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Abstract. Wind speed variations have a significant impact on the aerodynamic characteristics of 

F1 racing cars and the race outcomes. To enhance the accuracy and stability of wind speed 

forecasting, this paper proposes a method based on multi-scale decomposition and time series 

neural network models. Initially, wind speed data collected from F1 Grand Prix events between 

2018 and 2023 are subjected to Empirical Mode Decomposition (EMD), which decomposes the 

complex nonlinear and non-stationary time series data into several Intrinsic Mode Functions 

(IMFs) with different time scales. Subsequently, a Long Short-Term Memory network (LSTM) 

is utilized to predict each IMF component, and the predicted results of all IMFs are reconstructed 

into the overall wind speed forecast. Experimental results demonstrate that the method based on 

multi-scale decomposition and time series neural network models significantly outperforms 

traditional models such as Random Forest, Gradient Boosting Decision Tree (GBDT), and single 

LSTM models in terms of forecasting accuracy and stability. This study offers a novel 

perspective and approach for wind speed prediction in F1 Grand Prix events, with important 

theoretical significance and practical application value. 
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1.  Introduction 

Formula 1 racing is an extreme sport with very high technical requirements, where wind speed is one of 

the key factors affecting the performance of the race cars. Since air resistance is proportional to the 

square of velocity, an increase in wind speed leads to greater resistance. Aerodynamic accessories such 

as spoilers, side skirts, and front and rear wings are designed to perform optimally within specific wind 

speed ranges, and changes in wind speed can affect their efficiency. For drivers, sudden changes in wind 

speed can affect their reaction times, especially on corners and at high speeds, where extreme wind 

speeds add to the challenge of controlling the race car. 

The impact of wind speed on the aerodynamic characteristics of F1 cars has been extensively 

discussed in numerous studies. For instance, Preosti pointed out in his research that F1 cars are highly 

sensitive to wind speed, and changes in wind speed can significantly affect the downforce and balance 

of the car [1]. Al Muharrami et al. studied the aerodynamic characteristics of GT2 and F1 cars at different 

speeds [2]. Abdulwahab and Chen explored the effects of different flap angles and wind speeds on the 
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aerodynamic performance of F1 cars [3]. Additionally, Tan et al. analyzed the aerodynamic 

characteristics of the front wing of F1 cars, particularly the impact of wind speed on static pressure, lift, 

downforce, and drag [4]. These studies indicate that the influence of wind speed on the aerodynamics 

of F1 cars is complex and multidimensional. 

It is evident that wind speed prediction has significant practical value in F1 racing, especially in 

Grand Prix events, where changes in wind speed directly affect the speed and stability of the race cars, 

thereby impacting the race results. Traditional wind speed forecasting methods include statistical and 

machine learning approaches, such as random forests and gradient boosting decision trees [5-6]. 

However, these methods often have limitations when dealing with wind speed data characterized by 

nonlinearity and non-stationarity. For example, Younis et al. noted that traditional statistical methods 

using the Weibull distribution model perform poorly in predicting low wind speeds, struggling to capture 

the variations in complex wind speed patterns, with significant biases particularly in predictions below 

2 m/s [7]. Rangaraj et al. further pointed out that although statistical methods using Weibull and log-

normal distributions can provide good predictions in some cases, their model biases remain a 

fundamental limitation, especially when the models are applied to different geographical areas or 

extreme weather conditions, leading to a marked decrease in prediction accuracy [8]. 

In recent years, with the gradual maturation of deep learning methods, the Long Short-Term Memory 

network (LSTM) has demonstrated superior performance in handling time series data [9]. However, the 

single LSTM model also has insufficient predictive accuracy when dealing with complex wind speed 

data. For instance, Cho et al. studied multi-step forecasting systems and found that single LSTM models 

face challenges in capturing long-term dependencies [10]. Joseph et al. noted that although LSTM excels 

in processing nonlinear and time series data, its predictive accuracy still needs improvement when 

dealing with highly complex and multivariate datasets [11]. 

