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Abstract: This article presents Deep Reinforcement Learning (DRL), Transfer Learning (TL) 

and Automatic Machine Learning (AutoML) to create a smart robotic control system for 

advanced manufacturing tasks. The system increases performance via DRL real time decision, 

TL for cross-task knowledge flow, and AutoML for model design and hyperparameter tuning. 

We performed experiments with a 6-DoF robot arm that assembly and inspection tasks in 

static and static conditions. DRL decreased task completion times by 20% under controlled 

conditions and showed flexibility by maintaining competitive performance in fast-changing 

environments where standard systems simply couldn’t keep up. TL was used to cut training 

time by 60%, and AutoML increased efficiency. Task accuracy gains up to 98.4% for 

assembly and 95.7% for defect detection indicate that the system performs well under 

environmental variation. In this article, it illustrates how DRL, TL, and AutoML complement 

each other to create adaptive, efficient, and powerful industrial robotic systems.  

Keywords: Deep Reinforcement Learning, Transfer Learning, AutoML, Robotic Control 

Systems, Industrial Automation 

1. Introduction 

The exponential rise of robotics and artificial intelligence have led to increasingly intelligent 

machines that automate intricate tasks in dynamic environments. When it comes to manufacturing, 

where accuracy, flexibility and efficiency are essential, the traditional robots tend to fail due to their 

preprogrammed rules and ill-adapted to circumstances. These constraints present an enormous 

problem in environments that are subject to parts positioning and lighting and material properties, 

and which demand a smarter solution. DRL has also been a powerful mechanism to allow robots to 

learn optimal decision-making policies by interaction with their environment. The DRL-powered 

robots, in contrast to traditional systems, can adapt over time, exploiting all reward cues and feedback 

to become more efficient, which makes them especially ideal for dynamic and unpredictable 

manufacturing environments. However, DRL models require a lot of data and time to train as they 

move between tasks. This is where Transfer Learning (TL) enters the scene. TL helps reuse 

knowledge from one task to learn another, thus shortening the time and data spent on retraining, and 

making robotics systems flexible. Further to increase the efficiency, Automation Machine Learning 
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(AutoML) is implemented to speed up the optimisation. AutoML automatically picks model 

architectures and hyperparameters, removing the need for human effort and keeping robotic systems 

in top form. The combination of DRL, TL, and AutoML provides a strong platform for manufacturing 

to overcome the problems of traditional robots. We present an attempt to construct and test such a 

system with a robot arm capable of assembly and inspection [1]. The robot’s performance is evaluated 

under static and stable conditions, and the most important parameters are performed, like task 

completion time, accuracy, and adaptability. By combining DRL for decision-making, TL for task 

passing, and AutoML for optimizing the system, the new system offers significant efficiency, 

accuracy, and flexibility, enabling smart robotics in the industry. 

2. Literature Review 

2.1. Deep Reinforcement Learning in Robotics 

DRL is one such tool for teaching robots to learn decision policies under dynamic circumstances. In 

DRL, an agent (robot) communicates with its surroundings and learns to do best actions by 

maximizing a reward signal. Early robotic use of DRL involved more simple things like navigation 

and object manipulation, where making decisions is straightforward. As manufacturing became 

increasingly difficult, scientists have put DRL to work on strategic decisions like assembly, packaging 

and inspection. Figure 1: Basic architecture of a deep Q-network (DQN), one of the popular DRL 

protocols. In this model, input is visual information — camera picture, simulation scene — that gets 

fed into a neural network and it calculates Q-values for each action possible. It’s the robot that chooses 

actions with the best Q-values, and it becomes a master in time. This way, robots are not only capable 

of short-term feedback operations, but also of planning and control for the long run. This has proved 

particularly useful for training robotic arms to perform precision assembly where many variables such 

as alignment, force and velocity of the object have to be taken into account by the system [2]. This 

can be seen in Figure 1, which shows the pipeline of image data through the network and decision 

loop afterwards. It is because of this feature that DRL can become a key enabler for intelligent and 

autonomous robot control in dynamic and chaotic environments.  

 

Figure 1: Deep Q-Network Framework for Robotic Decision-Making(Source:anyscale.com) 

2.2. Transfer Learning for Robotic Task Adaptation.  

Transfer Learning (TL) helps solve the great problem of limited training data in robots. For many 

robotic use cases, especially in manufacturing, getting enough labeled data for all possible 

applications is unrealistic based on complexity and expense. TL lets the models that were developed 

for one task be used for another but related task, without huge retraining. In robotic control terms, 

that would be where information obtained on one manufacturing line or domain can be transferred to 
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another so that robots can learn and respond quickly and effectively to new environments without any 

additional information needed [3]. This is how robotic systems have been able to work with 

heterogeneous and dynamic manufacturing environments while still being highly accurate and 

efficient. Robots using TL can be trained to perform new actions or learn to adapt to the changes in 

their environment without having to start from scratch, thus saving time, energy and computation.  

