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Abstract: The brachistochrone problem is a classic optimization problem that aims to find the 

fastest descent path for an object from one point to another under the action of gravity, which 

has wide applications in physics, mathematics, and engineering. It has been studied through 

the variational method and the Euler-Lagrangian dynamic simulation problem, but there are 

still greater challenges in path optimization in complex media and real-time optimization in 

dynamic systems. And the paper explores the fundamental principles of the brachistochrone 

problem, emphasizing its physical background and the use of variational and parameterization 

methods to streamline the conventional solution. Besides, innovative approaches  are 

presented to address particle motion in inhomogeneous media. The practical application of 

this problem in engineering is studied and discussed, including the metrology process in 

heterogeneous media, the progress of the signal numerical method combined with the 

optimization algorithm, and the potential in overcoming the limitations of the traditional 

analytical method is demonstrated. Thus, the results show that future research should pay 

more attention to solutions in complex physical environments and engineering applications, 

and boost the continuous development and application of related technologies. 
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1. Introduction 

The brachistochrone problem, a classic optimization problem, originates from the exploration of the 

shortest path in time for an object to fall freely from one point to another under the effect of gravity. 

This problem holds significant importance in physics and has been widely applied in fields such as 

mathematics and engineering [1]. Recent studies have explored the brachistochrone problem using 

tools like variational methods and Euler-Lagrange equations, especially in various physical contexts. 

However, gaps remain in optimizing the fastest path in complex media and real-time optimization in 

dynamic systems [2]. This paper explores the basic principles of the brachistochrone problem and its 

practical applications, especially in engineering. In addition, it simplifies traditional answers to the 

problem by examining variational and parametric methods, demonstrating how these approaches can 

optimize path design because of their ability to optimize path design. The paper also examines how 

brachistochrone theory applies to different media, addressing optimization issues encountered in 

engineering. Therefore, this study aims to investigate how to construct the most efficient path for 

descent by using this theory and to simplify the process of solving equations by utilizing parametric 
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techniques. Through the presentation of these methods, it may provide valuable insights for future 

dynamic optimization challenges. 

2. The Basic Principle and Solution Methods of the Brachistochrone Problem 

2.1. Problem Definition and Physical Background 

The brachistochrone problem concerns determining a curve under the influence of gravity along 

which a particle travels from an initial point 𝐴(0,0) to point 𝐵(𝑥𝑓, 𝑦𝑓), as shown in Figure 1. Here, 

points A and B are not on the same horizontal plane, and and the curve connecting these two points 

is the one to be determined. In the context of physics, the problem assumes that the particle starts at 

point A with an initial velocity of zero and moves freely along the curve under the influence of gravity. 

Notably, this problem depends not only on the geometric shape of the curve but also on the effects of 

gravitational acceleration. In this context, minimizing the total duration of descent, the major 

optimization variable, is the primary goal. Theoretically, the total time can be computed by integrating 

the curve’s arc length with respect to the particle’s velocity. However, achieving time minimization 

requires constructing an appropriate optimization model. Specifically, this problem is typically 

addressed using the calculus of variations to identify the curve that satisfies the optimality conditions 

[3]. 

 

Figure 1: Differential Diagram of the Brachistochrone Path 

2.2. Objective Function and Variational Method 

To solve the brachistochrone problem, the first step is to define the objective function. The velocity 

v of the falling object is determined by the relationship between gravitational acceleration g and the 

vertical position y [4]. If the velocity of the object at position y is given by 𝑣 = √2𝑔𝑦, then the time 

element 𝑑𝑡 can be expressed in terms of the arc length 𝑑𝑠 and the velocity v as: 

 𝑑𝑡 =
𝑑𝑠

𝑣
=

𝑑𝑠

√2𝑔𝑦
 (1) 

In this case, the total time t is the integral of the time required to travel along the path from point 

A to point B. The goal is to minimize this total time. To achieve this, the variational method can be 

applied, solving the Euler-Lagrange equation to obtain the path that minimizes the time. The Euler-

Lagrange equation is a commonly used tool for solving optimization problems, and in this problem, 

it helps derive the specific expression for the Brachistochrone. It is important to note that the objective 

function is dependent on the gravitational acceleration g as well as the slope of the route, and the 

Euler-Lagrange equation indicates the relationship that exists between these two parameters. 

