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Abstract. The fifth generation of wireless communication technology (5G), has 

revolutionized the digital landscape with its ultra-fast speeds, massive connectivity, 

and reduced latency; Beyond 5G (B5G), represents the evolutionary steps towards 

sixth-generation networks which aims to build upon 5G’s capabilities by 

integrating advanced technologies like ultra-dense network, edge computing, and 

enhanced spectral efficiency. This paper investigates the application of two distinct 

exponential reward functions in reinforcement learning algorithms for power 

allocation in ultra-dense networked base stations. The primary objective is to 

maximize the overall network capacity and spectral efficiency. The performance of 

the proposed reinforcement learning algorithms is compared with the traditional 

water-filling algorithm, as well as against the other to highlight the differences in 

learning outcomes resulting from the choice of reward functions. The results show 

that the exponential function model with reciprocal exponent is superior  to the 

previous two in spectral efficiency and convergence speed and provide valuable 

insights into the effectiveness of using reinforcement learning for complex resource 

allocation problems in modern communication networks. 

Keywords: Reinforcement learning, ultra-dense networks, reward functions, power 

allocation 

1.  Introduction 

The rapid growth of wireless data traffic and the increasing number of mobile devices in 5G/B5G 

(the fifth generation of wireless communication technology/Beyond 5G) network systems have 

posed significant challenges to efficient power allocation in multi-cell networks. Traditional 

optimization methods, such as water-filling algorithms, struggle to handle the complexities and 

dynamics of these modern communication systems. Consequently, there is a growing interest in the 

application of reinforcement learning (RL) for power allocation in 5G/B5G multi-cell networks. 

This paper provides an overview of the current state of research on power allocation based on RL, 

identifies the limitations and challenges in this area, and discusses the inspiration for this 

research topic. 
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RL is a learning paradigm that enables an agent to make decisions in an environment to 

maximize its cumulative reward [1]. In the context of power allocation in multi-cell networks, 

RL can be used to optimize the allocation of power across different base stations (BSs) and user 

equipment (UE), taking into account the dynamic nature of the wireless channel and the varying 

demands of users. 

Research on power allocation based on RL in 5G/B5G multi-cell network has shown promising 

results. 

Studies have proposed RL-based algorithms for power allocation, including Q-learning, actor-

critic methods, and policy gradient methods [2]. These algorithms have been shown to achieve 

better performance than traditional optimization methods in terms of network capacity, spectral 

efficiency, and fairness among users [3]. 

However, there are several limitations and challenges in the current research on power 

allocation based on RL. First, the large state and action spaces in multi-cell networks make it 

difficult for RL algorithms to converge to an optimal solution [4]. Second, the non-convex and 

non-smooth nature of the optimization problem poses great challenges to the stability and 

convergence of RL algorithms. Third, the high computational complexity of RL algorithms limits 

their real-time application in practical communication systems [5]. 

This article investigates the dynamic power allocation problem in downlink cellular networks 

based on multi-agent reinforcement learning, where each BS user is modeled as a RL agent to 

learn optimal power allocation policy in order to maximize the total system capacity. The study 

addresses the expandability of reward function and state, in order to adapt the variation of network 

size, such as the number of BSs or UEs and the coverage area of cells [6]. 

To empirically substantiate the efficacy of our advanced proposal, we undertake exhaustive 

computational simulation experiments within a milieu representative of a 5G/B5G multicellular 

network infrastructure. Our findings illustrate that the proposed methodology surpasses 

contemporary state-of-the-art reinforcement learning algorithms in achieving superior network 

throughput, spectral utilization efficiency, and user-centric fairness indices. 

In drawing our study to a close, we furnishes a panoramic survey of ongoing scholarly 

endeavors concerning reinforcement learning-guided power allocation strategies in the context 

of 5G/B5G multi-cell networks. It pinpoints the extant challenges confronted within this 

disciplinary terrain and contemplates the intellectual stimuli that animate this investigatory 

domain. By advancing a novel scheme for refining the reward mechanism, our simulative analyses 

corroborate the practical virtue and validity of the espoused approach, thereby enriching the corpus 

of knowledge in this nascent yet rapidly evolving frontier of telecommunications research. 

In this paper, we aim to address the limitations and challenges in the current research on 

power allocation based on RL. Specifically, we focus on the optimization of RL for power 

allocation in 5G/B5G multi-cell networks: 

• We propose a novel method for designing RL that takes into account the dynamic nature of the 

wireless channel and the varying demands of users. 

