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Abstract. Aiming at the problem of snowflake occlusion and haze veil effect in the collected 

images by the vehicle-mounted camera for the influence of snowflakes and haze. The decoupling 

and double-supervised weather elimination network was proposed based on the sequential 

reconstruction of high-frequency and low-frequency components in background images. 

Decoupling the desnow and dehaze assignment to two sub-networks sequentially, the network 

filters the high-frequency feature vectors in the image background region by the eigenvalues of 

the convolution kernel in the spatial domain, and then the second subnetwork performs image 

coloring and edge fine-tuning tasks based on edge context features obtained by generative 

adversarial networks. The algorithm has tested on the SRRS-6000 dataset, which verified the 

effectiveness in the significant performance on noise removal. The Peak Signal to Noise Ratio 

(PSNR) and Structural Similarity (SSIM) has reached 33.29dB/0.94, 32.8dB/0.9316, 

30.13dB/0.93, 25.88dB/0.82 on Snow100K-S､Snow100K-M､Snow100K-L､I&O-Haze dataset, 

respectively. Experiments have shown that the decoupling and double supervised method have 

efficient snowflake and haze removal performance in image denoising tasks, and the adaptability 

of unmanned assistance systems under complex weather conditions has been enhanced. 

Keywords: Snow Removal, Generative, Generative adversarial Network, Sequential Network. 

1.  Introduction 

Outdoor monitoring systems often affect extreme weather interference and cause weather noise to 

remain in the video images, such as outdoor cameras and traffic monitoring systems. We have proposed 

many deep convolutional neural network models to solve the issue by removing weather noise from a 

single image  [1-3]. These methods have verified that the combination of weather noise image and label 

background can effectively restore image background information. Although this type of algorithm 

performs well in a single type of weather, the network’s generalization ability was still not ideal for the 

weather characteristics differenced from the real weather  [4]. For the complexity of the actual scene, it 

is difficult to use a single type of weather model to restore the image background, such as haze often 

accompanies snow weather, and rain fog often accompanies rainfall. Moreover, there are many 

composite weather characteristics under real weather conditions, and the result is that the model trained 

under a single type of weather conditions is difficult to adapt in many complex weather scenarios. 

Therefore, taking the joint elimination of snowflakes and haze noise as an example, we attempt to repair 
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the image background information from the perspective of separating edge generation from background 

restoration, rather than using the physical weather imaging model. 

At present, many scholars have done a lot of research on single image enhancement to eliminate 

different types of weather noise respectively. However, it is difficult to construct a unified model for 

application for differences in weather’s transparency, size, and distribution of different weather 

characteristics. In the scene where snow and haze coexist, it is difficult to adapt to a single type of 

physical snowfall or haze imaging model due to background occlusion and veil effect. In this paper, the 

high-frequency edge context feature and low-frequency color restoration of the image are separated, and 

the image background information is gradually restored from the perspective of the spectral and 

frequency domain and model decoupling. The weather image collected is composed of edge context 

information and image chromatic information, which corresponds to high-frequency components with 

rich details, and low-frequency regions in the spectrum domain. It’s different from the two components 

of learning in that the components of the high-frequency spectrum fluctuate differently from those of 

the low-frequency spectrum. However, the weather noise elimination method can effectively deal with 

complex weather conditions from the perspective of gradual reconstruction. The contributions of this 

article are as follows: (1) A new solution is proposed for the background recovery of weather conditions 

of snowflake and haze mixed. (2) The weather feature elimination of the proposed model has achieved 

the same repairing performance as that of the State Of The Art (SOTA) model on the public and mixed 

dataset.  

The remaining parts of this article are organized as follows. This paper briefly introduced the current 

work and its shortcomings in snow and haze elimination in Section 2. Section 3 described the proposed 

Snow and Haze Eliminate Network (SHEN) model in network structure and data flow. Section 4 

provided the experimental result and analysis. Section 5 described the discussion and results for the 

network training and evaluation, and demonstrates its performance for multiple weather noises. In the 

end, Section 6 has given the extended application and conclusion of SHEN. 

