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Abstract. In Non-Intrusive Load Monitoring (NILM), the commonly used methods based on 

hidden Markov model (HMM) often neglect time feature of load states, leading to increased bias 

in the estimation of HMM parameters. To address this issue, this paper proposes a time feature 

based hidden Markov model for NILM. It employs an improved K-means algorithm to identify 

appliance states at different times slots and establishes the correspondence between state 

combinations and hyper-states through binary encoding. Finally, a simplified Viterbi algorithm 

is used for state estimation. Experimental results on the AMPDS2 dataset show that this method 

can enhance the monitoring accuracy of HMM in NILM, providing more precise identification 

of individual load states and power consumption. 
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1.  Introduction 

With the deepening of global concern about climate change, the realization of the "dual carbon" has 

become a goal pursued by the whole world. To reduce carbon emission, load monitoring has received 

widespread attention due to its ability to provide detailed power information, which helps users replace 

inefficient equipment and help grid companies improve the scheduling plan, thus providing safe and 

accurate services. 

Load monitoring is categorized into invasive load monitoring and non-invasive load monitoring 

(NILM). Invasive load monitoring involves the installation of sensors for each appliance, which is costly. 

NILM only requires setting up a single sensor to measure the aggregate power consumption of all 

household appliances. Through disaggregation algorithms, the power consumption of individual 

appliances is then derived from the total consumption. This concept was firstly introduced by Hart in 

1992 [1]. Although its precision may not match the one of invasive methods. its cost-effectiveness and 

respect for privacy make it more acceptable to the general public, thus attracting considerable attention 

from researchers. 

At present, the commonly used methods for NILM mainly consist of approaches based on the hidden 

Markov model (HMM) and deep learning methods. Although deep learning methods have high 

performance in theory, their training process usually requires a lot of time and computational resources. 

In practical applications, HMM is still a widely adopted choice due to its low computational complexity 

and ease of implementation. Reference [2] managed to reduce model complexity by introducing the 

Factorial Hidden Markov Model, and reference [3] further optimized load monitoring performance by 

integrating Additive FHMM and Differential FHMM. Additionally, reference [4] enhanced the 
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capability to recognize multi-state devices by combining the Multiple Model Probability algorithm with 

the Additive Differential FHMM. 

However, methods above have not fully considered the temporal heterogeneity of the operational 

states of electrical equipment. This could lead to increased bias in the estimation of HMM parameters, 

resulting in inaccurate load monitoring when the usage patterns of the devices change. Concerning this 

issue, we propose a hyper-state HMM modeling method that takes into account the time feature, 

considering the relationship between the usage time of the devices and the probability distribution of 

their operational states. This approach allows for a better estimation of HMM parameters, thereby 

achieving more accurate load monitoring.  

2.  Problem description and hidden Markov model 

2.1.  NILM 

NILM is the process of monitoring the power consumption of each load from the overall load. Assuming 

that each load has multiple states and the active power consumption of one load varies significantly 

between different states, while it is similar within the same state. Therefore, the power consumption of 

the appliance 𝑖 at time 𝑡 can be represented as: 

𝑃𝑡
𝑖 = ∑ 𝑠𝑡

𝑖,𝑘𝑃𝑖,𝑘

𝐾𝑖

𝑘=1

(2.1) 

Where 𝐾𝑖  is the total number of states that the appliance 𝑖 can have, 𝑠𝑡
𝑖,𝑘 indicates whether the 

appliance 𝑖 is in state 𝑘 at time 𝑡, which is a 0-1 variable, and 𝑃𝑖,𝑘 is the active power associated with 

state 𝑘 of the appliance 𝑖. Assuming the total number of appliances in the house is 𝑀, then the total 

active power consumed by all appliances at time 𝑡 is 

𝑃𝑡
𝑎𝑙𝑙 = ∑ ∑ 𝑠𝑡

𝑖,𝑘𝑃𝑖,𝑘

𝐾𝑖

𝑘=1

𝑀

𝑖=1

(2.2) 

Therefore, NILM is equivalent to the process of acquiring 𝑃𝑡
𝑖 on the basis of 𝑃𝑡

𝑎𝑙𝑙. 