Therefore, this paper proposes a method that combines Empirical Mode Decomposition (EMD) with 

Long Short-Term Memory networks for wind speed prediction in F1 Grand Prix events. By using EMD 

to decompose complex time series data into several Intrinsic Mode Functions (IMFs), which have 

different frequencies and time scales, an LSTM model is applied to predict each IMF component. The 

predictions are then reconstructed to obtain the final wind speed forecast. To study the effectiveness of 

this method, actual wind speed data from F1 Grand Prix events are used for experiments, and 

comparisons are made with traditional LSTM, random forest, and GBDT methods. The experimental 

results show that the wind speed prediction method based on EMD-LSTM is superior to traditional 

methods in terms of prediction accuracy and stability, providing an effective solution for wind speed 

prediction in F1 Grand Prix events. This study offers a new perspective and approach in the field of 

wind speed prediction for F1 Grand Prix, with significant theoretical significance and practical 

application value. 

2.  Description of data 

The wind speed data utilized in this study were recorded at the racetracks during the Formula 1 Grand 

Prix from 2018 to 2023. The data encompasses wind speed variations across multiple seasons, with a 

total of 18,214 sets of wind speed data collected, sampled at a frequency of once per minute. These data 

are characterized by high temporal resolution and continuity. To better comprehend the distribution and 

time series characteristics of the wind speed data, this study conducted a visual analysis of the data. The 

following is a description and analysis of the histogram and time series plot of the data. The histogram 

of the raw wind speed data is shown in Figure 1, and the visualization of the raw wind speed data is 

depicted in Figure 2. 
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Figure 1. Histogram of Wind Speed Data During the Formula 1 Grand Prix from 2018 to 2023 

As shown in Figure 1, it illustrates the frequency distribution of the wind speed data, which exhibits 

a skewed distribution. The vast majority of wind speed values are concentrated between 0 to 4 m/s, with 

the highest frequency occurring at wind speeds of 1 to 2 m/s. The basic statistical characteristics of the 

data are shown in Table 1: 

Table 1. Basic Statistical Features of Wind Speed Data 

Statisic Value 

Count 18214 

Mean 1.617058 m/s 

Standard Deviation 1.171512 

Minimum 0 m/s 

Median 1.3 m/s 

Maximum 10.1 m/s 

 

Figure 2. Visualization of Wind Speed Data During the Formula 1 Grand Prix from 2018 to 2023 

As depicted in Figure 2, the graph illustrates significant fluctuations in wind speeds at various time 

points, with multiple peaks in wind speed values. The occurrence of high wind speeds (exceeding 6 m/s) 

is relatively infrequent. Overall, the Formula 1 Grand Prix dataset encompasses six years of wind speed 

data, totaling 18,214 sets, providing the model with a substantial sample size that aids in capturing the 

subtle characteristics and patterns of wind speed variation. Through the analysis and visualization of the 

data, this study found that these wind speed data exhibit notable features that support effective 

forecasting by the EMD-LSTM model. The richness, diversity, and pronounced temporal characteristics 

of the data provide a solid foundation for the model, contributing to enhanced accuracy and robustness 

in predictions. 
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3.  Methodology 

3.1.  EMD (Empirical Mode Decomposition) 

Empirical Mode Decomposition (EMD) is an adaptive data analysis method primarily used for 

processing nonlinear and non-stationary time series. EMD can decompose a complex time series signal 

into several Intrinsic Mode Functions (IMFs) and a residual component. Each IMF represents oscillation 

components of different scales within the original signal, enabling multi-scale analysis of the data. In 

recent years, EMD has been widely applied in the analysis of various time series data [12]. 

The basic steps of EMD decomposition are as follows: 

(1) Identify all local maxima and minima in the wind speed data sequence x(t). 

(2) Construct an envelope by using cubic spline interpolation for both the local maxima and minima 

to form the upper and lower envelopes. 

(3) Calculate the mean curve by averaging the upper and lower envelopes. 

𝑚(𝑡) =
𝑢(𝑡) + 𝑙(𝑡)

2
 (1) 

In Equation (1), u(t) is the upper envelope, and l(t) is the lower envelope. 

(4) To obtain the initial Intrinsic Mode Function (IMF), calculate the difference between the signal 

and the mean envelope curve: 

ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡) (2) 

(5) Treat h(t) as the new signal and repeat steps (1) to (4) until h(t) meets the two criteria for an 

Intrinsic Mode Function (IMF): the number of extrema and the number of zero-crossings are either equal 

or differ at most by one; at any given time, the local mean of its envelopes is zero. The obtained h(t) is 

the first IMF, denoted as IMF1(t). 