• Our method is based on the concept of fairness and efficiency, and it aims to maximize the 

network capacity and spectral efficiency with the concurrent assurance of equitability amidst 

all network participants. 

• Our modeling also ensures that the entire system can converge at a more accelerated rate 

compared to traditional models, thereby achieving optimal performance in a timelier manner. 

2.  System Model and Problem Formulation 

2.1.  System Model 

The system conceptualized in the ultra-dense network can be represented as a multi-cell OFDM 

cellular network whose serving scenario is mainly responsible for downlink services, characterized 
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by a high density of BSs. It operates on the reuse-1 principle, granting each BS access to the entire 

available bandwidth [7]. The network topology is visualized in Fig. 1. A central controller is 

responsible for aggregating comprehensive network metrics, including signal-to-interference-plus-

noise ratio (SINR) and transmit power. The number of users associated with BS n at time t is 

denoted as 
𝑈𝐸(𝑛,𝑡) ∈ {𝑀(1,𝑡)

, … ,𝑀(𝑛,𝑡)
, … ,𝑀(𝑁,𝑡)}, ( 1) 

where M represents the total user population. User mobility is modeled using a random walk 

approach, with the user’s speed at time t denoted as 

0 ≤ 𝑉𝑚,𝑡 ≤ 𝑉𝑚𝑎𝑥, (2) 

and the movement angle as 
0 ≤ 𝐷𝑚,𝑡 ≤ 2𝜋. (3) 

The spatial distribution of BSs adheres to a Poisson point process model. Each BSn reuses K 

orthogonal subcarriers in their entirety. When a user connects to a BS, the BS is activated and its 

transmit power is set to 𝑝𝑛,𝑡  at any given time. A user can only connect to one BS, and each 

subcarrier is exclusively allocated to a single user. The six-path fading channel model is utilized for 

performance evaluation purposes, and the selection of this particular channel model does not 

influence the efficacy of the proposed approach [8]. 

2.2.  Problem Formulation 

We can define that 𝜓𝑛,𝑘,𝑚 represents the received SINR of the n-th BS served user 𝑚 on the 𝑘-th 

subcarrier at time t , in which 𝑘 ∈  {1, . . . , 𝐾} and is given by  

 

Figure 1. System model of ultra-dense network. 

𝜓𝑛,𝑘,𝑚 = 𝜙𝑛,𝑚𝜙𝑛,𝑘,𝑚
𝐺𝑛,𝑚
(𝑘)
𝑝𝑛,𝑘

∑ 𝐺
𝑛′,𝑚

(𝑘)
𝑝𝑛′,𝑘𝑛′≠𝑛 , +𝜎2

(4) 

in which 𝐺𝑛,𝑚
(𝑘)

 and 𝐺
𝑛′,𝑚

(𝑘)
 signifies channel gains of the n-th and 𝑛’-th BSs to user 𝑚 on the 

𝑘-th subcarrier. And 𝑝𝑛,𝑘and 𝑝𝑛′,𝑘 denote the total transmit power of the 𝑛’ BSs on the 𝑘-th 

subcarrier respectively. 𝜙𝑛,𝑘,𝑚  denotes whether BS 𝑛  allocates subcarrier 𝑘  to user m 𝜙𝑛,𝑘,𝑚 ∈

 [0, 1], and 𝜎2 represents the power of Gaussian white noise. 𝜙𝑛,𝑚  indicates whether user m is 

connected to BS 𝑛: 
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𝜙𝑛,𝑚 = {
1, 𝑚 ∈ 𝑀𝑖
0, 𝑚 ∉ 𝑀𝑖

(5) 

The spectral efficiency is scrutinized through the prism of the aggregated capability, 

quantified in terms of (bps/Hz), thereby furnishing a metrical gauge of the communication 

efficiency underpinning the reinforcement learning-driven power allocation strategy. The capacity 

achieved by 𝐵𝑆𝑛
𝑓
 at its associated user on subcarrierk is given by: 

𝐶(𝑛,𝑘) =
𝐵

𝐾
log2(1 + ∑ 𝜓𝑛,𝑘,𝑚

𝑀

𝑚=1

) (6) 

Our endeavor is geared towards augmenting the aggregate capacitance of the holistic network, 

achieved through the meticulous calibration of BS transmission potencies on subcarrier 𝑝𝑛,𝑘 , 

guided by an approach verging on subcarrier allocation optimality. This endeavor of enhancement 

can be encapsulated in the following formulization of the optimization conundrum: 