2.2.  Hyper-state encoding for NILM 

In NILM, it is necessary to first classify the state of each load to obtain 𝑠𝑡
𝑖,𝑘

 and 𝑃𝑖,𝑘. For this purpose, 

for each load, the clustering algorithm is used to categorizing its active power into different levels 

corresponding to different states. To fully utilize the data and limit the complexity of algorithm, we 

adopt the K-means algorithm. Its basic idea is to divide samples into K clusters by minimizing the 

distances between samples in the same cluster center. Since the number of clusters K needs to be 

predetermined, similar power values may be categorized into different states. Therefore, we decrease 𝐾 

and cluster again once cluster centers are similar. After clustering, the centroids of the clusters equal to 

𝑃𝑖,𝑘, and K equal to 𝐾𝑖. 

At any moment, the states of all M loads together form a combination of states. we define this 

combination as a " hyper-state" and establish a correspondence between the hyper-state and the state 

combinations by using binary encoding. The specific steps are as follows: 

1) Allocate the number of binary encoding digits of each load base on 𝐾𝑖  

2) Convert each state of every load to a binary representation.  

3) Concatenate the binary encodings of each load to obtain the hyper-state encoding.  

4) Convert the binary code to decimal, and use it as the encoding for the load's hyper-state. 

In this way, by rewriting the hyper-state encoding into binary form and separating it, it is easy to 

achieve a one-to-one correspondence between the state combination and the hyper-state. 
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2.3.  Problem Modeling 

2.3.1.  Hidden Markov model. HMM is a statistical model describing stochastic processes with hidden 

states. In an HMM, the hidden states are not observable, while the observations are visible. The model 

assumes that observations are independent of each other and that the current state is only related to the 

previous state. 

If we consider hyper-state as hidden state and total electricity meter reading as observation, the course 

to realize NILM can be transformed into the decoding of an HMM. 

2.3.2.  HMM in NILM. The method of obtaining parameters for HMM based on hyper-state. Assuming 

the hyper-state at time t is xt and the total meter reading is Ot, the parameters of the HMM can be 

calculated as follows: 

1) State Transition Probability Matrix 𝐴:  

𝐴[𝑖, 𝑗] = 𝑃(𝑥𝑡 = 𝑗|𝑥𝑡−1 = 𝑖) =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑗
𝑁
𝑗=1

(2.3) 

which indicates the probability of transitioning from hyper-state 𝑖  to hyper-state 𝑗  between 

consecutive time points. 𝑛𝑖𝑗 represents the number of transitions from hyper-state 𝑖 to 𝑗, and 𝑁 is 

the total number of hyper-states. 

2) Emission Matrix 𝐵: 

𝐵[𝑗, 𝑞] = 𝑃(𝑂𝑡 = 𝑟𝑞|𝑥𝑡 = 𝑗) =
𝑤𝑗𝑞

∑ 𝑤𝑗𝑞
𝑄
𝑞=1

(2.4) 

which shows the probability of the total meter reading being 𝑟𝑞 when the hyper-states is 𝑗. 𝑟𝑞 is the 

𝑞 − 𝑡ℎ possible reading on the total meter, 𝑤𝑗𝑞 is the number of occurrences where the hyper-states is 

𝑗 and the meter reading is 𝑟𝑞, and 𝑄 is the maximum number of different readings the total meter can 

have. 

3) Initial State Probability Distribution Matrix 𝜋:  

𝜋[𝑗] = 𝑃(𝑥𝑡 = 𝑗) =
𝑣𝑗

𝑣
(2.5) 

which gives the probability of the hyper-state being 𝑗 at the initial time. 𝑣𝑗 is the total count of hyper-

states 𝑗, and 𝑣 is the sum of occurrences of all hyper-states in the dataset. 

3.  Time feature based hidden Markov model: 

In classical HMMs, model parameters are assumed always same. However, in fact, considering the 

electricity usage habits of residential households, the parameters vary across different time slots. 

Therefore, we divide the dataset into different time slots. Load state clustering and HMM parameter 

calculation is performed separately for each time slot. This approach not only takes into account of the 

differences in probabilities across different time periods when modeling the HMM, but also limits the 

possible number of hyper-states that may occur in different time slots, thus reducing the model's spatial 

complexity. 