2.  Related work  

Deep learning has achieved good performance in various image processing problems, i.e., Dehaze, 

Derain, Desnow, and Style Transfer. Li  [1]et al. proposed a novel single image dehazing framework 

DehazeFlow based on conditional regularization flow for a single image dehazing task. This method 

enables the model to sample multiple defogging results by learning the conditional distribution of haze 

images. In addition, the framework enhances the expression ability of a single network structure layer 

by using the attention-based coupling layer, converts natural images into potential spaces, and fuses 

them into features of pairs of data. N. Bharath Raj  [2] et al. proposed an improved condition generation 

confrontation network to remove haze directly from the image without using depth information. The 

model uses the Tiramisu model as the generator network and uses a patch-based identifier to reduce 

artifacts in the output. At the same time, this model uses a mixed weighted loss function to train the 

model and achieves an excellent image defogging effect. Compared with the haze phenomenon, 

snowflake particles are difficult to remove snow due to their transparency, diversity of size, and shielding 

effect. Wei-Ting Chen  [3] et. al remodeled the snowflake imaging model and proposed a new joint size 

and transparent perception snowflake elimination network JSTASR. It realizes multi-scale 

accommodation of snowflakes and realizes transparency perception of snowflakes. It has made 

remarkable improvements in eliminating snowflakes. Yun-Fu Liu  [4] et. al. designed a multi-level 

network DesnowNet to deal with the removal of translucent and opaque snow particles. The model also 

distinguishes the transmittance and chromatic aberration properties of snowflake particles to accurately 

estimate the restored background. In addition, DesnowNet restores details covered by opaque snow by 

estimating snowflake complements for snowless images separately. This model realizes the snowflake 

elimination task with multi-scale and different transparency. These researches have shown excellent 

performance for snow and haze elimination, but few types of research adapt to snow and haze mixed 

scenes. There are still two challenges existence in dealing with the joint elimination of snowflakes and 

haze, namely how to adapt to the weather characteristics of different data distribution and the lacking 
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prior information in snowflake occlusion areas. This paper introduced two consecutive generative 

adversarial networks to reconstruct the image background. The first network is used to infer the edge 

context information of the occlusion area through the existing image background edge, and the second 

is used for local correction and color inpainting through the generative results of the first network. The 

literature’s contributions are as follows: (1) Dual-GAN framework has been proposed to eliminate snow 

particles and haze and reconstruct clear image context from the perspective that the components of 

different frequencies bandwidths are gradually repaired. (2) The model has achieved good performance 

in snow and haze removal reached the SOTA model. (3) The model can be effectively extended to other 

types of composite weather, such as rain and fog weather. 

3.  Weather noise elimination network 

The main architecture of the proposed Snow and Haze Elimination Network (SHEN) has shown in figure 

1. The network structure consists of two subnets responsible for different functions: (1) Background 

edge context reconstruction stage: the first generative adversarial network generated the edge context 

information from the weather image and its Canny edge feature, namely Edge Context Network (ECN). 

Then the weather image and the generated edge context feature are concatenated in channel dimension 

to fed into the second generative adversarial network, namely Color Repairing Network (CRN). (2) 

Color information repairing and fine-tuning stage: the concatenated feature was fed into the CRN for 

color inpainting and local context adjustment. More detail for SHEN was described in the following 

subsections 3.1 and 3.2. 

 

Figure 1. Proposed SHEN model. All noise images (Stream X) and Non-noise images (stream Y) 

from the selected training databases. The ECN network structure consists of G1 and D1. The CRN 

network structure consists of G2 and D2. 

3.1.  Decoupled network 

The generator structure of SHEN has shown in figure 2, which is mainly composed of generator G1 of 

ECN and generator G2 of CRN. The network structure parameters of generators have been illustrated in 

figure 2. The ECN has a similar network structure to CRN. It is worth noting that the convolution layer 

structure is widely used to normalize convolution kernel parameters by spectral feature normalization 
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in ECN network structure. The spectral normalization to make ECN converge faster than CRN and to 

ensure that ECN meets the Lipschitz constraints. The ECN are used to learn high-frequency context 

information in images through the guidance of the Canny edge feature of noise image. The edge context 

feature, donate as 𝑋𝑒𝑑𝑔𝑒 , is extracted from the input weather image. Then, the CRN network 

reconstructed the image background information, which donates𝑋𝑐𝑜𝑙𝑜𝑟, according to the obtained edge 
context information. In addition to the generator part, the SHEN model also included the discriminators 

and VGG-16 pre-training network to extract the semantic feature of the image to provide feature 

matching loss. The convolution layer of the discriminator and VGG-16 is mainly used to extract 

convolution features from the generated background and label the background, providing feedback 

gradient loss for the generator.  