{
 
 

 
 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑅𝑡

𝑠. 𝑡.  𝐶1 ∶ 𝑝𝑡
(𝑛,𝑘)

≥ 𝑝𝑚𝑖𝑛                  ∀𝑛, 𝑘

          𝐶2 ∶  ∑ 𝑝𝑡
(𝑛,𝑘)

𝑛,𝑘
≤ 𝑝𝑚𝑎𝑥      ∀𝑛, 𝑘,

(7) 

within which 𝑝𝑚𝑎𝑥 denotes the paramount emission potency of the BS, whereas 𝑝𝑚𝑎𝑥 signifies the 

least possible transmission power allocated to a subcarrier. 

In the preliminary phase of the network setup, users establish connections with BS by selecting 

the one that offers the highest SINR. During this workflow, the interference affecting users is 

predominantly caused by signals from neighboring cells, and not from users within the same cell 

[9]. The transmission rate of each user link is influenced by the power of the signal from the 

serving BS and the level of interference from other cells. Our objective is to fine-tune the BS 

transmit power to enhance the aggregate capacity of the network. We ensure equitable resource 

distribution among users by evenly distributing the BS’s downlink subcarriers to all connected 

users. To kickstart the power allocation, we initially deploy the water-filling algorithm that 

could serve as the benchmark for subsequent comparison when employing ensuing reinforcement 

learning. The problem at hand presents a multi-objective non-convex optimization challenge. 

Conventionally, heuristic search algorithms, which are based on iterative local searches, have been 

employed to address such issues [10]. However, these algorithms often suffer from significant 

inefficiencies, characterized by extended computation times and an inability to adapt in real time. 

To overcome these limitations, the subsequent chapter will delve into the operationalization of 

reinforcement learning, a cutting-edge technique that harnesses neural networks to optimize 

policies through continuing trial and error.  

3.  Q-Learning Solution 

3.1.  Reinforcement Learning - Multi-Agent Q-learning 

The paradigm of disseminated cognitive BSs finds mathematical embodiment in stochastic 

games, wherein the educative progression of every BS is encapsulated by a quintuple 

𝑁,𝑆,𝐴,𝑃,𝑅(𝑠, �⃗⃗� ), (8) 

explicating thusly: 

• 𝑁, an ensemble denoting 1, 2, . . . , 𝑁𝑓 , symbolizes the collective of actors resembling BSs. 

• 𝑆 , a compendium comprising 𝑆1, 𝑆2, . . . , 𝑆𝑚  , delineates the gamut of potential systemic 

states, with m signifying the count thereof. 
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• 𝐴, a set encompassing 𝑎1, 𝑎2, . . . , 𝑎𝑙, embodies the spectrum of feasible maneuvers. 

• 𝑃, the probabilistic displacement function, quantifies the likelihood of systemic transition 

between states. 

• 𝑅(𝑠, �⃗⃗� ), as the reward function, ascertains the boon accruing to actor n upon execution of the 

concerted action �⃗⃗�  amidst a state 𝑠 ⊆ 𝑆. 

Q-learning, a model-extraneous reinforcement learning protocol grounded in value function 

theory, innately excels in negotiating the mutable landscape of wireless networks [10]. This 

algorithm facilitates each agent’s convergence upon its proprietary behavioral value function via 

incessant recursive tutelage. Typically, this behavioral metric is instantiated as a tabular 

construct, 𝑄(𝑠𝑚, 𝑎𝑙) , with al inhabiting A and 𝑠𝑚  nested within S, rendering a matrix 

dimensionality of 𝑚× 𝑙 . The Q-value, 𝑄(𝑠𝑚, 𝑎𝑙) , signifies the anticipated aggregation of 

rewards, spanning an infinite temporal horizon, derivable from executing action al in the state 𝑠𝑚, 

and is mathematically rendered by: 

𝑄(𝑆, 𝐴) = 𝐸𝜋 [𝑅𝑎 + 𝛾
𝑚𝑎𝑥

𝑎′ 𝑚𝑎𝑥𝑄(𝑆′, 𝑎′)|𝑆𝑡 = 𝑆, 𝐴𝑡 = 𝐴] (9) 

where 𝑅𝑡+1 symbolizes the immediate gratification attained subsequent to the execution of an 

action a within the prevailing environmental condition, or state, 𝑠. The variable 𝛾, meticulously 

confined to the interval [0,1], serves as the temporal discount factor, ascertaining the magnitude 

of emphasis placed upon the anticipated future returns, or the heuristic value, thereby acting as a 

modulator of the present reward’s immediacy versus future rewards’ prospective value in the 

algorithm’s decision-making calculus. This coefficient 𝛾  essentially reflects a balancing act 

between myopic and far-sighted strategies, infusing the reinforcement learning process with a 

temporal perspective that is pivotal for efficacious learning and decision optimization in dynamic 

environments. 