(6) Extract the first IMF from the original signal: 

𝑟1(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹1(𝑡) (3) 

Take the residual signal r1(t) as the new signal and repeat the aforementioned process until the 

residual signal rn(t) no longer contains any meaningful oscillatory components. Eventually, the original 

signal x(t) is decomposed into several Intrinsic Mode Functions (IMFs) and a residual component rn(t): 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑟𝑛(𝑡)
𝑛

𝑖=1
 (4) 

3.2.  Z-Score Normalization 

In this study, the z-score normalization method is applied to each Intrinsic Mode Function (IMF) 

component data obtained after EMD decomposition. This method transforms the data into a standard 

normal distribution with a mean of 0 and a standard deviation of 1, ensuring that each feature contributes 

equally to the analysis and model training. 

𝑍 =
𝑋 − 𝜇

𝜎
(5) 

In Equation (1), Z is the value after normalization, X is the original value, μ is the mean of the dataset, 

and σ is the standard deviation of the dataset. 

3.3.  Wind Speed Prediction Model 

3.3.1.  LSTM Neural Network Model 

The Long Short-Term Memory (LSTM) neural network is a special kind of recurrent neural network 

designed to address the issues of gradient vanishing and gradient explosion that standard RNNs 

encounter when dealing with long-term dependencies. LSTM effectively captures and retains long-term 
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dependencies in sequence data by introducing a gating mechanism, which includes the input gate, forget 

gate, and output gate. As shown in Figure 3, it illustrates the basic structure of the LSTM neural network. 

 

Figure 3. Structure of LSTM neural network 

As shown in Figure 3, the LSTM unit comprises three gating mechanisms and a cell state, whereCt-

1, ht-1 and xt-1 represent the inputs from the previous moment, and Ct, ht and xt represent the outputs at the 

current moment. 

The forget gate determines how much information to discard from the cell state. 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (6) 

In Equation (6), σ represents the Sigmoid function, Wf is the weight matrix, ht-1 is the hidden state 

from the previous moment, xt is the current input, and bf is the bias term.  

The input gate determines which new information needs to be incorporated into the current cell state. 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

�̃�𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)
(7) 

In Equation (7), it is the activation value of the input gate and �̃�𝑡represents the new candidate values. 

tanh is the hyperbolic tangent function, Wi and Wc are weight matrices, and bi and bc are bias terms. The 

output gate determines which parts of the current cell state will be outputted. 

𝑂𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂)

ℎ𝑡 = 𝑂𝑡
∗ tanh(𝐶𝑡)

(8) 

In Equation (8), ot is the activation value of the output gate, ht is the hidden state at the current moment, 

and Ct is the updated cell state. 

Wind Speed Prediction Model Based on EMD-LSTM 

This study proposes a wind speed prediction model based on Empirical Mode Decomposition (EMD) 

and Long Short-Term Memory (LSTM) neural networks. The model consists of a data decomposition 

module (Empirical Mode Decomposition), a time-sequence dependency extraction module (LSTM 

neural network), and a prediction output module, among others. 

By employing EMD to enhance the representation of data features, an LSTM neural network is set 

up to extract temporal dependencies from time series data. The feature-extracted data is then further 

modeled for its temporal dependencies through LSTM layers, with the number of neurons in the LSTM 

layers being 32 and 64, respectively. An Adam optimizer with adaptive learning rate and gradient scaling 

is chosen for network training. Utilizing EMD, the wind speed data is decomposed from a complex 

signal with insufficient features into several Intrinsic Mode Functions (IMFs) with local feature 

representation, and the decomposed IMFs encompass all features of the original signal. Consequently, 

the subsequent model more readily obtains features conducive to wind speed prediction from the 

decomposed multivariate signals. 

The overall process is as follows: The original wind speed data is decomposed using EMD to obtain 

14 IMF components. These IMF components, derived from EMD, are taken as inputs and sequentially 

pass through two LSTM layers for temporal feature extraction, with the first LSTM layer having an 

output dimension of 32 and the second an output dimension of 64. A linear layer is used to map the 
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features extracted by LSTM, culminating in the final prediction output. Figure 4 illustrates the model's 

structure. 