 

Figure 2. Proposed SHEN model. All noise image (Stream X) and Non-noise image (stream Y) X-

ray images from the selected databases. Dx and Dy data flow are translated by the Dual GAN to deal 

with the limitation problems. 

Decoupling background reconstruction tasks to the subtasks of reconstructing background edge 

context and color inpainting stepwise, we use sequential GAN to implement the above two subtasks 

respectively. ECN to learn the mapping function F1 from noisy image (X) to edge context feature (Z), 

and CRN to learn the mapping function F2 from the noise image (X) and edge context feature (Z) to 

clean background (Y). Therefore, the snow and haze image and corresponding label background are 

applied in the ECN to generate the edge context feature (Z), in which the high-frequency components 

are filtered by the singular value of the convolution kernel. The second generative adversarial network 

used the generated edge context feature and noise image to generate the clean background (Y). The 

network data flow chart has shown in figure 3. ECN is responsible for generating edge context features, 
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namely high spectral response characteristics of background, by learning weather images and its Canny 

edge. ECN uses normalized spectral convolution for convolution kernel, extracting the image’s high-

frequency spectral feature into high-dimensional feature space. And then ECN’s generator uses the 

spectral convoluted residual structure for high-frequency screening and obtains edge context features 

through decoding and dimensionality compression. The CRN accepts the edge context features and the 

noise image with channel concatenation, and processes feature through CRN coding to high-dimensional 

space. And then CRN model carries out residual processing and decoding with dimension reduction 

successively, and finally obtains the background image eliminated weather noise. ECN discriminator 

D1 and CRN discriminator D2 were used to supervising the processes respectively and feedbacked 

gradient loss according to the discriminant results. 

As a low-level semantic feature, the edge feature is easy to learn and inference with great help to 

image detail repair to occluded areas. There are differences in losses between ECN and CRN. The model 

uses two discriminators and adopts gradient truncation in ECN’s end and joint cross-entropy loss to 

ensure consistency of network training, which can greatly reduce the difficulty of network convergence. 

There are four data flow paths in the network, namely G1- > D1, G1- > G2- > D2, D2- > G2, D1- > G1. 

The first two occurred in the forward reasoning process of the network training process, and the second 

two occurred in the transmission process of the gradient direction of the network. All original weather 

images and generated Canny edge are been fed to the ECN and CRN to infer the edge context feature, 

and repainting background. The discriminator and VGG-16 combine the generated edge context features 

with the repaired background, and compare with the canny edge and label background to generate the 

loss gradient of the ECN and CRN network structure. 

 

Figure 3. Our proposed model with generator adversarial loss for edge context generation and 

colorization. 

3.2.  Loss function 

There are two discriminators in SHEN, namely discriminator D1 of the ECN network and discriminator 

D2 of the CRN network. The overall optimization objective function of the SHEN network is shown in 

Formula 1. 

 𝑚𝑖𝑛𝐺1,𝐺2𝐷1,𝐷2 (

𝐸𝑥,𝑧~𝑃data [𝑙𝑜𝑔𝐷1 (𝑧) + 𝑙𝑜𝑔𝐷2 (𝑥, 𝑧)] +

𝐸𝑧,𝑦~𝑃latent (𝑥)[𝑙𝑜𝑔(1 − 𝐷1(𝐺1(𝑥))) +

𝑙𝑜𝑔 (1− 𝐷2(𝐺2(𝑥, 𝐺1(𝑥))))]

) (1) 
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where, variable represents the input weather image matrix, and z represents the generated edge context 

feature matrix by ECN. 𝐺1 and 𝐺2 represent the generator of ECN and CRN, respectively. 𝐷1 and 𝐷2 

represent the discriminator of ECN and CRN for providing cross-entropy loss for input sample and 

generated sample.  