Viterbi algorithm is a method to find the most probable state sequence in an HMM according to the 

observed data sequence. The algorithm initializes the path probabilities for each state and then iteratively 

calculates the maximum probability paths to each state, considering transitions from the previous state 

and the observation probability of the current state. At the final time point, the algorithm determines the 

terminating state with the highest probability and reconstructs the entire state sequence by backtracking 

through previous states. 

Traditional Viterbi algorithm assumes precise HMM parameters known, but actually it is impossible 

to obtain precise parameters. Therefore, we have to consider the probability matrices obtained from 

historical data as the probability matrices HMM, which leads to accumulated biases over time, as the 

deviation will continue to accumulate with increasing time. Additionally, the memory required for 

recording sequences and the time cost for backtracking to find the maximum probability path increase 
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continuously. Moreover, in NILM, it makes little sense to focus on historical appliance states. By 

contrast, the load state at the current moment is more worthy of attention. Therefore, we simplify the 

Viterbi algorithm: 

1) Simplified Time Series Analysis: Only focus on the current and immediately preceding moments 

during the NILM process. 

2) Elimination of Backtracking: Once the hyper-state for the current moment is determined, avoid 

backtracking to solve for past states. 

Consequently, if the current moment is 𝑡, the specific steps for NILM are as follows: 

1) Choose different matrices 𝐴､𝐵､𝜋 according to different time slots. 

2) Calculate the probability for each hyper-state: 

𝑃𝑡−1[𝑗] = 𝜋[𝑗] ⋅ 𝐵[𝑗, 𝑞𝑡−1], 𝑗 = 1,2, … , 𝑁 (3.1) 

3) Acquire the probabilities for each hyper-state: 

𝑃𝑡[𝑖] = max
𝑖

(𝑃𝑡−1[𝑗] ⋅ 𝐴[𝑗, 𝑖] ⋅ 𝐵[𝑖, 𝑞𝑡]) , 𝑖 = 1,2, … , 𝑁 (3.2) 

4) Regard �̃�𝑡 = argmax
𝑖

(𝑃𝑡) as the current hyper-state. 

5) Convert the hyper-state to binary format and ascertain the status of each appliance. 

6) Estimate the current power for each appliance based on the estimated states. 

4.  Case study 

4.1.  Experiment Settings 

The AMPds2 dataset [5] is selected to validate the effectiveness of the proposed load NILM method. 

This dataset is sampled at minute intervals and records the power data of various appliances in a 

Canadian household over two years, with timestamps annotated. 

Since the purpose of NILM is to identify the delayed usage of high-power appliances, it is more 

important to focus on these devices during load monitoring. We conduct experiments using one year of 

data from five appliances: dishwasher (DWE), refrigerator (FRE), heat pump (HPE), kitchen stove 

(WOE), and clothes dryer (CDE), selected from the dataset. 

In addition to providing power measurement data for each appliance, the AMPds2 dataset also 

includes the difference between the total household consumption and the measured consumption of each 

appliance, known as the unknown power loss (UNE). To better reflect real-world scenarios, this paper 

sets the noise in aggregate load according to it.  

4.2.  Evaluation Metrics 

Accuracy, Multistate F-score, Root Mean Square Error (RMSE) and Estimation Accuracy (Est.Acc) are 

used to assess the accuracy of load state estimation and load power estimation: 

1) Accuracy: represents the proportion of correctly estimated states out of the total states  

𝐴𝑐𝑐 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
(4.1) 

2) F-score for Multiple States: 

𝐹 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(4.2) 

𝑖𝑛𝑎𝑐𝑐 = ∑
|�̂�𝑡

𝑖 − 𝑠𝑡
𝑖|

𝐾𝑖

𝑇

𝑡=1
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝 − 𝑖𝑛𝑎𝑐𝑐

𝑡𝑝 − 𝑓𝑝
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝 − 𝑖𝑛𝑎𝑐𝑐

𝑡𝑝 + 𝑓𝑛
 

�̂�𝑡
𝑖 represents the identified state of the appliance 𝑖 at time 𝑡, 𝑠𝑡

𝑖 is the true state of the appliance 

𝑖, where 𝑡𝑝､𝑓𝑝 and 𝑓𝑛 respectively represent true positive, false positive, and false negative. 

3) RMSE: Which represents the differences between predicted values and observed values. 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑(𝑃𝑡 − �̂�𝑡)

2
𝑇

𝑡=1

2

(4.3) 

𝑇 represents the number of samples in the test set, 𝑃𝑡 is the actual power of the appliance at time 

𝑡, and �̂�𝑡 is the estimated power of the appliance at time 𝑡. 