2.3. AutoML Optimization of Robotic Control System 

AutoML is automation of machine learning tools and algorithms for choosing, training and 

optimizing them. AutoML can auto-correct hyperparameters, algorithm selection, and optimal model 

architecture design for robotic control systems without much human know-how. This automation lets 

machine learning models be applied in a fast-changing environment where quick changes are required, 

like in manufacturing. Neural architecture search, automated hyperparameter tuning etc. were 

employed to increase the performance and efficiencies of robotic control systems. With AutoML, 

robots can perform better without as much manual effort and modern control mechanisms are easier 

and safer to use for high-throughput industrial operations. This feature is particularly useful when it 

comes to being flexible and maximizing performance when situations call for real-time modifications 

and accurate execution [4].  

3. Experimental Methodology   

3.1. System Design and Architecture 

The experimental design is built around a robotic arm with 6-DoF articulated articulation and sensors, 

including cameras, pressure sensors and force-torque sensors. The robot will handle more 

sophisticated manufacturing functions, such as assembly and inspection of parts, which is used in 

factories. The control module utilises Deep Reinforcement Learning (DRL) for real-time decision 

making, enabling the robot to adapt to its surroundings. In order to be flexible across tasks, Transfer 

Learning (TL) is used to transfer knowledge from task to task [5]. The control system is also 

augmented with AutoML tools to automatically choose the hyperparameters and architectures, further 

automating the process and improving performance and accuracy. With this design, the robot is able 

to speed up the execution time of tasks while retaining high accuracy, as demonstrated in subsequent 

tests.  

3.2. Task Configuration and Experiments  

There were two main jobs for the robot arm: assembling and inspecting. The assembly job involved 

picking components off a conveyor belt, aligning them properly, and turning them into a product. For 

inspection, the robot relied on vision sensors to see flaws in the assembled products. They performed 

these operations in two environments, a static environment without external disturbance, and a 

simulated environment with varying part positions, illumination and material properties. The robot 

had been trained with DRL algorithms, such as Deep Q-Networks (DQN) and PPO to optimize the 

task. The Transfer Learning was used to translate the model trained in the static environment into the 

dynamic environment, thus shortening the training time on new situations. Table 1 shows 

experimental task design, and conditions and problems in each environment. The table shows the 

difference of conditions for the static and dynamic environments [6]. For example, the training in the 

active environment was reduced to 6 hours with Transfer Learning compared to 15 hours in the 

controlled environment. This reflects the efficiency of the new approach to adjusting to new 

conditions while keeping performance.  
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Table 1: Experimental Task Setup and Environmental Conditions 

Task Controlled Environment Dynamic Environment 

Assembly Fixed part positions, stable lighting 
Randomized part positions, variable 

lighting 

Inspection 
Consistent defect patterns, static 

setup 
Irregular defect patterns, moving parts 

Training 

Time 
15 hours 6 hours (using Transfer Learning) 

3.3. Evaluation Metrics   

The robot was scored on three key parameters: time to finish task, task accuracy, and system 

flexibility. Task completion time quantified the rate of the robot completing its work, with a focus on 

minimising environmental delays. Task accuracy concerned the accuracy of actions – such as 

correctly positioning components when assembling, or detecting faults in an inspection. System 

adaptability was how quickly the robot learnt new tasks or adapted to new environments with minimal 

training. These indicated that the robot had an average completion time of 4.2 minutes in the 

controlled and 5.1 minutes in the dynamic condition, respectively, with an accuracy of 98.4% and 

95.7%. The significant reduction in training time and robust accuracy results demonstrate the efficacy 

of the combined DRL, TL, and AutoML framework. These metrics are detailed further in the results 

[7]. 

4. Experimental Results   

4.1. Task Completion Time   

In the lab environment, the robot had an average task completion time of 4.2 minutes per assembly 

task, which was 20% faster than standard pre-programmed robots which took an average of 5.3 

minutes. Despite the chaotic conditions, which meant that the part movement and lighting conditions 

varied considerably, the DRL-based control system proved highly flexible, slashing the task time to 

5.1 minutes. In comparison, legacy systems were extremely inefficient, average task times were 7.2 

minutes. The time of task completion of DRL-driven system and other systems is plotted in Table 2 

for controlled and uncontrolled situations. The findings are very clear, indicating the DRL system’s 

capacity to handle dynamic loads effectively, yet still stay competitive in simulated environments. 

