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Abstract: The emergence of gravitational-wave astronomy has enabled us to unveil events 

that were previously concealed: compact binary coalescences. Neutron stars have been 

recognized as significant sources of gravitational radiation, thus triggering a timely 

exploration of their deformations. Through gravitational waves, scientists are presented with 

a unique opportunity to study the interiors of neutron stars and deepen the understanding of 

the equation of state of ultra-dense nuclear matter. In this article, reflects the necessary 

condition for the generation of gravitational radiation, namely the time-varying quadrupole 

moment, and calculate the ellipticity resulting from a neutron star’s simplistic model. 

Subsequently, this article examine Ushomirsky’s research on the maximum quadrupole 

moment, in which this term does not show any explicit dependence on mass. Finally, the 

author makes a comparison between simplistic model and Ushomirsky, Haskell, gives a 

estimation on ellipticity and maximum quadrupole moment, expecting a potential 

improvement on the model would be incoporating dynamic terms.,such as accretion and star 

quakes.. 
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1. Introduction 

It is a well-known fact that with non-axisymmetric deformation, or “mountains,” can neutron star 

produce gravitational waves. The neutron star mountain is widely regarded as a significant source of 

gravitational radiation. However, current observations are unable to directly detect gravitational 

radiation signals stimulated by a single neutron star. This article aims to discuss various  models that 

illustrate the concept of a neutron star mountain through theoretical derivation. The idea that the crust 

of a rotating neutron star could potentially form a ”mountain,” thereby resulting in the emission of 

gravitational waves, has attracted substantial attention recently. This interest mainly stems from a 

previous proposition, which builds earlier theories [1,2]. Theoretically, this article reviews  the 

generation conditions of gravitational waves and discusses neutron star mountain models, ranging 

from the simple to the more realistic ones. These discussions are based on the research by Ushomirsky 

[3] and Haskell Additionally, it highlights  theoretical computation method of ellipticity caused by 

neutron star deformation and multipole expansion method [4]. This turns out to be meaningful 

uncovering the evolution of neutron star and identifying new source for gravitational waves. 
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2. Generation of gravitational wave 

In the linearized theory of general gravity, the spacetime metric can be described as g
αβ

= η
αβ

+ ℎαβ 

ℎαβ is the metric perturbation that small enough [5]. In the Lorentz gauge, Einstein’s equation is 

expressed as ℎαβ = −16πGTαβ wave operator and can be solved using radiative green’s function, if 

only considering the spatial component, the equation is reduced to ℎij =
4G

r
∫ Tij(t − r, x′)d

3
x′, recall 

that ∂βTαβ = 0 ,it is easy to figure out that ∫ Tijd
3
x′ =

1

2

d
2

dt2
∫ T00(t − r, x′)d

3
x′ and=

2G

r

d
2

dt2
∫ T00(t −

r, x′)xi
′xj

′d
3
x′ =

d
2
Iij

dt2
 is the quadrupole moment tensor and r is the distance between source and field 

point. Far from the source, this paper have □ℎij = 0 and it is obviously a wave equation in the vacuum 

and ℎij can be expanded as plane waves.  

Much of the treatment of gravitational radiation resembles the electromagnetic radiation case. In 

the electromagnetic theory, a typical radiation is produced by an accelerated electric dipole. However, 

a mass dipole cannot produce gravitational radiation as the result of the conservation of momentum.  

From the previous discussion, gravitational radiation requires a changing quadrupole moment. The 

wave equation ℎij = 0 can be expanded into the solutionℎjl = Ajle
i(kx−ωt). Furthermore, to find the 

solution at trasverse-traceless condition, then ℎij
TT =

2G

r

d2Ilk

dt2 (PliPkj −
1

2
PlkPij)where Pij = δij − ninj. 

there recognize that Pij is a tensor that can project components into a subspace that is orthogonal to 

unit vector n Suppose a sphere with radius R, spinning around z axis[6],then the principal moments 

of inertia of the body in the comoving frame are calculated:I1 = ∫ d3x′ρ(y2 + z2) = Iyy + Izz I2 =

∫ d3x′ρ(x2 + z2) = Ixx + Izz I3 = ∫ d3x′ρ(x2 + y2) = Ixx + Iyy  Solving the linear equation, the 

quadrupole moment tensor are given by Ixx =
I3+I2−I1

2
 Iyy =

I3−I2+I1

2
 Izz =

−I3+I2+I1

2
 apply the tensor 

transformation principle Ijk =
∂xj

∂xa′

∂xk

∂xb′ Ia′b′
, if this paper define the ellipticity parameter ϵ =

I1−I2

I3
 ,then 

d2

dt2 Ixx = 2ϵΩ2I3cos2Ωt  And 
d2

dt2 Iyy = −2ϵΩ2I3cos2Ωt  For a approximation of 

gravitational radiation amplitude, apply the quadrupole formula, results in ℎ0 =
4G

c4R
ϵI3Ω2.2.  