The Q-value of the whole allocation system is updated in terms of the equation below: 

𝑄(𝑆, 𝐴)
𝜋
⇒
𝑚𝑎𝑥

𝐴′
[𝑅𝑎 + 𝛾𝑄(𝑆

′, 𝐴′)], (10) 

𝑁𝑒𝑤 𝑄𝑆,𝐴 = 𝑄𝑆,𝐴 + 𝛼 (𝑅𝑆,𝐴 + 𝛾 ∗ 𝑚𝑎𝑥𝑄
′ (𝑆′, 𝐴′) − 𝑄𝑆,𝐴) . (11) 

In this formula, 𝛼 means the learning rate whose range is [0,1]. 

3.2.  Power Allocation and Application of Q-Learning Mapping 

In the practical problem of power allocation of multi-agent, the conception in Q-learning, the 

agents, states, actions, and the reward function can be externalized: 

• Agent: that is BS n, 1 ≤ 𝑛 ≤ 𝑁𝑓. 

• 𝑠𝑡
𝑛,𝑘 = {𝐿𝑡

𝑛, 𝑝𝑡
𝑛
} , where represents the number of users connected to the certain BS 𝑛  at 

certain time 𝑡 , and represents the power of the n-th BS at time 𝑡 . With the intent of 

mitigating the algorithmic intricacy and circumscribing the expanse of the network’s state 

space, a stratagem of quantizing the BS’s transmit  power is henceforth enacted, proceeding as 

follows: 

𝑝𝑡
𝑛
= 𝜏(𝑃𝑚𝑎𝑥

𝑓
− 𝑆𝜏) ≤∑𝑝𝑡

𝑛,𝑘
𝐾

𝑘=0

< (𝑃𝑚𝑎𝑥
𝑓

− 𝑆𝜏+1) (12) 

where 𝜏 ∈ {0, 1, 2, 3, 4, 5}, 𝑆0 = 𝑃𝑚𝑎𝑥
𝑓

, 𝑆6 = 0, other 𝑆 values are selected threshold. 

Proceedings of  the 2nd International  Conference on Applied Physics and Mathematical  Modeling 
DOI:  10.54254/2753-8818/95/2024.21338 

57 



 

 

• Action: 𝐴𝑛 = {𝑖𝑛, 𝑝𝑡⃗⃗  ⃗
(𝑛,𝑘)} , 𝑖𝑛  indicates the k-th subcarrier of the n-th BS, as well as 

𝑝𝑡⃗⃗  ⃗(𝑛,𝑘) ∈ {−|𝑃|, 0, |𝑃|} . Its determination is contingent upon the metamorphosis in the 

aggregate throughput 𝐶𝑡ℎ experienced by the environing ℎ users in proximity to the incumbent 

user, subsequent to the execution of an action. Hence, should C witness an amplification, 

the power increment 𝑝𝑡⃗⃗  ⃗(𝑛,𝑘) = +|𝑃| ensues; conversely, if a diminution occurs, the inverse 

adjustment is invoked. This adaptive modulation of power levels operates as a pivotal 

feedback loop within the reinforcement learning framework, fostering a strategy that 

dynamically aligns with the exigencies of maximizing network efficiency. 

• Reward: the selection of reward function will be introduced in section C in detail. 

In light of the environmentally dynamic context, the state space of the system is relatively 

extensive, and the dimensions of the 𝑄-value table for each agent vary. If one were to establish a 

𝑄-value table of considerable size with a static dimensionality, the complexity of computations 

would ascend dramatically.  

Consequently, a strategy for dynamically incorporating states is imperative, wherein novel 

states are automatically integrated into the state sets as they emerge. This obviates the necessity of 

tailoring a 𝑄  table for each single agent, a decided advantage of the dynamic approach. 