 

Figure 4. Structure of EMD-LSTM forecast model 

3.4.  Performance Index 

This article uses Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and the coefficient of determination (R^2) to measure the accuracy of wind speed forecasting. 

The definitions of these metrics are as shown in equations (9-12). 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑠 − �̂�𝑠|

𝑛

𝑠=1

(9) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑠 − �̂�𝑠)2

𝑛

𝑖=1
(10) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑠 − �̂�𝑠)2

𝑛

𝑠=1

(11) 

𝑅2 = 1 −
∑ (𝑦𝑠 − �̂��̅�)

2𝑠
𝑠=1

∑ (𝑦𝑠 − �̅�𝑠)2𝑠
𝑠=1

(12) 

In the aforementioned formulas, �̂�𝑠 represents the predicted wind speed, 𝑦𝑠 represents the actual 

wind speed, �̂��̅� represents the mean of the predicted wind speeds, and �̅�𝑠 represents the mean of the 

actual wind speeds. 

4.  Analysis of Prediction Results  

The EMD-LSTM model is used to train, validate, and test the wind speed data of the F1 Grand Prix to 

assess the rationality of the model establishment. 

4.1.  EMD Data Decomposition  

The original wind speed data is decomposed into 14 sets of Intrinsic Mode Functions (IMFs). By 

observing the IMF images, it can be seen that the data gradually becomes more stable from a fluctuating 

state, with the variation characteristics being basically consistent. This indicates that after the wind speed 

data is decomposed by EMD, it can be fully extracted and expressed, thereby effectively improving the 

prediction accuracy of subsequent models such as the LSTM neural network. The results are shown in 

Figure 5. 
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Figure 5. Visualization of EMD Decomposition of Original Wind Speed Data 

4.2.  Model Performance Evaluation  

4.2.1.  EMD-LSTM Model Parameters  

In this experiment, the Pytorch 2.1.0 framework is selected for model construction. In terms of parameter 

settings, the number of LSTM neurons in the first layer is 32, and in the second layer, it is 64. The input 

is a 14-dimensional IMF component, and the output dimension is also 14, which facilitates a clear 

observation of the model's predictive effect on each IMF component. In terms of model training, 70% 

of the data is selected as the training set, 20% as the validation set, and the remaining 10% as the test 

set. The LSTM network training step is 7, the batch size is 64, and the training is set for 100 epochs. 

The initial learning rate is 0.0001, and the optimizer is the Adam optimizer. 

4.2.2.  Model Validation Results  

During the model validation phase, predictions were made on the test set, and the predicted results were 

compared with the actual data. Gradient-free prediction is used during the validation phase, which means 

that gradients are not calculated during the evaluation process, thus saving memory and accelerating 

computation speed. When performing data transformation and reconstruction, the two-dimensional list 

is first converted into an array and the dimensions are adjusted. The previously saved normalization 

parameters (mean and standard deviation) are loaded to de-normalize the predicted results, restoring 

them to the original scale. The same normalization parameters are used to de-normalize the original and 

predicted component data. During data reconstruction, the original component data of the test set is 

summed by column to reconstruct the original wind speed data. The predicted component data is also 

summed by column to reconstruct the predicted wind speed data. Finally, the predictive effect of each 

IMF component is shown in Figure 6. It can be seen that the predicted data has a high degree of 

coincidence with the original data, proving that this model effectively utilizes the multi-scale 

characteristics of EMD decomposition, enabling the model to extract data features at different time 

scales, thereby improving the accuracy and stability of wind speed forecasting. 
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Figure 6. Visualization of the Predictive Effect of IMF Components 

To further verify the model's validation effect and to propose the rationality of the model, the test 

results were compared with those of an LSTM model with the same parameter settings and the same 

number of neurons, as well as the EMD-optimized Random Forest and GBDT, which are two machine 

learning methods. The comparison results are shown in Figure 7. 

