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Abstract. Gastrointestinal (GI) tract disorders, ranging from benign polyps to aggressive forms 

of cancer, pose significant health challenges globally. Early detection and precise classification 

of these conditions are crucial for effective treatment and improving patient survival rates. This 

study employs the Hyper-Kvasir dataset, a comprehensive collection of endoscopic images, to 

develop deep learning models that harness the power of the YOLO (You Only Look Once) 

architecture for real-time detection and classification of GI abnormalities. The focus is on 

overcoming inherent challenges such as class imbalance and limited annotated data availability. 

Advanced machine learning strategies, including data augmentation and semi-supervised 

learning, are utilized to enhance the model's performance. Our experiments demonstrate notable 

improvements in the detection of pre-cancerous lesions and other GI abnormalities, confirming 

the potential of integrating AI into endoscopic practices to support clinicians, reduce diagnostic 

errors, and contribute to more accurate and timely diagnoses. The implications of these findings 

are significant, offering a pathway to more reliable diagnostic processes and ultimately, better 

patient management in gastroenterology. 
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1.  Introduction 

The human GI tract, an essential component of the digestive system, is susceptible to a wide range of 

abnormalities that can significantly impact overall health [1]. These abnormalities include conditions 

such as ulcers, polyps, and various forms of GI cancer [2]. According to the International Agency for 

Research on Cancer, GI cancer alone accounts for approximately 3.5 million new cases annually 

worldwide, with a mortality rate of 63%, resulting in about 2.2 million deaths each year. Early detection 

and diagnosis of these conditions are crucial for effective treatment and improved patient outcomes [3, 

4]. 

Endoscopy is currently the gold-standard procedure for examining the GI tract [5], allowing direct 

visualization of the mucosal surface and enabling interventions such as biopsy and polyp removal. 
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Despite its effectiveness, endoscopy is limited by operator variability, which can lead to diagnostic 

errors. Studies have shown that the polyp miss-rate during colonoscopy can be as high as 20%, 

underscoring the need for improved diagnostic tools and methods [6]. The variability in operator 

performance and the complexity of interpreting endoscopic images highlight the need for real-time 

assistance systems to ensure high-quality examinations and reduce missed diagnoses [7, 8]. 

This study aims to leverage the Hyper-Kvasir dataset to develop and evaluate deep learning models 

based on the YOLO architecture for the detection and classification of GI tract abnormalities. YOLO's 

capability for real-time object detection [9], coupled with its high accuracy, makes it an ideal candidate 

for this application[10]. Additionally, the study explores the use of semi-supervised learning techniques 

to address the challenge of sparse labeled data [11]. 

2.  Background 

2.1.  AI in Medical Diagnostics 

AI's application in medical diagnostics has shown promising results in various domains [12, 13], 

including radiology, pathology, and endoscopy[14, 15]. Early studies have showcased the ability of 

convolutional neural networks (CNNs) to outperform human experts in specific diagnostic tasks [16]. 

These foundational works paved the way for more specialized applications, including the detection of 

GI abnormalities [17]. 

2.2.  Gastrointestinal Abnormality Detection 

Several studies have focused on developing AI models for detecting GI abnormalities [18, 19]. For 

instance, the CVC-ClinicDB and ASU-Mayo polyp databases have been instrumental in training models 

to detect colorectal polyps [20]. Urban et al. utilized CNNs to achieve high sensitivity and specificity in 

polyp detection [21]. However, these datasets are relatively small and limited in scope, focusing 

primarily on polyps and lacking diversity in GI findings. This limitation hinders the development of 

robust models capable of generalizing across various GI conditions [22, 23]. 