2.3. Model Simplification through Parameterization 

The application of the Euler-Lagrange equation theoretically leads to the derivation of the equation 

for the brachistocentric curve. However, the equation involves complex second-order derivatives, 
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which makes the process of finding a solution extremely challenging. Thus, to simplify the solution, 

it is common to introduce an appropriate parameterization to make the problem more intuitive. In this 

case, a parameter a is introduced (e.g., let 𝑦′ = 𝑐𝑜𝑡 𝑎 ), hence transforming the equation and 

simplifying the solution process. This technique not only simplifies the computation but also makes 

the solution more clearly defined. Through this parameterization, a clear expression for the path can 

be obtained and further solved using standard integration methods. The parameterization approach is 

crucial in practical problem-solving as it effectively reduces the complexity of the equations and 

transforms the problem into a more intuitive form, making both analysis and computation more 

straightforward [5]. 

2.4. Final Results and Physical Significance 

The parametric equations of the Brachistochrone issue can be obtained by applying the procedures 

described above. One way to describe the end product is as: 

 {
𝑥 = 𝐶1(2𝑎 − sin 2𝑎) + 𝐶2

𝑦 =
𝐶1

2𝑔
(1 − cos 2𝑎)          

 (2) 

where constants 𝐶1 and 𝐶2are determined by the boundary conditions. These equations allow us to 

clearly describe the specific form of the shortest time path from point A to point B. 

The solution to the Brachistochrone problem exposes the natural trajectory of an object when it is 

subjected to the impact of gravity. This is the reason why this conclusion is significant from a physical 

standpoint. Along this curve, the object can fall from the starting point to the endpoint in the shortest 

time. This not only provides a classic solution to an optimization problem in physics but also offers 

valuable insight into the application of variational methods [5]. 

3. Innovative Approaches and Numerical Solutions 

The problem of particle motion in an inhomogeneous medium is broken down into two distinct 

approaches: the analogy method and the variational method. Both of these approaches are presented 

here. It is possible to discover the motion laws of particles in a variety of physical situations by doing 

a quick analysis of these methods. Furthermore, useful mathematical models and solutions for 

difficult problems are presented. 

3.1. Analogy Method 

The Brachistochrone problem can be solved using the analogy approach, which gives a physical 

perception of the particle’s trajectory. And a particle’s journey in a non-uniform media can be 

determined using Snell’s law by drawing a comparison to the path of light in an inhomogeneous 

medium. However, when the problem has complicated limitations, analogy approach theoretical 

analysis typically fails to produce precise numerical answers. Thus, combining numerical methods to 

solve the Brachistochrone problem under complex constraints becomes crucial. For instance, 

traditional analytical methods often fail to solve problems with inhomogeneous gravitational fields, 

uneven boundaries, or other complex physical situations. In such cases, numerical methods can 

effectively handle these complex constraints, providing specific path calculations and optimizations. 

The optimal particle path is obtained by converting complex restrictions into mathematical models 

using numerical solutions. And common numerical approaches include variational methods with 

numerical optimization, finite difference methods, and Monte Carlo simulations. These methods can 

not only handle complex physical conditions but  perform precise optimizations in computations to 

obtain the shortest time path that satisfies the constraints. Combining these numerical methods with 
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the analogy method improves knowledge of the particle’s route in non-uniform medium and solves 

the Brachistochrone problem under complex limitations in actual applications. 

