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Abstract: The rapid advancement of science and technology has rendered the moment of 

inertia a pivotal parameter in engineering, with significant applications in mechanical 

engineering and other domains. In undergraduate physics experiments, the determination of 

moment of inertia is predominantly confined to conventional techniques such as the three-

wire pendulum method and the torsional pendulum method. However, in everyday scenarios, 

the objects requiring measurement are frequently irregular in shape. This paper, grounded in 

the principle of conservation of angular momentum, derives the correlation between the 

moment of inertia of the object in question and the angular velocity of a large disk. It 

translates the measurement of the object’s moment of inertia into a measurement of the large 

disk’s angular velocity. This approach not only enhances the precision of measurement but 

also simplifies and accurate the process of determining the moment of inertia of the object. 

Keywords: Moment of inertia, Moment of inertia measurement, Conservation of angular 

momentum, Linear fitting 

1. Introduction 

Moment of inertia quantifies a rigid body’s resistance to rotational acceleration about an axis. The 

determination of moment of inertia is a crucial aspect of university physics experiments [1-5] and 

holds profound significance in disciplines such as mechanical engineering, medicine, and biological 

engineering. Currently, the predominant laboratory techniques for assessing moment of inertia 

include the torsion pendulum method [6], the tower wheel method, and the three-wire pendulum 

method [7]. These methodologies are typically confined to rigid bodies with regular shapes, uniform 

mass distribution, and continuous density. For objects of irregular form, measuring their moment of 

inertia often necessitates intricate integral computations [8]. This paper introduces a novel instrument 

for measuring moment of inertia, which leverages the law of conservation of angular momentum to 

address the limitations of conventional techniques. This apparatus streamlines the measurement 

process and enhances accuracy, allowing for the straightforward determination of the moment of 

inertia of irregularly shaped objects. 
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2. Instrument And Methods 

2.1. Laboratory equipment 

Moment of inertia measuring apparatus, depicted in Figure 1, primarily consists of a large disk, a 

motor, a small flywheel, a photoelectric gate, a counter, and a laser positioner. The small flywheel 

and the motor are symmetrically arranged. 

 

Figure 1: Actual image of the new moment of inertia measuring instrument 

The small flywheel (1) has a diameter of 8 cm and a thickness of 1 cm. It features a central shaft 

with a diameter of 2 mm, which is securely fixed to the shaft of the DC motor (3). By adjusting the 

governor of the DC motor, the angular velocity of the flywheel can be altered [9]. The electric motor 

is powered by a 9-volt battery. The symmetric placement of the small flywheel serves to maintain the 

level of the large disc, reduce the frictional torque on the rotating shaft, and extend the measurement 

range. 

The large disc is mounted on the base via a rotating shaft, with the base secured in place, allowing 

the large disc to rotate around its axis. As depicted in Figure 2, the large disc has a diameter of 23 cm, 

and the rotating shaft incorporates a high-speed, silent bearing (2) that exhibits excellent smoothness 

and quiet operation. To minimize the impact of friction, lubricating oil is also applied to the rotating 

shaft. When the small flywheel is in motion, the minimal friction torque beneath the large disc’s 

rotating shaft allows the system comprising the large disc and the small flywheel to be treated as 

approximately conserving angular momentum. In accordance with the law of conservation of angular 

momentum, as the small flywheel rotates, the large disc will rotate in the opposite direction. 

 

Figure 2: Schematic diagram of the large disc structure 
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The counter and photogate are utilized to measure the number of rotations (n) and the time interval 

(t) of the large disk, respectively. Consequently, the period (T) can be calculated as T = t/n, and the 

angular velocity (𝜔) of the large disk can be determined as 𝜔 =
2π

𝑇
=

2π𝑛

𝑡
. 

The laser locator is designed to ensure that the object to be measured is positioned along the central 

axis of the large disc. As illustrated in Figure 3, the crosshair of the laser should be aligned with the 

geometric center of the large disc. Subsequently, the object to be measured is placed on the large disc, 

with care taken to ensure that the center of the object aligns with the crosshair of the laser. 

 

Figure 3: Schematic representation of the alignment process for the crosshair laser. 

2.2. Conservation of Angular Momentum in the “Large Disc + Small Flywheel” System 

The system, comprising a large disc and a small flywheel, is depicted in Figure 4. Upon initiating the 

motor, the two small flywheels rotate at angular velocities 𝜔11 and 𝜔12, respectively, while the large 

disc rotates in the opposite direction at an angular velocity 𝜔0 , thereby maintaining the angular 

momentum of the system at zero. This can be expressed as: 

 

Figure 4: Large disc + small flywheel 

J
11
ω

11
+J

12
ω

12
=J

0
ω

0
 (1) 

In equation (1), J11  and J12  correspond to the moments of inertia of the small flywheels, 

respectively, while J0 represents the moment of inertia of the measuring apparatus.  