 

Figure 7. Visualization of Model Comparison Prediction Effects 
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From the first part of Figure 7, it can be observed that the prediction values of the Random Forest 

model, when compared with the original wind speed data, show that the model is capable of capturing 

some trends in the wind speed data. However, there are significant deviations at many data points, 

indicating noticeable prediction errors. The Mean Squared Error (MSE) is 1.002, and the Mean Absolute 

Error (MAE) is 0.7443, suggesting that the model has certain limitations in capturing the dynamic 

changes of the wind speed data. The second part of the figure presents a comparison between the 

prediction values of the GBDT model and the original wind speed data. Compared to the Random Forest 

model, the GBDT model shows some improvement in prediction for certain segments of the data, but 

overall, there is still a considerable prediction bias, especially in areas where the wind speed changes 

sharply. The MSE is 1.0122, and the MAE is 0.7393, which is slightly better than the Random Forest 

model, but the overall prediction effect is still not ideal. The third part of the figure shows a comparison 

between the prediction effect of the LSTM model and the original wind speed data. Compared to the 

first two models, the LSTM model has significantly improved in capturing the dynamic changes of the 

wind speed data, especially in areas where the wind speed is relatively stable, with the prediction results 

being close to the original data. The MSE of the LSTM model is 0.3307, and the MAE is 0.4165, 

indicating that it has a high degree of accuracy and reliability in the task of wind speed prediction. The 

last part of the chart shows the comparison between the prediction effect of the EMD-LSTM model and 

the original wind speed data. By introducing Empirical Mode Decomposition (EMD) for preprocessing 

of the original data, the EMD-LSTM model can more effectively extract the multi-scale features of the 

wind speed data, significantly improving the prediction accuracy. It can be seen that the model performs 

well in capturing both sharp and slow changes in wind speed, with the prediction results almost 

completely matching the original data. The MSE of the EMD-LSTM model is 0.2380, and the MAE is 

0.3454, which is significantly better than the other three models, proving the outstanding performance 

of the EMD-LSTM in the task of wind speed prediction. 

Table 2. Modeling performance comparison 

Model MAE MSE RMSE R2 

RandomForest 0.7443 1.0020 1.3903 0.7196 

GBDT 0.7393 1.0122 1.3607 0.8216 

LSTM 0.4165 0.3307 0.6737 0.7858 

EMD-LSTM 0.3454 0.2380 0.4878 0.8459 

By comparing the predictive effects of different models on the test set in Table 2, it can also be 

concluded that the EMD-LSTM model achieves the optimal prediction effect after completing the 

process of multi-scale decomposition combined with time series neural networks. 

In summary, the LSTM model combined with EMD significantly improves the prediction accuracy 

by performing multi-scale decomposition and feature extraction on wind speed data, showing the best 

predictive effect. Comparative analysis indicates that the EMD-LSTM model has a distinct advantage 

in wind speed prediction tasks for non-stationary time series data. 

5.  Conclusion 

This study proposes a method for wind speed prediction based on Empirical Mode Decomposition 

(EMD) and Long Short-Term Memory (LSTM) networks for the wind speed data of the F1 Grand Prix. 

By decomposing the wind speed data with EMD, the complex non-linear and non-stationary time series 

data is broken down into several Intrinsic Mode Functions (IMFs) with different time scales. 

Subsequently, the LSTM model is used to predict each IMF component, and the final prediction results 

are reconstructed to obtain the overall wind speed prediction. To verify the effectiveness of this method, 

this paper uses actual wind speed data from the F1 Grand Prix from 2018 to 2023 for experiments and 

compares it with traditional models such as Random Forest, GBDT, and a single LSTM model. 

The experimental results show that the wind speed prediction method based on EMD-LSTM is 

significantly superior to traditional methods in terms of prediction accuracy and stability. Specifically, 
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the EMD-LSTM model can better capture the non-linear and multi-time scale characteristics in complex 

wind speed data, thereby enhancing the accuracy of the prediction. This study provides a new idea and 

method for wind speed prediction in the F1 Grand Prix, which has important theoretical significance 

and application value. 

However, there are still some shortcomings in this study. First, although EMD-LSTM performed 

well on the experimental data, the generalization ability of the model needs further verification in 

practical applications. Second, this study only considered wind speed as a single variable, and future 

research could combine more meteorological variables, such as temperature, humidity, and air pressure, 

to further improve the performance of the prediction model. Finally, the real-time performance and 

computational efficiency of the model are also issues that need to be considered, especially in the actual 

competition environment, where it is necessary to ensure that the model can respond quickly and provide 

accurate prediction results. 

In conclusion, the wind speed prediction method based on EMD-LSTM provides an effective 

solution for the F1 Grand Prix, but it still needs further optimization and verification to better meet the 

needs of practical applications. 
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