As a consequence, spherical symmetric motion cannot produce gravitational radiation, which can 

be inferred by Birkhoff’s theorem. It states that the schwartzschild solution ds2 = −(1 −
2M

r
)−1dt2 +

(1 − 2M)−1dr2 + r2dω2is the only solution of Einstein’s equation in the vacuum. The spacetime 

metric remains static when spherically symmetry is preserved.It means there is no gravitational 

radiation for a spherically radiating system. Only a deformed sphere would produce gravitational 

radiation. However, sometimes source with no time-varying quadrupole moment can produce 

gravitational radiation in the higher order. Let’s consider a special case. Suppose there are four equal 

mass lying on the  corner of a square,  rotating with a angular velocityω. The initial location of the 

four corners are labeled as. (a, 0,0), (0, a, 0), (−a, 0,0), (0, −a, 0) . Then the quadrupole moment 

tensor for this system can be calculated. Ixx = mr2[cos2ωt ∗ 2 + sin2ωt ∗ 2] = 2mr2 = Iyy, r =

√2a Ixy = Iyx = 0. It shows that there is no time-varying quadrupole moment in the tensor. However, 

the quadrupole is only a leading term in the expression. Now, to expand ℎij in higher order. 

Notice that in the previous discussion, the size of the source has been neglected as it is extremely 

small compared with the distance between the source and the point. Suppose the typical size of the 

source is a sphere with radius d, the actual integral is ℎij(t, x) = 4G∫ d3x′ Tαβ(t−|x−x′|,x′)

|x−x′|
 sincer >>

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/92/2025.20948 

8 



 

 

d, now  can  expand |x − x′| in  a  taylor’s  series.|x − x′| = r − x ∗ n
̂

+ O(
1

r2
)Moreover, in the non-

relativistic scenario where the velocity of the source is much smaller than the speed of light, vs <<
c, the low - velocity expansion method can be utilized. Consequently, the primary component of the 

spacetime perturbation ℎij  is the quadrupole term. To obtain the higher order term, a Taylor’s 

expansion of the stress - energy tensor is performed. From Maggiore’s result [7], ℎij(t, x) =
4G

c4r
Λij,kl[Skl +

1

c
nm

d

dt
Skl,m +

1

2c2
nmnp

d2

dt2
Skl,mp+. . . ] , where Sij(t) = ∫ d3xTij(t, x) , Sij,k(t) =

∫ d3xTij(t, x)xk. 

Applying the tensor virial theorem, the first term  can be determined to be the quadrupole moments. 

In the same manner, the latter terms contain octupole and more multi-poles. In the previous example, 

it was demonstrated that the four - mass system does not produce quadrupole radiation. However, 

higher - order terms emerge when expanding to hexadecapole terms. Therefore, examining higher - 

order expansions is essential when addressing radiation. 

3. Neutron star mountain models, simplistic and practical 

Neutron star is a typical astrophysical source of gravitational waves on account of neutron star is the 

densest compact source in the universe. Getting a time-varying quadrupole moment requires the 

deviation from the spherical symmetry, which is entitled neutron star mountain. Firstly ,suppose a 

simple neutron star mountain model. Suppose a regular sphere, endowed with a mass M, radius r. 

Then the principal moments of inertia tensor can be easily calculated: I1 = I2 = I3 =
2

5
Mr2 Suppose 

there is a mountain with mass m, locating at the spherical coordinate (θ, ϕ) on the surface [6].As a 

result, this paper will figure out that it can make a change on the moments of inertia.If this paper 

review the ellipticity formula ϵ =
I1−I2

I3
 then the mountain would contribute to the ellipticity.Next, 

there can omit the change within the denominator, since the deviation in the denominator is negligible 

Furthermore, try to extend the model to ellipsoid. Suppose a ellipsoid with uniform density ρ,the 

length of principle axes are a, b, cwhich satisfies equation     
x2

a2
+

y2

b
2 +

z2

c2
= 1 

To handle the intergration inside the star, they can invoke the ellipsoidal coordinates x′ =
arsinθcosϕ y′ = brsinθsinϕ z′ = crcosθr is a quantity ranging from 0 to 1. If construct a small 

mountain again on the surface of star,locating at the ellipsoidal coordinate at (θ, ϕ)again.  Repeating 

the same procedure as in the sperical case, ignoring the variation in the denominator, δI1 − δI2 =