2.3. Conservation of Angular Momentum in the “Large Disk + Body + Small Flywheel” 

System 

If an object is placed at the center of the large disk while maintaining a constant rotational speed of 

the small flywheel, the time taken for the large disk to complete N revolutions can be measured using 
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a photogate and a counter. Based on this data, the angular velocity ω0
'  of the large disk after placing 

the object can be calculated. 

As shown in Figure 5, after the object is placed, the angular momentum of the system composed 

of the large disk, the object, and the small flywheel remains conserved. 

 

Figure 5: Large disk + object + small flywheel 

Given that the angular velocity of the small flywheel is significantly greater than that of the large 

disk, the angular velocity of the small flywheel before and after placing the object remains 

approximately the same. Consequently, the following is calculated as: 

J
11
ω

11
+J

12
ω

12
= (J

0
+J

ob
)ω

0

'
(2) 

where Job represents the moment of inertia of the object. 

2.4. The relationship between J0 and J𝐱 

By combining equation (1) with equation (2), a new equation is derived(3): 

J
0
ω

0
= (J

0
+J

ob
)ω

0

'
 (3) 

And then formula (4) can be derived from formula (3) as follows: 

J
0
=

ω
0

'

ω
0
-ω

0

'
J

ob
 (4) 

After that, we replace the previously discussed object with a uniform cylinder having a radius of 

R and a mass of m, as illustrated in Figure 6.  

Jcy = ∫ 𝑟2d𝑚 =
1

2
𝑚𝑅2   (5)  

 

Figure 6: Large disc + cylinder + small flywheel 
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Using formula (5), which calculates the moment of inertia for the uniform cylinder, formula (4) 

can be restructured to yield formula (6). 

J0=
ω0

'

ω0-ω0
'
Jcy (6) 

Utilizing the theoretical value of the moment of inertia for a uniform cylinder, we determined the 

moment of inertia J0 of the large disk as follows: 

J
0

= 1.878 × 10−3 (kg﹒m2) (7) 

By reordering the terms in Equation (3) and substituting variable Job with Jx, the computational 

formula is derived for the moment of inertia of the object under consideration: 

J
x
=

ω
0
-ω

0

'

ω
0

'
J

0
(8)  

Therefore, by measuring the angular velocities 𝜔0  and ω0
'  of the large disk prior to and 

subsequent to the placement of the object to be measured, the value of Jx can be determined. 

3. Results  

3.1. The Value of J0 

This paper utilizes four standard objects with regular shapes. The mass and radius of each object are 

measured multiple times, and the computed values of J0 are averaged to mitigate random errors, as 

presented in Table 1 and Table 2. 

Table 1: The theoretical value of moment of inertia of the standard object 

Standard object m/(g) r/(cm) 𝐽𝑡ℎ/(10-4kg﹒m2) 

1 278.81 4.48 2.798 

2 218.17 3.97 1.719 

3 315.24 4.01 2.535 

4 482.52 4.91 5.816 

Table 2: The measured data of moment of inertia of the large disc 

Standard object 𝜔0/ (rad/s) ω
0

'
/ (rad/s) 𝐽0/(10-4kg﹒m2) 

1 2.933 1.178 1.878 

2 3.687 1.924 1.876 

3 3.598 1.531 1.877 

4 4.552 1.111 1.878 

 

The moment of inertia, 𝐽0 , of the large disk is as follows: 𝐽0=1.878×10-3(kg﹒m2) (7). 

3.2. Correction of measuring formula of moment of inertia 

To ascertain the measurement accuracy of the developed measuring device, this study takes into 

account potential confounding factors such as friction that may influence the measurement outcomes. 

Ten regularly shaped cylinders with a uniform mass distribution are selected as the measurement 

subjects, with their theoretical values serving as the standard reference points. The mass, radius, and 
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moment of inertia with respect to the central axis for each of these subjects are measured on six 

separate occasions to minimize random errors, and the mean of these measurements is computed. The 

resulting data are presented in Tables 3 and 4. Additionally, the data contained in Table 4 are 

subjected to linear fitting analysis [11]. 