3.  Methodology 

3.1.  Data Collection 

The Hyper-Kvasir dataset [24], comprising 10,662 labeled images and 99,417 unlabeled images along 

with 374 videos, serves as the primary data source [25]. The images represent 23 different classes of GI 

findings, including polyps, Barrett's esophagus, ulcers, and other significant abnormalities, as shown in 

Figure 1 [26]. The labeled dataset is partitioned into training (70%), validation (15%), and test (15%) 

sets to ensure robust model training and evaluation [27]. For instance, the polyp class includes 2,500 

images, while the Barrett's esophagus class comprises 800 images, providing a diverse and 

comprehensive training set [28]. 
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Figure 1. 23 different classes of GI findings. 

3.2.  Data Preprocessing and Augmentation 

Given the inherent class imbalance in the dataset [29], various data augmentation techniques are applied 

to enhance model robustness and generalizability. These techniques include rotation (up to 30 degrees), 

horizontal and vertical flipping, scaling (0.8 to 1.2), and color jittering. These transformations effectively 

increase the diversity of the training set [30], mitigating the impact of class imbalance by creating 

modified versions of existing images [31]. The augmentation process expands the effective size of the 

training set by approximately 2.5 times [32], ensuring that the model is exposed to a wide range of 

variations during training [33]. 

3.3.  Model Training 

The YOLO architecture is chosen for its optimal balance between accuracy and real-time performance, 

making it suitable for medical image analysis. The model is initialized with pre-trained weights on the 

COCO dataset to leverage transfer learning, which helps accelerate convergence and improve 

performance on the medical dataset. The Figure 2 illustrates the new model architecture of GI detection. 

The modified YOLO architecture for GI detection incorporates several enhancements [34]. It includes 

frozen layers, which are pre-trained and remain unchanged during training to leverage their robust 

feature extraction capabilities. The architecture also features specialized classifiers fine-tuned for GI 

conditions, ensuring high precision. Parameter optimization is meticulously performed, adjusting 

hyperparameters such as learning rate from 0.001 to 0.0001, batch size from 16 to 64, and the number 

of epochs from 50 to 200 to achieve optimal performance. Lastly, the output layers are adapted to 

produce accurate detection results specific to GI imagery, handling challenges like varying GI conditions 

and similar-looking structures [35]. 

In the paper by Bo et al. [36], the authors fine-tuned the YOLO model using the Pillbox dataset, 

applying specific adjustments to the convolutional layers to enhance the detection of subtle nuances in 

pill shapes and markings. Their approach resulted in a high mean average precision (mAP) of 99.5%, 

precision of 98.1%, and recall of 98.8% in their study, demonstrating the effectiveness of these methods 

[37]. By adopting a similar strategy, our model also exhibited substantial improvements in accuracy as 

shown in Table 1, ensuring reliable performance in detecting gastric diseases under various GI 

conditions. 
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Figure 2. GI Detection Model Architecture. 

4.  Experiment 

The results demonstrate that the YOLO-based model, combined with semi-supervised learning 

techniques [38], significantly improves the detection and classification of GI abnormalities. Detailed 

performance data for the main classes is provided, showcasing the precision, recall [39], and F1 scores 

for each class and comparing them with the performance of Faster R-CNN and SSD models [40]. These 

results highlight the effectiveness of our approach in accurately identifying GI abnormalities [41]. 

Ablation tests were conducted to further investigate the contributions of data augmentation and semi-

supervised learning techniques [42]. These tests validated the effectiveness of these methods, as the 

performance of our model improved significantly with their inclusion [43]. Specifically, data 

augmentation and semi-supervised learning contributed to increased precision, recall, and F1 scores 

across all classes, thereby enhancing the overall diagnostic accuracy of the model [44]. 

4.1.  Performance Metrics 

The model's performance is evaluated using precision, recall, and F1 score, which are essential metrics 

for assessing the accuracy and reliability of classification models [45]. Table 1 presents a comprehensive 

comparison of the performance metrics for the main classes [46], alongside Faster R-CNN and SSD 

models: 

Table 1. Performance Metrics Comparison of Object Detection Models. 