Additionally, it facilitates a more efficient search of 𝑄  tables and optimizes the utilization of 

storage space [11]. What’s more, the reward table updates in 𝑄-learning are relatively slow, hence 

the choice of the reward function critically impacts performance. The selection of the reward 

function can alter the learning path and approach of the agent, consequently affecting the rate of 

convergence and overall capacity of the model. 

3.3.  Comparison on the Attribution of Different Reward Functions 

Within the ambit of the Q-learning algorithm, paramountcy resides in the reward function, whose 

office and stature are of great significance. Its formulation bears a direct umbilical to the 

algorithm’s triumph, acting as the lodestar in the navigational journey towards optimal 

strategizing. This function, in essence, serves as an arbiter, evaluating the instant aftermaths of an 

agent’s singular maneuver within a prescribed environmental condition, thereby steering the 

agent’s erudition towards actions of superlative efficacy. It imparts to the agent an instantaneous 

missive, echoing the ecosystem’s resonant feedback ——  a cornerstone for the agent’s  calibration 

and juxtaposition of disparate actions’ worthiness.  

The agent’s actions revolve around the maximization of accrued rewards, rendering the reward 

function a crucible that molds the agent’s discernment of praiseworthy and censurable maneuvers. 

Furthermore, the sinew of the recompense function’s blueprint reverberates in the Q-learning 

algorithm’s velocity of convergence and its steadfastness. A flawed reward signal’s architecture 

may engender a sluggish, capricious learning odyssey, or worse, an inability to attain the paragon 

of strategies [12]. 

In the purview of the study, an exponential function has been elected as the archetype for 𝑡 he 

reward function, a choice lauded for its prowess in hastening convergence and ensuring a polished 

trajectory, thereby enhancing the algorithmic voyage with a refined, efficacious compass. 

𝑦1 = 1 − 𝑒(−𝛼𝑥), (13) 

𝑦2 = 𝑒
(−

1
𝛽𝑥
)
, (14) 

In this problem, two different typical exponential function models are selected above for Q-

learning training.  

Both functions have the following properties in common that are suitable for reinforcement 

learning of power allocation : 
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• Non-negative: Since the exponential function always has a value in the range (0,1), the value of 

function 𝑦 is always non-negative. 

• Increment: As the independent variable 𝑥  increases, the value of the two exponent gradually 

decreases, so 𝑦 gradually increases. This means that 𝑦1 and 𝑦2 are a monotonically increasing 

function. 

• Saturation and convergence: As 𝑥 approaches infinity, the value of exponent goes verge to zero, 

so the function value approaches one. This indicates that function 𝑦1 and 𝑦2 have an initial 

value of zero as well as an upper limit of one. 

  

(a) Comparison of two reward function model. (b) Comparison of the model y2 with distinct β. 

Figure 2. Comparison of different reward function. 

As can be seen in Fig. 2(a). above, these properties allow reinforcement learning to proceed 

smoothly: since these functions are monotonically increasing, the agent can receive a clear reward 

signal, that is, as the effect of the action improves, the reward gradually increases. However, 

there is a certain difference in the rate of rise of these two exponential function models, which 

typically determines the learning path of the agent: 

• Pure exponential form 𝑦1 : The model promotes early exploration, with a faster reward 

growth step when 𝑥 is small to incentivize the agent to quickly achieve a larger reward in the 

initial learning stage. As 𝑥  increases, the reward growth gradually saturates and slows down, 

allowing the agent to stabilize its behavior after reaching a certain level of performance and 

preventing overfitting by avoiding an unlimited pursuit of higher reward. 

• Exponential form including reciprocals type 𝑦2 : The variable 𝑦2  provides the agent with a 

robuster early reward signal, and as x increases, the rate at which the reward signal diminishes 

surpasses that of 𝑦1 . This prompts the agent to swiftly acquire rewards while exploring new 

actions, but subsequently reduces exploration more rapidly as it approaches saturation. 

Furthermore, these two models also demonstrate adaptability. By adjusting the parameters in 

the model (such as α and β), the shape of the reward function can be modified to accommodate 

various learning tasks and environments. Moreover, by altering these parameters, the smoothness 

of the reward function and the distribution of rewards can be flexibly adjusted. In this study, we 

only modify the second exponential model 𝑦2, and choose the parameter 𝛽 = 12,16,20 for training 

and comparison. Their plots are showed in Fig. 2(b): 

When reflected in the practical problem of BS power resource allocation, the reward function 

of the n-th BS on the k-th subcarrier can be respectively defined as: 
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𝑟𝑡
𝑛,𝑘 = {