Table 3: The theoretical value of moment of inertia of the object to be measured 

Object to be 

measured 
m/(g) r/(cm) 𝐽𝑡ℎ/(10-4kg﹒m2) 

1 190.98 4.48 1.917 

2 256.05 3.97 2.017 

3 301.08 4.01 2.421 

4 335.81 4.91 4.048 

5 352.88 4.46 3.510 

6 366.05 3.11 1.770 

7 371.91 3.86 2.771 

8 405.14 5.12 5.310 

9 411.52 5.37 5.933 

10 435.17 5.52 6.630 

Table 4: The measured value of moment of inertia of the object to be measured 

Object to be 

measured 
𝜔0/ (rad/s) ω

0

'
/ (rad/s) 𝐽𝑚𝑒/(10-4kg﹒m2) relative error 

1 1.792 1.623 1.956 2.04% 

2 2.786 2.522 1.966 2.59% 

3 1.902 1.679 2.494 3.03% 

4 2.012 1.649 4.133 2.12% 

5 1.949 1.633 3.633 3.53% 

6 2.453 2.247 1.721 2.75% 

7 2.307 2.019 2.679 3.32% 

8 2.111 1.652 5.217 1.75% 

9 2.543 1.941 5.823 1.85% 

10 2.698 1.985 6.745 1.73% 

 

The theoretical moment of inertia, 𝐽𝑡ℎ, for the object under measurement is adopted as the standard 

reference value. This value is compared with the measured moment of inertia, 𝐽𝑚𝑒 , obtained using 

the instrument. The measurement results are then corrected. In Figure 7, the measured values (𝐽𝑚𝑒) 

are plotted on the horizontal axis, while the theoretical values (𝐽𝑡ℎ) are plotted on the vertical axis. 

The correction outcomes are presented in Table 5. 
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Figure 7: Diagram of the relationship between 𝐽𝑚𝑒  and 𝐽𝑡ℎ. 

The following modified formula has been derived: 

Jx=1.96918×10
-3

×
ω0-ω0

'

ω0
'  − 1.2429×10

-5 (9)  

Table 5: The correction of moment of inertia of the object to be measured 

Object to be 

measured 
ω

0
/ (rad/s) ω

0

'
/ (rad/s) 𝐽𝑚𝑒/(10-4kg﹒m2) relative error 

1 1.561 1.415 1.908 0.47% 

2 2.566 2.312 2.039 1.05% 

3 2.325 2.057 2.441 0.85% 

4 1.765 1.458 4.022 0.64% 

5 2.143 1.810  3.499 0.32% 

6 1.875 1.712 1.751 1.11% 

7 1.986 1.733 2.751 0.73% 

8 2.441 1.912 5.324 0.26% 

9 2.758 2.112 5.899 0.58% 

10 2.352 1.753 6.604 0.38% 

3.3. Comparative analysis of measurement methods 

To facilitate comparison with the measurement outcomes of conventional experimental techniques, 

we selected two arbitrary objects from a set of ten and determined their moment of inertia, 𝐽𝑡𝑤𝑝 , 

relative to the central axis utilizing the three-wire pendulum method [12]. With the theoretical value, 

𝐽𝑡ℎ, serving as the reference standard, the relative error was computed. The corresponding results are 

presented in Table 6. 

Table 6: Comparison of results of measurement methods 

Object to 

be 

measured 

𝐽𝑡ℎ/ 

(10-4kg﹒m2) 

𝐽𝑚𝑒/ 

(10-4kg﹒m2) 

relative 

error of 

𝐽𝑚𝑒   

𝐽𝑡𝑤𝑝/ 

(10-4kg﹒m2) 

relative 

error of 

𝐽𝑡𝑤𝑝  

1 1.921 1.910 0.52% 1.816 5.21% 

2 4.289 4.260 0.69% 4.461 3.96% 
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Table 6 illustrates the comparative average relative errors for the measurement of objects 1 and 2. 

The instrument developed in this study yielded average relative errors of 0.52% for object 1 and 

0.69% for object 2. In contrast, the three-wire pendulum method resulted in average relative errors of 

5.21% for object 1 and 3.96% for object 2. The relative errors associated with the measurements 

obtained from the instrument proposed herein are consistently lower than those obtained using the 

three-wire pendulum method [13-15]. 

Analysis of the measurement data indicates the presence of inherent measurement errors within 

the instrument. These errors are potentially attributed to minor displacement deviations in the initial 

placement position of the object, as well as to slight shifts of the object under the influence of 

centrifugal force during the rotation of the large disk. These discrepancies contribute to the observed 

measurement inaccuracies. 

4. Conclusion 

This paper presents a novel moment of inertia measuring instrument, which operates on the principle 

of the conservation of angular momentum. This device effectively and accurately measures the 

moment of inertia of an object by transposing the measurement into the determination of the angular 

velocity of a large disk, thereby simplifying the measurement process and enhancing ease of operation. 

Additionally, the instrument benefits from a straightforward calculation formula, with its 

measurement accuracy further enhanced through subsequent refinements. The device not only 

facilitates students’ comprehension and application of the conservation of angular momentum and 

moment of inertia but also offers practical assistance for industrial measurement applications. In 

terms of functionality, the measuring instrument is particularly well-suited for use in university 

physics experiments, where precision and educational value are paramount [16]. 
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