4) Estimation Accuracy 

𝐸𝑠𝑡. 𝐴𝑐𝑐 = 1 −
∑ ∑ |�̂�𝑡

𝑖 − 𝑝𝑡
𝑖|𝑀

𝑖=1
𝑇
𝑡=1

2 ∙ ∑ 𝑝𝑡
𝑖𝑀

𝑡=1

(4.4) 

4.3.  Experimental Results 

4.3.1.  Comparison of Power Estimation Accuracy by Different Methods. This paper employs a 10-fold 

cross-validation method to evaluate the load monitoring results of the HMM both without considering 

temporal features and with considering temporal features. The results for each metric are shown in the 

table below. 

Table 1. Load monitoring results without considering time features. 

test appliances DWE FRE HPE WOE CDE 

Acc(%) 99.07099 87.18991 98.94637 99.76987 99.26562 

F(%) 74.0289 86.96113 90.19147 25.50091 68.8569 

RMSE 48.59093 25.69011 121.7068 130.2906 219.1548 

Estimated power consumption ratio (%) 3.355081 34.16568 50.13246 0.453863 11.89291 

actual power consumption ratio(%) 3.753994 30.92359 49.35671 1.761301 14.2044 

Est.Acc(%) 92.6461 

Table 2. Load monitoring results considering time features. 

test appliances DWE FRE HPE WOE CDE 

ACC(%) 99.0787 86.71718 98.83159 99.66995 99.52508 

F(%) 74.38906 86.50885 88.6034 31.36488 99.31038 

RMSE 48.39471 25.42985 115.5175 122.9598 216.4881 

Estimated power consumption ratio (%) 3.33969 34.15035 49.97877 0.5087 12.02249 

actual power consumption ratio(%) 3.753994 30.92359 49.35671 1.761301 14.2044 

Est.Acc(%) 92.8765 

Table 1 and Table 2 respectively present the evaluation results with and without considering the 

time features. It can be seen that except for FRE, the accuracy of all other appliances is up to 98%. The 

F-score of DWE in table2 is 30% higher than that in table2. FRE exhibits a more uniform power 

distribution across the time domain, which makes them less dependent on time features for accurate 

recognition. By contrast, CDE has a concentrated power consumption pattern in certain time slots. By 
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incorporating time features into the monitoring algorithm, it becomes possible to more effectively 

identify appliances like CDE. 

It can be seen that for WOE, satisfactory results can’t be achieved, regardless of whether temporal 

features are considered or not. This is primarily due to its low frequency of use and the short duration 

of each use, which results in low initial probabilities. Additionally, the power used during operation is 

similar to a specific state of a heat pump (HPE), making it difficult to distinguish its operational state. 

On the other hand, for other frequently used high-power devices, the load monitoring method described 

in this paper achieves good accuracy. By considering time features, the calculation criteria for the F-

score becomes more stringent due to the more detailed division of states, which may result in a decrease 

in the F-score for some appliances. However, by this means, the RMSE of each appliance decreases and 

the Est.Acc increases, which means that this method better establishes the correlation between states 

and power levels, allowing for more accurate power estimation and reduced error in fact. 

4.3.2.  Load monitoring Results. The results of load monitoring for all appliances on a certain day in the 

test set are as follows: 

  

Figure 1. Estimated active power Figure 2. Actual measured active power. 

On a certain day, the actual power and the estimated power after monitored for HPE and FRE are as 

shown in the following diagram: 

  
Figure 3. Monitoring results of HPE Figure 4. Monitoring results of FRE. 

5.  Conclusion 

This paper proposes the time feature based hidden Markov model for NILM. Firstly, a hyper-state 

representation based on binary encoding is defined. Secondly, by considering temporal features, the 

states of all household appliances within different time periods are modeled as an HMM. To further 

enhance the efficiency of the algorithm, a simplified Viterbi algorithm is used. On this basis, cross-
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validation is employed on the AMPds2 dataset to test the HMMs built with and without temporal 

features under noisy conditions. The case study confirms the advantages of the proposed time-feature 

based HMM modeling and the simplified Viterbi algorithm, demonstrating their effectiveness in NILM. 
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