The two items of the ECN’s loss function are shown in Formula (2, 3). The total generative loss 

function of ECN is shown in Formula (4): 

  𝐿1 = −∑
𝑤𝑛

𝑁𝑖

𝑁
𝑖=1

(

  
 

𝑙𝑜𝑔 (𝐷1([𝐼LabelEdge , 𝐼Label ])) +

𝑙𝑜𝑔(1− 𝐷1([𝐶ECN, 𝐶CRN]))

+ 𝑙𝑜𝑔(𝐷1(𝐼label )) +

𝑙𝑜𝑔(1− 𝐷1(𝐶ECN ⋅)) )

  
 

 (2) 

 𝐿2 = ∑
1

𝑁
𝑁
𝑖=1 ‖

𝐷1

(𝑖)
[𝐶labelEdge ,, 𝐼label ] −

𝐷1

(𝑖)
[𝐶ECN, 𝐼pred ]

‖

1

 (3) 

 𝐿𝐸𝐶𝑁 = 𝜆1𝐿1 + 𝜆2𝐿2 (4) 

Where represents the weight matrix of convolution layers in ECN and represents the number of 

convolution layers. 𝑁𝑖 represents the number of parameters of the convolution weight matrix at each 

layer. 𝐶𝑙𝑎𝑏𝑒𝑙𝐸𝑑𝑔𝑒 can be obtained by applying the Canny edge detection algorithm on the label 

image𝐼𝐿𝑎𝑏𝑒𝑙 . 𝐶ECN  stands for edge context features generated by ECN, and𝐶𝐶𝑅𝑁  stands for restored 
background generated by CRN’s generator. 𝜆1 and stand for weight factors, setting as 1  and 1, 
respectively. 𝑖indicate the number of the activation map of the 𝐷2convolution layers. 

The gradient truncation was applied in the generator’s junction point between the CRN and ECN 

network, which can effectively realize the decoupling of the model. The loss function 𝐿𝐶𝑅𝑁 of CRN is 
a specific definition shown in Formula. (5-7): 

 𝐿3 = −∑
𝑤𝑛

𝑁
𝑁
𝑖=1 (

1

2
𝑙𝑜𝑔(𝐷2(𝐼label )) +

1

2
𝑙𝑜𝑔(1− 𝐷2(𝐶CRN))

) (5) 

 𝐿4 = ∑ ∑
𝑤𝑖𝑗

𝑁𝑖𝑗

𝑖=𝑁
𝑗=1 ‖𝜙𝑖(𝐼label 

𝑖 ) − 𝜙𝑖(𝐶CRN
𝑖 )‖

1

𝑖=5
𝑖=0  (6) 

 𝐿5 = ∑
𝑤𝑛

𝑁
𝑁
𝑖=1 ‖𝐺𝑖

𝜙
(𝐼label 
𝑖 ) − 𝐺𝑖

𝜙
(𝐶CRN
𝑖 )‖

1
 (7) 

Where measures the weather removal performance through calculating the cross-entropy loss 

between repairing the background and label image 𝐼lable. 𝐿4 has been applied to measure the Euclidean 

distance between the activation feature map 𝐼label and the feature activation map generated by the pre-

trained VGG network. The variable represents the number of the pre-trained convolutional network 

layers. And stands for the activation map processed by the i-th convolution layers in the pre-trained 

VGG network. The value of style loss has measured the covariance difference between the and the 𝐼label . 

The variable 𝐺𝑖
𝜙
  is the Gram matrix of the corresponding feature map through computing the 

convolutional activation feature map. Thus, the total generative loss expression of the CRN model have 

shown in Formula (8): 

 𝐿𝐶𝑅𝑁 = 𝜆𝐸𝐶𝑁𝐿2 + 𝜆CRN𝐿3 + 𝜆𝑃𝐿4 + 𝜆𝑠𝐿5 (8) 

Where, the weight factor has set as 𝜆ECN =1, 𝜆CRN =2, 𝜆𝑃 = .5, 𝜆𝑆 =24 , respectively. The sum of 

losses was applied to the CRN’s training and gradient background. The weight coefficient of the Gram 

matrix was added to promote CRN’s learning of color information.  
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4.  Algorithm introduction 

The input noise image contains multiple frequency components, and the use of a discriminator makes 

the convolution kernel parameters in the generator unable to be effectively adjusted. It is easy to cause 

fluctuations in GAN training, especially in snowflake and haze removal tasks. By using the model 

decoupling method, different feedback gradients are transmitted to different sub-generators, which is 

conducive to the smooth adjustment of the convolution kernel in the generator. ECN initially enhances 

and perceives the detailed spectral feature with high frequency through singular value calculation and 

normalization of convolution kernels. And then, CRN reconstructs the image coloration and 

supplements the low-frequency part in the background. Step-by-step learning of image components can 

effectively reduce the difficulty of multitasking and accelerate model convergence. 