3.2. Variational Method 

The variational method describes particle motion in inhomogeneous media based on the law of energy 

conservation. When assuming that the particle moves in a gravitational field with no other non-

conservative forces acting, the law of energy conservation provides a strong constraint on the system. 

The total energy of the particle comprises potential and kinetic energy, with the initial total energy 

being solely potential when the particle begins from rest. As the particle traverses the medium, its 

kinetic energy is observed to increase. The particle’s velocity expression can be derived through the 

principle of energy conservation. Due to medium resistance, particle velocity fluctuates in 

inhomogeneous media. The resistance term is added to the dynamical equation if the resistance is 

proportional to velocity and has a coefficient of k. The conservation of energy and the drag yield the 

particle’s motion equation. First, the law of conservation of energy is considered. At height 𝑦0, the 

particle is at rest, and the total energy is 𝑚𝑔𝑦0. At height y, the kinetic energy 𝐾 =
1

2
𝑚𝑣2, and the 

velocity expression can be derived from energy conservation: 

 v = √2g(𝑦0 − 𝑦) (3) 

Resistance changes velocity v in an inhomogeneous material. Dynamic equation for particle if 

resistance is proportional to velocity and k is a resistance coefficient: 

 𝑚𝑎 = 𝑚𝑔 − 𝑘𝑣 (4) 

Combining with the kinematic formula 𝑣 = 𝑣(𝑦) (where velocity is a function of height y), this 

equation transforms into the differential equation: 

 (
𝑚𝑣

𝑚𝑔
− 𝑘𝑣)𝑑𝑣 = −𝑑𝑦 (5) 

By integrating this differential equation, the relationship between velocity and position can be 

derived. Let 𝑝 = 𝑚𝑔 − 𝑘𝑣, then the equation becomes: 

 −
𝑘

𝑚

𝑚𝑔

𝑝
𝑑𝑝 = 𝑑𝑦 (6) 

After integration, the particle’s motion expression is obtained: 

 
𝑔

𝑘
ln|𝑝| +

𝑚𝑔

𝑘
ln|𝑝| = 𝑦 + 𝐶 (7) 

where C is the integration constant. Substituting 𝑝 = 𝑚𝑔 − 𝑘𝑣  into the equation, the velocity 

expression for the particle in the inhomogeneous medium is obtained. 

The variational method provides a theoretical framework for the Brachistochrone problem, but it 

needs to be solved with the help of numerical methods under complex constraints (such as irregular 

boundaries and inhomogeneous media). To compute the shortest path, the variational problem can be 

discretized into a numerical equation using finite difference, finite element, and other methods. It can 

handle inhomogeneous gravitational fields and variable resistance with numerical optimization 

(gradient descent, Newton's method) and determine the optimal path through iterative optimization. 

Combining the variational and numerical methods overcomes the analytical method's limitations and 

solves complex constraint problems. 
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4. Practical Applications of the Brachistochrone Problem 

4.1. The Deceleration Problems in Heterogeneous Media and Engineering Applications 

The Brachistochrone problem optimizes heterogeneous media deceleration processes, thus making it 

useful in engineering. In various engineering practices, deceleration problems in heterogeneous media 

often require finding the optimal path between different materials and media. The theory of the fastest 

descent provides the theoretical foundation for this process. It is feasible to efficiently slow down 

energy transfer or speed propagation through optimization design, which lessens the influence on the 

environment. For example, in open-pit mining, optimal blasting technology may effectively regulate 

blasting vibrations and mitigate environmental damage by accurate design of blasting timing and 

explosive quantity. The use of inter-hole non-electric detonator millisecond delay blasting network 

design can significantly reduce the cumulative vibration effect, thereby protecting the surrounding 

buildings and facilities [6]. In addition, by optimizing the design and application of flow mitigation 

structures, effective control of high velocity flood discharge can be achieved, ensuring project safety 

and environmental friendliness. This optimization approach has shown practicality and reliability in 

a variety of engineering scenarios, providing a systematic solution to the problem of deceleration in 

complex media. 