1 − 𝑒
−(𝛼𝐶𝑡

(𝑛,𝑘)
)
,    𝑖𝑓∑ 𝑝𝑡

(𝑛,𝑘)
≤ 𝑃𝑚𝑎𝑥

𝑓
𝐾

𝑘=1

−1,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(15) 

𝑟𝑡
𝑛,𝑘 = {𝑒

−
1

𝛽𝐶𝑡
(𝑛,𝑘)

,       𝑖𝑓∑ 𝑝𝑡
(𝑛,𝑘)

≤ 𝑃𝑚𝑎𝑥
𝑓

𝐾

𝑘=1

−1,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(16) 

4.  Simulation and Evaluation 

4.1.  Settings of training 

The entire cellular network environment includes 𝑁𝑓BSs. Each user connects to the BS with the 

highest SINR. All BSs share the spectrum bandwidth. In the simulation, we set the noise power 

𝜎2 = 10−7, and the power regulation amplitude of each BS on each subcarrier, where 𝑆1 − 𝑆5 =
[25, 20, 15, 10, 5]. Some other parameters settings are shown in Table 1 and 𝛽 is updated as the 

method in Table 2. At each step, the network updates the topology once due to the node mobility. 

4.2.  Consequence and comparison of training model 

The convergence of the frequency efficiency models of the first model, the second model, and 

the water injection algorithm is illustrated in Fig. 3(a). With each iteration, the user’s movement 

triggers an update in network topology. The figure demonstrates that following reinforcement 

learning for power allocation updates, Q-learning achieves significantly higher spectral 

efficiency compared to the default water-filling algorithm. Furthermore, employing the 

exponential function model 𝑦2 with reciprocal yields the highest spectral efficiency, proving to be 

more efficient and stable than both 𝑦1 of Q-learning and the water-filling algorithm.  

In the course of examining the secondary reward schema, we ventured to manipulate the hyper-

parameters’ valuations within the model’s architecture, leading to nuanced variations in both the 

ascension pace and the potency of the reward. A meticulous inspection of Fig. 3(b). divulges 

that the zenith of spectral efficiency, accompanied by heightened stability, is attained when the 𝛽 

value assumes the figure of 20. An escalation in the 𝛽 value corresponds with a proportionate 

amplification in performance, affirming a direct correlation. 

Table 1. Simulation Parameters 

Parameters Values 

Bandwidth B (MHz) 10 

The number of BSs 32 

The number of UEs 200 

Radius r (m) 15 

Initial power p (dbm) 0-5 

Network Size m 100×100 

pmax (dbm) 30 

pmin (dbm) -100 

h 5 

α 0.5 

γ 0.9 

ϵ 0.2 

Nevertheless, the law of diminishing returns, as an influential factor, comes into play; with each 

successive increment in 𝛽, the incremental enhancement dwindles, gradually nearing a plateau of 

negligible change. 
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Table 2. β REVISE 

Parameters Values 

Iteration step (0-30) 0.8 

Iteration step (30-60) 0.6 

Iteration step (60-100) 0.3 

Iteration step (100-) 0.1 

 

  
(a) Comparison of spectral efficiency between 

different models. 

(b) Comparison of spectral efficiency in the same 

model 𝑦2. 

 
(c) Comparison of convergence speed. 

Figure 3. Consequence of Experiment. 

Also, the convergence behavior of diverse model ensembles is depicted in Fig. 3(c), wherein 

Q-learning manifests notable oscillations, a consequence of the motility inherent in its 

interconnected nodes. Upon the occurrence of topological alterations, Q-learning necessitates 

recalibration and a renewed convergence process.  Nonetheless, a conspicuous upsurge in initial 

recompense swiftly elevates the performance of the subsequent exponential paradigm, rendering 

it superior to its unadulterated exponential counterpart. Concurrently, the strategic constancy 

imbued by the reciprocal model significantly bolsters spectral efficacy and fosters an enhanced 

stability profile. 

5.  Conclusion 

Tackling the complex issue of power allocation in multi-cell wireless systems, we’ve adopted a 

Q-learning reinforcement method, informed by machine learning insights. This integration, 
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alongside refined exponential models, has significantly improved both the speed and stability of 

our optimization strategy, enhancing network capacity. Our focus on maximizing capacity holds 

broader implications for ultra-dense networks, with potential applications spanning energy 

efficiency and user experience. Ultimately, this reinforcement learning approach paves the way for 

comprehensive performance improvements in wireless systems. 
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