δmr2sin2θ(b2sin2ϕ − a2cos2ϕ) the resulting ellipticity isϵ =
5δmr2sin2θ(b2sin2ϕ−a2cos2ϕ)

M(a2+b2)
 

From which this paper make use of this elliipticity to estimate  typical amplitude for a source. A 

simplistic model of a neutron star mountain has been inspected, which involves the asymmetry in the 

distribution of mass while ignoring the deformation of the shape. Actually, a neutron star can have 

“mountains” on its surface because of the existence of a solid crust. The crusts can be subjected to 

shear stress, which perturbs the star from axis - symmetry. As the stress increases, the crusts deviate 

more and eventually break up. Since the deformation of symmetry causes gravitational radiation, the 

maximum deformation for a neutron star is of interest. Therefore, it is necessary to review the 

perturbation theory. For convenience, only the perturbation of the fluid variables, density and pressure, 

will be investigated. There are different approaches to perturbation. On the one hand, those denoted 

by δ are Eulerian perturbation. On the other hand, those marked by △ are Lagrangian perturbation[8].  

Eulerian perturbation refers to a change of a fixed point δf = f(x, t) − f0(x, t). On the contrary, 

Lagrangian perturbation marks a change that the point comoves with the flow △ f = f(x + ξx, t) −
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f0(x, t). And first there need to analyze the problem in Newtonian gravity.the conservation of mass 

leads to the continuous equation 
∂ρ

∂t
+ ∇ ⋅ (ρv) = 0.  

If the momentum conservation is invoked, the Euler equation for a perfect fluid is attained, and 

that is the paradigm needed to analyze the neutron star mountain. Ushirmirsky [3] first calculated the 

maximum mountain a neutron star can support. At the beginning, the shear tensor is included and a 

perturbation in the Euler equation is produced. −∇iδp − ρ∇iδΦ − δρ∇iΦ + ∇jtij = 0 . In 

Ushirmirsky’s computation, he utilized the Cowling approximation δΦ=0, which  neglects potential 

perturbations.Next,perform the tensor decomposition in spherical harmonics: tij = trr(∇ir∇jr −

1/2eij)Ylm + tr⊥fij + tΛ(Λij + 1/2eijYlm) recall the sperical harmonic expansion of the multipole 

moment,then the perturbation of the quadrupole momentQ22 = −∫
r0

r r3

dΦ/dr
[

3

2
(4 − U)trr + √

3

2
(8 −

3U +
1

3
U2 −

r

3

dU

dr
)tr⊥ +

1

3
(6 − U)tΛ]dr r0 and r are radius that bottom and top of the crust, and this 

paper have the as- sumption that the shear modulus  µ is zero  at the bottom  and the top,and U =
dln(

dΦ

dr
)

dlnr
+ 2.In order to attain maximum quadrupole, it input von Mises criterion σ ≥ σmax Due to the 

lack of precise detection and direct observation, neutron star formation can only be conjestured.  As 

one proceed towards the center, neutron star layer may be divided into five pieces, surface, outer 

crust,inner crust, neutron liquid and finally a core region. The density increase as going from surface 

to the center and whether the core exists depends on if there is pion condensation, which tends to 

contract neutron stars. 

Since there are to focus on elastic crust on neutron star, several factors which influences shear 

modulus. Ogata and ichimaru found the associate equation governing the shear modulus[9]μ =

0.1194
3

4π
(

1−Xn

4
nb)

4

3Ze2 and Xnis the fraction of neutrons outside nuclei, nb is the baryon density, Z 

is the proton number and A is the atomic number.From previous research it showed that an accreted 

crust sustains smaller Q than non-accreted ones [10].However, when incoporating perturbation of the 

core, with more mass comes  greater quadrupole moment. 

From Ushomirsky’s formula this paper find that there are no explicit terms of the mass of the star 

involved [3].However, according to Haskell’s work, the mass dependence on the maximum 

quadrupole moment must be considered especially when extending the perturbation to the core[4].The 

dependence of the maximum quadrupole moment on mass is likely related to the internal structure 

and distribution of mass within neutron stars. This relationship may influence the extent to which 

neutron stars deform, thereby affecting their capacity to produce gravitational waves and the 

characteristics of these waves. This mass dependence can be proposed as providing essential physical 

parameters crucial for understanding the source model of neutron star mountain deformation 

including some historical evolutionary information. Now, to compute the maximum mass for 

obtaining the maximum quadrupole moment. Inside the neutron star, the gravitational pressure must 

be balanced by other forces; otherwise, the star would collapse into a black hole. Recall the TOV 

equation [10]. 
dp

dr
=

(ρ+p)(m+4πr3p)

r(r−2m)
 or a relativistic star, the mass function is defined 

dm(r)

dr
=

4πr2ρ(r) and there need the relationship between pressure and energy density. From the first law of 

thermodynamics dU = −pdV + TdS when dealing with the neutron star case, the temperature is far 

below the fermi temperature so that ignoring the entropy term is reasonable. Then it obtain the 

equation of state p = p(ρ).A simple model assumes that the density is constant, which implies the 

boundary condition can be treated as ρ = ρ0 , m(r) =
4

3
πr3ρ0, r < R  ρ = 0 , m(r) = M, r > R 

integrate the TOV equation, this paper get the solution p(r) = ρ0R
√R−2GM−√R3−2GMr2