4.2. The Brachistochrone Problem in Non-Uniform Sampling and Signal Reconstruction 

The brachistocentre problem provides theoretical support for optimizing data sampling and signal 

reconstruction, especially in the fields of non-processing signals, non-uniform sampling and signal 

reconstruction. In signal processing, uniform sampling requires optimizing the sampling rate and data 

volume while ensuring signal quality. In this process, the brachistocentre theory provides a systematic 

optimization framework. By use of reconstruction techniques and sampling point design, it is feasible 

to reduce waveform data while preserving signal reconstruction integrity. In picture and video signal 

processing, non-uniform deceleration sampling techniques can markedly enhance storage and 

transmission efficiency, particularly in extensive data processing contexts. And the optimized 

sampling method based on the brachistocentre theory realizes efficient sampling and reconstruction 

of image signals via block partitioning and adaptive sampling frequency selection [7]. This method 

can not only significantly reduce the amount of data, but improve sampling efficiency, while ensuring 

that the reconstruction quality meets actual needs. It is widely used in the rapid processing of static 

images and video signals. In addition, there is a lot of room for growth and application because 

comparable optimization methods have already been expanded and used to other rapid storage and 

data compression issues. Incorporating the brachistocentre theory into data processing offers a fresh 

perspective on optimizing non-uniform sampling and signal reconstruction. 

4.3. The Deceleration and Compression Optimization Techniques in Transportation and 

Communication Systems 

The brachistocentre problem-derived optimization methods in transportation and communication 

systems can substantially boost system efficiency, reduce resource waste, and optimize the design 

process. These systems usually deal with complex dynamic problems such as vehicle air resistance, 

vehicle deceleration design, and antenna compression optimization [8]. The brachistocentre theory 

helps determine the best deceleration or compression path for these systems. This not only enhances 

system performance through rational design, but also reduces energy consumption and improves 

energy efficiency. For instance, the aerodynamic design of high-speed trains can be enhanced by 

optimizing the windscreen design and incorporating bio-inspired channels to effectively reduce air 

resistance, thus enhancing transportation efficiency. In communication systems, improving antenna 
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designs reduces size and improves performance. In high-speed train design, numerical simulations 

based on the SST k-ω model have shown that optimizing the windscreen and aerodynamic shape can 

reduce air resistance by approximately 8.17%, effectively boosting energy utilization efficiency [9]. 

The non-uniform compressed antenna design controls medium distribution and compresses the 

antenna structure to improve gain and beamforming, providing novel antenna design ideas. For 

example, to reduce greenhouse gas emissions from ships, research on speed optimization and urban 

planning has also made significant progress. The transportation sector encounters analogous issues 

with speed optimization and structural design. Research shows that speed optimization, shown by 

gasoline organization tax, and structural adjustment, such as enforced speed limits, possess distinct 

advantages and disadvantages. The International Maritime Organization (IMO) is discussing speed 

optimization and emission reduction as potential short-term measures to reduce greenhouse gas 

emissions from ships [10]. 

5. Conclusion 

This paper presents a thorough examination of unique research methods and accomplishments related 

to the brachistochrone problem, including solutions in non-uniform media and under various 

limitations, as well as their applications. Despite standard analytical solutions offering theoretical 

support for the brachistochrone problem, resolving it in intricate contexts and under various 

restrictions continues to pose a considerable difficulty. In recent years, numerical methods based on 

optimization algorithms have made significant progress, particularly in dynamic environments, non-

uniform media, and multi-objective optimization, demonstrating great potential for application. In 

engineering practice, the brachistochrone problem has been widely applied in various fields such as 

open-pit mining, signal processing, and traffic systems, providing effective optimization solutions. 

Future research should focus more on solution methods in complex physical environments and 

engineering applications, further improving the efficiency and accuracy of algorithms as well as 

promoting the development of related technologies. 
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