizon extended to 10, 15, 20, 25, and 30 

days, the accuracy of the model’s predictions decreased. This trend is expected, as the market 

becomes more unpredictable over longer periods. For traders and investors, this finding suggests 

that while LSTM models are useful for short-term trading strategies, caution should be exercised 

when relying on them for long-term forecasts. 
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5.5. Model Performance Metrics 

 MSE, Train Loss, and Validation Loss: The metrics used to evaluate the model—MSE, train 

loss, and validation loss—provided a comprehensive view of its performance. In the optimal setups, 

a low MSE indicated that the model was capable of making accurate predictions, while low train 

and validation losses suggested that the model did not overfit and could generalize well to new 

data. 

 Consistency Across Setups: The consistent performance metrics across different setups and time 

periods indicate that the model was robust and stable, which is critical for any predictive model in 

finance. This reliability is essential for real-world applications and demonstrates the potential for 

broader adoption of LSTM models in financial markets. 

 Insights for Future Research: The analysis of these metrics also highlights areas for future 

research, such as experimenting with different loss functions or optimization techniques to further 

improve model performance, particularly for long-term predictions. 

6. Conclusion 

The Long Short-Term Memory (LSTM) model is advantageous in stock price forecasting due to its 

ability to handle sequential data through memory units, capturing both short- and long-term trends. It 

models complex non-linear relationships and accommodates various input features like prices and 

volume, making it flexible for different financial instruments. LSTM performs well in short-term 

predictions and scales to large datasets, filtering noise and generalizing better with optimal time step 

selection. However, LSTM's limitations include sensitivity to hyperparameters, risk of overfitting, 

interpretability challenges, long training times, reliance on data quality, reduced accuracy in long-

term predictions, and limited incorporation of external factors like macroeconomic indicators. Future 

research could address these issues through automated hyperparameter optimization, advanced 

regularization techniques, model interpretation tools, accelerated training with better hardware, 

improved data preprocessing, hybrid models for long-term forecasts, and the integration of external 

factors and multi-modal data sources to enhance model performance and applicability in financial 

forecasting. 

References 

[1] Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2017, September). Stock price 

prediction using LSTM, RNN and CNN-sliding window model. In 2017 international conference on advances in 

computing, communications and informatics (icacci) (pp. 1643-1647). IEEE. 

[2] Sunny, M. A. I., Maswood, M. M. S., & Alharbi, A. G. (2020, October). Deep learning-based stock price prediction 

using LSTM and bi-directional LSTM model. In 2020 2nd novel intelligent and leading emerging sciences 

conference (NILES) (pp. 87-92). IEEE. 

[3] Jeenanunta, C., Chaysiri, R., & Thong, L. (2018, May). Stock price prediction with long short-term memory 

recurrent neural network. In 2018 International Conference on Embedded Systems and Intelligent Technology & 

International Conference on Information and Communication Technology for Embedded Systems (ICESIT-

ICICTES) (pp. 1-7). IEEE. 
[4] Srivastava, P., & Mishra, P. K. (2021, October). Stock market prediction using RNN LSTM. In 2021 2nd Global 

Conference for Advancement in Technology (GCAT) (pp. 1-5). IEEE. 

[5] Wang, Y., Liu, Y., Wang, M., & Liu, R. (2018, October). LSTM model optimization on stock price forecasting. In 

2018 17th international symposium on distributed computing and applications for business engineering and science 

(dcabes) (pp. 173-177). IEEE. 

[6] Patel, J., Patel, M., & Darji, M. (2018). Stock price prediction using RNN and LSTM. Journal of Emerging 

Technologies and Innovative Research, 5(11), 1069-1079. 

[7] Zhang, X., Gu, N., Chang, J., & Ye, H. (2021). Predicting stock price movement using a DBN-RNN. Applied 

Artificial Intelligence, 35(12), 876-892. 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/87/2025.20352 

206 



 

 

[8] Zhao, J., Zeng, D., Liang, S., Kang, H., & Liu, Q. (2021). Prediction model for stock price trend based on recurrent 

neural network. Journal of Ambient Intelligence and Humanized Computing, 12, 745-753. 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/87/2025.20352 

207 