 

Figure 4. The Proposed SHEN model architecture for weather noise elimination. 

The gradient loss generation process of pretrained VGG-16 is shown in figure 4. Data samples are 

screened from the training dataset and then sent into the SHEN network for training. The data samples 

generated by SHEN include the Canny edge of weather image, the Canny edge of label image, the edge 

context feature CECN and the repair background CCRN. The resulting samples are then sent to the VGG-

16 network to calculate feature matching loss and Gram matrix matching loss. Feature matching loss is 

a routinely performed process that is used to increase generalizability. However, the GANs could offer 

a novel approach to feature matching. Therefore, the Vgg-16 is used in the network to distinguish the 

error between generated feature and the label sample. The main flow of the whole process of model 

training has shown in figure 5. The network model first receives the noise image 𝐼Noise as the sampling 

of noise space X, and obtains the noise image’s edge through the Canny edge algorithm. Then, after the 

size adjustment and normalization to the interval [-1,1], the image is been sent to the ECN network for 

edge context feature inference. The noise image then combined the edge context featuresCECN. And the 

combined feature was sent to the CRN network for background reconstruction for weather noise 

elimination. Finally, the gradient loss feedback process of the network begins. 
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Figure 5. Flowchart of the proposed algorithm 

5.  Experiment 

5.1.  Experimental configuration 

Our experiments are based on the Ubuntu 21. 4 system, in which the CUDA version is 11.2, the CUDNN 

version is 8.2, the Pytorch version is 1.6. , and the GPU version is RTX-5   , and the host memory is 

128GB. The network model’s sample inference size was 512 × 512, and the batch size setting was 2. 

The optimizers used in the training process of the ECN and CRN network was the ADAM optimizer. 

The initial learning rate was set to  . 2. The two learning rates were set to the same parameter and the 

attenuation rate was  .9 , each 1    round is updated once, and the total training epochs of network 

training was 25  .  

The comprehensive multi-type weather dataset, which is combined several types of public weather 

noise, was used in the experiment to train and evaluate the model’s performance. The database consists 

of four types of weather datasets: (1) 16    images and corresponding label images from SRRS Dataset 

[3]; (2) 16    snow particle images and corresponding label background images from Snow1  K-S [4]; 

(3) 16    snow particle images and corresponding label background image from Snow1  K-M [4]; (4) 

16    snow particle images and corresponding label background image from Snow1  K-L [4]. (5) Two 

public datasets, namely I-Haze  [5]and O-Haze [6], were used to test the model dehazing performance. 

Samples of weather noise and their label images have been to train the model in this experiment. 

Table 1. Composition of desnow and dehaze dataset 

Dataset Trainset nums Test set nums 

SRRS-6000 [3] 16000 4000 

Snow100K-S [4] 16600 4160 

Snow100K-M [4] 16600 4160 

Snow100K-L [4] 16600 4160 

I-Haze [5] — 35 

O-Haze [6] — 45 

Total Number 65800 16560 
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5.2.  Evaluation metrics 

Evaluation of obtained background is an important step in evaluating model performance. Peak Signal-

to-Noise Ratio (PSNR) [7] and Structural Similarity (SSIM) [7] are used for evaluating the performance 

of weather noise removal. The mathematical calculation formulas of the SSIM and PSNR are as follows: 

 SSIM(x, y) =
(2𝜇𝑥𝜇𝑦+c1)(2𝜎xy+c2)

(𝜇𝑥
2+𝜇𝑦

2+c1)(𝜎𝑥
2+𝜎𝑦

2+c2)
 (9) 

 𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [I(𝑖, 𝑗) − K(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0  (10) 