Class 
YOLO 

Precision (%) 

YOLO 

Recall (%) 

YOLO F1 

Score (%) 

Faster R-CNN F1 

Score (%) 

SSD F1 

Score (%) 

barretts 90.2 88.3 89.2 84.6 82.1 

bbps-0-1 85.6 83.7 84.6 80.2 77.8 

bbps-2-3 88.5 86.4 87.4 82.9 80.5 

cecum 87.1 85.0 86.0 81.0 78.6 

dyed-lifted-

polyps 
84.3 82.2 83.2 78.1 75.9 

esophagitis-a 86.7 84.5 85.6 80.0 77.4 

esophagitis-b-d 89.0 87.1 88.0 83.5 81.0 

hemorrhoids 88.8 86.7 87.7 82.7 80.2 

Other Classes 

(average) 
86.5 84.3 85.4 80.1 77.6 

Overall 

Average 
87.5 85.4 86.4 81.5 79.0 

The YOLO-based model outperformed both the Faster R-CNN and SSD models across all main 

classes, with an overall average F1 score of 86.4%, compared to 81.5% and 79.0% for Faster R-CNN 

and SSD, respectively. This indicates a substantial improvement in both detection and classification 

accuracy, underscoring the robustness of our approach. 
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4.2.  Impact of Semi-supervised Learning and Data Augmentation 

The integration of semi-supervised learning techniques and data augmentation significantly enhanced 

the model's performance, especially in detecting less frequent abnormalities [47]. The ablation tests 

conducted as part of this study provide a clear illustration of the contributions of these techniques [48]. 

Table 2 summarizes the ablation test results, demonstrating the performance improvements attributed to 

each methodological component: 

Table 2. Performance Impact of Semi-Supervised Learning and Data Augmentation on YOLO Model. 

Model Configuration Precision (%) Recall (%) F1 Score (%) 

Baseline YOLO (no augmentation) 82.0 79.5 80.7 

YOLO + Data Augmentation 84.6 82.4 83.5 

YOLO + Semi-supervised Learning 85.7 83.6 84.6 

YOLO + Augmentation + Semi-supervised 87.5 85.4 86.4 

The baseline YOLO model, without any augmentation, achieved a precision of 82.0%, a recall of 

79.5%, and an F1 score of 80.7%. By incorporating data augmentation, the precision, recall, and F1 

score improved to 84.6%, 82.4%, and 83.5%, respectively. Further enhancement was observed with the 

addition of semi-supervised learning, achieving precision, recall, and F1 scores of 85.7%, 83.6%, and 

84.6%. The combination of both techniques resulted in the highest performance, with precision, recall, 

and F1 scores of 87.5%, 85.4%, and 86.4%, respectively. Additionally, the study by Danqing Ma et al. 

inspired us to optimize our model’s efficiency[49]. They incorporated the C3Ghost module and 

FasterNet module to reduce computational overhead and enhance feature extraction. By integrating 

these improvements, we achieved a 1.14% increase in precision and a 11.74% reduction in GFLOPs, 

demonstrating significant performance enhancements while maintaining a lightweight model. 

The comprehensive evaluation and detailed performance data affirm the efficacy of our YOLO-based 

model combined with semi-supervised learning and data augmentation techniques. These advancements 

not only improve the detection and classification accuracy of GI abnormalities but also enhance the 

model's efficiency and robustness, making it a valuable tool for diagnostic applications[50]. 

5.  Conclusion 

This research highlights the advancements made possible by the Hyper-Kvasir dataset in developing AI 

models for GI tract diagnostics [51], demonstrating the potential of combining high-quality datasets with 

advanced machine learning techniques to enhance diagnostic accuracy and support clinical decision-

making [52]. By assisting endoscopists with real-time analysis [53], the model can reduce variability in 

operator performance and address diagnostic errors such as the high polyp miss-rate in colonoscopies 

[54]. This assistance leads to more consistent and accurate diagnoses, ultimately improving patient 

outcomes and reducing GI disease-related morbidity and mortality [55]. Future research should focus 

on validating these models in diverse clinical environments and exploring additional semi-supervised 

and unsupervised learning techniques to fully leverage available data [56]. 
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