√R3−2GMr2−3R√R−2GM
 it is obvious 
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that p(r)increases with smaller r. If GM >
4R

9
,the central pressure would exceed infinity, which is not 

physically allowed. Suppose this paper set standard radius for a neutron star R = 10km , then 

Mmax = 4R/9G = 3M⊙.However, this is a simplistic model ignoring the interior structure which 

determines the equation of state inside the star.If them specify the equation of state P = kρΓ , Γ =
2 ,which is a good approximation of a neutron star.By integrating the TOV equation under the 

equation of state mentioned above,this article reach a maximum mass of around M = 2M⊙ Haskell 

figures out the formula for maximum quadrupole moment under a mass dependence 

condition[4],when  ρ = 1.6 ∗ 1014  and R = 10km , Qmax = 1.6 ∗ 1037(M/1.4M⊙)−0.3g ∗ cm2 . If 

there insert the result into the formula will get the maximum quadrupole of1.44 ∗ 1037g ∗ cm2.By 

the way, there is no lower bound for a neutron star’s mass since it will inevitably go through β-decay 

as a result of low density.However, if the mass is negligible, it will be reasonable enough to ignore 

the perturbation from the core. 

4. Comparison between simplistic model and the two practical models 

The first calculation excludes  the internal structure and crust strength, focusing on asymmetry on 

mass distribution. The simplistic model, Ushomirsky’s model, and Haskell’s model provide 

increasingly refined approaches to estimating the maximum quadrupole moment Q
max

 and ellipticity 

ϵmax of a neutron star.  In this model, the quadrupole moment is directly proportional to the ellipticity 

via Q
max

∼ ϵI0, where  I0  is the moment of inertia of the neutron star. Using some typical neutron 

star parameters M = 1.4M⊙, R = 10km, mmountain = 10
−4

M⊙ , the simplistic model predicts Q
max

∼

10
41

g ∗ cm2, εmax ∼ 10
−4

. Ushomirsky’s model introduces the crust’s elasticity and breaking strain 

into the calculations, significantly refining the predictions, and can estimate Q
max

∼ 10
38

g ∗

cm2, εmax ∼ 10
−7

.Haskell’s model further extends Ushomirsky’s approach by incorporating the mass 

dependence of the quadrupole moment, from his model, εmax ∼ 10
−8, Q

max
∼ 10

37
g ∗ cm2 .The 

simplistic model assumes a large-scale deformation caused by a mass asymmetry (a “mountain”) 

without considering physical constraints like the crust’s elasticity.These high estimates arise because 

the simplistic model neglects any constraints on how much stress the crust can sustain. Besides, in 

the simplistic model, the article simply “adding a mountain” on the surface of the star, ignoring the 

phase transition of the structure, and assume a static distribution of the mass, which are sources of 

error. 

5. Conclusion 

This article has examined the prerequisite for the production of gravitational radiation, which requires 

a varying quadrupole moment. Nonetheless, the absence of a quadrupole term does not guarantee the 

nonexistence of radiation of higher-order radiation. Since deformed neutron stars are significant 

sources of gravitational waves, this article has analyzed a simplified model of a neutron star focusing 

on asymmetry on the mass distribution, and calculated ellipticity of an ellipsoid model of a neutron 

star, providing a means to estimate the amplitude of the gravitational wave caused by the mountain. 

This article has also estimated the maximum quadrupole moment under mass dependence. The mass 

dependence of the maximum quadrupole moment may be related to the internal structure and mass 

distribution of the neutron star. This mass dependence could affect the star's deformability, thereby 

influencing the likelihood and characteristics of gravitational wave generation. Finally, this article 

compares the simplistic model with the complex model derived by Ushomirsky and Haskell, figured 

out the overestimation may come from ignoring of the stress and phase transition inside the neutron 

star. Since there are many refinement can be done for the simplistic ellipsoidal model, the next step 
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will be adding temporal and dynamic effects, transient effects like accretion, starquakes, or rotational 

instabilities can influence the quadrupole moment over time. 
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