 PSNR=1 × log
1 
(
(2𝑛−1)

2

𝑀𝑆𝐸
) (11) 

where, 𝜇𝑥 represents the mean value of the image matrix 𝑥; 𝜇𝑦 represents the mean value of the image 

matrix 𝑦 ; 𝜎𝑥
2  and 𝜎𝑦

2  variance represents the sum of image matrices 𝑥  and 𝑦 ; 𝜎𝑥𝑦 represents the 

covariance of the image matrix 𝑥 and the matrix 𝑦. The two variables stabilized the division result by 
increasing the value of the denominator in Eq. (3); 𝑐1 = (𝑘1𝐿)

2 ,𝑐2 = (𝑘2𝐿)
2  which represents the 

variation range of image pixel values; sets 1k
= . 1 and 𝑘2= . 3. SSIM is used to measure the similarity 

of color value and pixel structure between generation and label image matrices. The value range of SSIM 

is to determine the ratio of similarity between the two sets of data struct ranging from   to 1. When the 

two sets of data are completely the same, 1 is taken, and if there is no structural similarity,   is taken. 

PSNR is the most common and widely used objective measurement method to evaluate the quality of 

images. However, many experimental results show that the scores of PSNR cannot be completely 

consistent with the visual quality seen by people. Those with higher PSNR may look worse than those 

with lower PSNR. Therefore, we use SSIM and PSNR to comprehensively evaluate the image quality 

of the generated background. 

5.3.  Ablation Experiment 

To assess the effectiveness of decoupling generation of the image background, we conducted the ablation 

experiments on the network structure. We test whether the sequential network is used, whether the 

gradient truncation is performed, and whether the weather feature elimination performance under the 

network with double discriminators is used, respectively, through taking the network structure shown in 

figure 2 as a reference. These restored samples were generated by Network ablative structure for 

comparing each models’ experimental results in the elimination of artifacts. The experimental results 

are shown in figure 6, which have showed the experimental performances for snow and haze removal 

between different ablation models. The structural settings of each ablation model have shown in table 2. 

The experimental image indicated that the SHEN framework can apply the application of snow and haze 

removal and obtain excellent background restoration performance. Figure 7 is a partial intermediate 

result generated in the network at initial stage of training, which contains the edge texture feature map 

generated by ECN and the background restoration map generated by CRN. In order to verify their 

characteristic response in frequency space, we give their Fourier response spectrum in the second line 

of figure 7. CRN conducts color rendering priority learning in the learning edge-intensive region, 

indicating that edge features have an obvious guiding function in color rendering through comparing the 

results of the first and third columns. In the visual display of the Fourier spectrum, it can be seen that 

the high and low-frequency allocation positions of the CRN’s edge texture spectrum are roughly the 

same as the texture feature spectrum generated by ECN. However, the quantity of features learned is 

different, indicated that ECN has a better recognition performance on background’s edge frequency, and 

can quickly guide the model to learn the high-frequency spectrum components. The regions generated 

by color features of the CRN’s generation are all in the dense areas of the ECN’s edge context feature, 

indicated that the edge texture generated by ECN plays a guiding role in the color reconstruction of 
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CRN’s generation, and also shows the stable convergence effectiveness of the SHEN sequence model 

on GAN training fluctuation. 

Table 2. Ablation Experiment of desnow and dehaze dataset 

Structure  

ECN 

gradient 

truncation 

CRN 

Spectral 

Normalization 

of Encoder 

Spectral 

Normalization 

of Encoder 

Discriminator_1 

Spectral 

Normalization 

of Encoder 

Spectral 

Normalization 

of Decoder 

Discriminator_2 

Model_1 0 0 0 0 0 0 1 

Model_2 0 0 1 0 0 0 1 

Model_3 1 1 1 0 0 0 1 

Model_4 0 0 1 1 0 0 1 

Model_5 1 1 1 1 0 0 1 

 

(a) Snow and Haze Image (b) Model_1 (c) Model_2 (d) Model_3 (e) Model_4 (f) Model_5 (g) Label Background
 