The following table illustrates how the DRL-based system was always faster than traditional 

approaches and it was quicker to complete tasks, regardless of task type or environment [8]. This 

enhancement was greater in the moving environment where the DRL system adapted well to external 

shock than other systems.  

Table 2: Task Completion Time Comparison (in minutes) 

Task 

Type 

Controlled 

Environment 

(DRL) 

Controlled 

Environment 

(Traditional) 

Dynamic 

Environment 

(DRL) 

Dynamic 

Environment 

(Traditional) 

Assembly 4.2 5.3 5.1 7.2 

Inspection 3.8 4.9 4.5 6.8 
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4.2. Task Accuracy   

Task performance accuracy was a second important rating scale. When applied to assembly, DRL 

performed an align and assemble task at 98.4% accurate level while traditional systems were 92.5 

percent accurate. So too for the inspection task, the DRL robot has 95.7% defect detection rate as 

compared to the 85.3% of standard systems. These improvements arise because the DRL agent is able 

to learn and optimise its actions in real-time, from sensory input, to be more precise and repeatable. 

Table 3 shows the relative task precision of the DRL-based and traditional systems in various 

environments and task classes [9]. The accuracy of the DRL system in both scenarios was excellent, 

with less degradation of performance compared to the older system when switching to dynamic mode. 

The results indicate the utility of DRL for precision in even challenging environments [10].  

Table 3: Task Accuracy Comparison (%) 

Task 

Type 

Controlled 

Environment 

(DRL) 

Controlled 

Environment 

(Traditional) 

Dynamic 

Environment 

(DRL) 

Dynamic 

Environment 

(Traditional) 

Assembly 98.4 92.5 96.2 89.7 

Inspection 97.1 89.4 95.7 85.3 

4.3. Adaptability and Transfer Learning   

Adaptability was measured using transfer learning, and the transfer learning helped reduce the amount 

of effort required to retrain when changing from the fixed to the dynamic state. The robot was trained 

in the simulator, then moved into the live world with only 10% of the extra training information 

required by conventional systems. That resulted in 60% decrease in retraining time (as compared to 

the average of 15 hours for traditional training, and only 6 hours for transfer learning). The robot was 

also able to compensate for differences in part location and lighting to ensure the same task 

performance in all locations [11]. These results support the efficacy of transfer learning in robotic 

control systems – cutting down on the amount of time and effort needed to learn new scenarios while 

retaining high performance. 

5. Conclusion 

This paper offers an integrated solution for optimising robot control systems in complex 

manufacturing operations utilizing synergy of Deep Reinforcement Learning (DRL), Transfer 

Learning (TL) and Automated Machine Learning (AutoML). Through the application of DRL, the 

AI-powered system showed the capacity to take decisions in real time and respond to environmental 

variability much more successfully than the classical systems under both controlled and uncontrolled 

conditions. This demonstrated a 20 per cent decrease in time required to finish the task under 

predefined conditions and notably better performance under extreme conditions, when standard 

systems failed. The system too had high accuracy – assembly was 98.4% accurate, and inspection 

was 95.7% accurate, which confirms the precision and uniformity of the system. Transfer Learning 

was integral to overcoming the problem of mass retraining. Reusing learned information from 

controlled scenes allowed the robot to learn about changeable scenes with only 10% more training 

data and 60% less retraining time. That’s why TL can be so effective in helping robots quickly learn 

new tasks or environments, while maintaining efficiency. AutoML also helped to automate model 

architecture and hyperparameter optimization, which would avoid expert involvement and ensure that 

the system was always at full efficiency. All these results highlight the epochal promise of using DRL, 

TL and AutoML to develop robotic control systems. This new system can enable intelligent robots to 
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operate in more challenging and dynamic manufacturing conditions with greater flexibility, accuracy 

and efficiency. This technology not only boosts the performance but also speed up and cost down 

development, a highly scalable solution for industrial automation. Its robustness to a variety of tasks 

and conditions positions this architecture as a first step toward the realisation of the potential of 

intelligent robotics in Industry 4.0. The future research will involve extending the system to 

multirobot collaboration and coordination, in order to further improve manufacturing production 

workflows [12]. Also, testing it for different and more challenging scenarios, like fault recovery in 

real time, predictive maintenance, etc, will improve its pragmatism and usability. Intelligent learning 

systems such as the one we present here are going to become increasingly essential for increasing 

automation, efficiency and flexibility as the manufacturing landscape becomes ever more 

sophisticated. 
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