Figure 6. Effect of ablation experiment 

Frequency
Domain

Spatial 
Domain

(a)Repairing Edge (b)Original Image (c)Inpainting Image (d)Label Image
 

Figure 7. Performance of the frequency domain 

5.4.  Model Comparison 

The DerainNet [8], DehazeNet [9], GAN-Dehaze [2], DesnowNet [4], DuRN-S-P [1 ], MSBDN [11], 

and KDDN [12] models were used in the comparison experiment for testing the model‘s performance 
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for snow and haze elimination in the Snow1  K and O-Haze dataset. The comparison results are shown 

in table 3 by calculating PSNR and SSIM indexes. The results have shown that the PSNR index obtained 

by SHEN on dataset listed in table 3 is better than the comparison models, and the snow removal 

performance have shown in figure 8, and the dehaze performance on the O-Haze test set and the snow 

fog test performance in real scenes are shown in figure 9 and figure 1 . The spectral normalizes the 

convolutional parameter kernel in ECN framework. Its generator of ECN satisfies the Lipschitz 

constraint [13], which ensured the training stability of the ECN network and provided stable prior 

information to the CRN network. The results of the SHEN repairing have shown that the occlusion area 

is better repaired, and artifacts and artificial traces are well eliminated shown as figure 8. The PSNR and 

SSIM obtained in the comparison experiment with other models on the test dataset have displayed in 

table 3. SHEN has achieved an average SSIM value of 32.84 and PSNR value of  .93, respectively. The 

SSIM and PSNR of the test dataset have been explain the validity of the model that SHEN outperformed 

the compared SOTA models. Meanwhile, it illustrated that SHEN has the ability to perform both snow 

and fog removal for composite weather and achieved better performance than the SOTA model 

compared.  

 

Figure 8. Visual comparison with other models 

Table 3. Comparison data with SOTA models 

Method 
Derain-

Net 

Dehaze-

Net 

GAN-

Dehaze 
DesnowNet DuRN-S-P MSBDN KDDN Ours 

Snow100

K-S 

PSNR 25.74 24.96 25.94 32.33 32.27 31.17 31.15 33.29 

SSIM 0.86 0.88 0.88 0.95 0.9497 0.93 0.9396 0.94 

Snow100

K-M 

PSNR 23.36 24.16 24.36 30.86 30.92 29.18 31.17 32.84 

SSIM 0.85 0.87 0.86 0.94 0.94 0.92 0.93 0.93 

Snow100

K-L 

PSNR 19.18 26.61 21.29 27.17 27.21 26.17 28.32 31.13 

SSIM 0.75 0.77 0.77 0.90 0.89 0.86 0.89 0.92 

SRRS 
PSNR 20.13 20.64 22.31 30.14 32.68 33.79 34.72 36.42 

SSIM 0.74 0.80 0.81 0.87 0.96 0.98 0.98 0.98 

O+I-Haze 
PSNR 15.49 19.62 22.31 16.73 18.32 21.23 19.39 25.88 

SSIM 0.51 0.59 0.74 0.52 0.61 0.71 0.59 0.82 

 

(a) Snow Image (c) JORDER (d) DuRN-S-P (g) Label Background(e) Ours(b) DesnowNet
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Haze Image MSBDN DuRN-S-P GAN-Dehaze DehazeNet SHEN Label Image
 

Figure 9. O-Haze test set dehaze test 

 

Figure 10. Real scene snow and haze elimination test 

6.  Conclusion 

The paper proposed to decompose the image into edge context and color information and reconstruct 

the background information in stages for eliminating snow and haze features at one framework. For a 

variety of weather noise distribution differences, this paper gradually reconstructs the background edge 

and color method, the model decoupling, and double supervision method to solve. We use dual-

generators to construct a new snow and haze elimination network, which connect two generative 

adversarial networks, and used the gradient truncation technique between the two generators. It can be 

used for the elimination of weather characteristics under complex weather and extreme weather 

conditions. The results of SHEN have been evaluated using datasets composed of Rain14  , SRRS, and 

Snow1  K. The performance for snow and haze elimination has reached SSIM = 32.27 and PSNR = 

 .98. In the future, it is necessary to verify the effectiveness of the model in more scenes requiring 

background enhancement and to evaluate the enhancement performance for different scenes. Then, this 

algorithm is applied to the scene of eliminating air pollution and multiple weather coexistence scenario. 
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