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Abstract: The potential role of CDKN2A in substituting MDM2 in its binding with p53 is
investigated in this study, emphasizing the significance of wild-type p53 in cancer
suppression and its potential contribution to reducing cancer incidence. The protein
sequences of CDKN2A, MDM2, and p53 were obtained from the UniProt database and
input into AlphaFold2 to predict their three-dimensional structures. Subsequently, potential
binding sites within these structures were analyzed using PLIP software. The results provide
new insights into the role of CDKN2A in regulating the stability of p53, suggesting that
CDKN2A may substitute for MDM2 in its interaction with p53. This research advances the
field of structural biology and offers new tools and perspectives for drug discovery and
biomedical research.
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1. Introduction

Cancer remains a global challenge, with its pathogenesis not yet fully elucidated. Researchers have
employed various therapeutic strategies, such as chemotherapy, targeted therapy, and
immunotherapy, for patient treatment. Among these, targeted therapy aims to target specific
oncogenes for treatment. Studies have shown that TP53 is a critical tumor suppressor, playing a key
role by inducing cell cycle arrest or apoptosis [1]. The activation of TP53 is detrimental to the
initiation and progression of tumors [2]. The synthesis and stability of TP53 are regulated by
various modifications, including acetylation and phosphorylation [3]. TP53 degradation primarily
occurs through two pathways: MDM2-mediated degradation and autophagy. MDM2, an E3
ubiquitin ligase, is responsible for the degradation of TP53 in wild-type cells [4]. Research indicates
that the alternative product of CDKN2A, CDKN2A itself, directly binds to MDM2, blocking
MDM2-induced TP53 degradation and enhancing TP53-dependent transactivation and apoptosis to
suppress the oncogenic effects of MDM2 [5].

Current research primarily employs experimental methods to explore action sites and protein
binding sites. Artificial intelligence (AI) has already established a comprehensive presence in the
medical field, creating various cancer screening methods and databases. The use of AI can
accelerate the research process, predict potential targets in advance, and provide new ideas for
further investigation. As a result, it significantly improves cancer screening and shortens treatment
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times. The DeepMind team has developed the first computational method that can predict protein
structures with near-experimental accuracy in most cases—AlphaFold2 [6]. This study utilized
AlphaFold2 to predict the binding sites of p14ARF with MDM2, thereby preventing the
ubiquitination of TP53 and achieving an anti-cancer effect.

 An African-specific variant of TP53 reveals PADI4 as a regulator of p53-mediated tumor
suppression

 Targeting p53 pathways: mechanisms, structures, and advances in therapy
 Understanding the complexity of p53 in a new era of tumor suppression
 Drugging p53 in cancer: one protein, many targets
 The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory

feedback loop with p53 and MDM2
 Highly accurate protein structure prediction with AlphaFold

2. Method

2.1. AlphaFold2

AlphaFold2, developed by the DeepMind team, is recognized as the most accurate protein 3D
structure prediction model to date, revolutionizing the field of biology and demonstrating the
potential of AI to expedite scientific advancement. It has been further refined from its predecessor,
with a focus on training directly on protein atomic coordinates, which has enhanced the efficiency
of elucidating protein structures. AlphaFold2 has achieved precision at the atomic level, matching
the measurement accuracy of experimental structural biology.

The architecture of AlphaFold2 is composed of four main components: the input model, the
Evoformer, the structural module, and the output module, complemented by iterative loops.

The input model consists of sequence and structural databases. A specific amino acid sequence is
initially input, and its homologs are identified within sequence databases such as UniRef 90, BFD,
and Mgnify clusters, followed by the performance of multiple sequence alignment (MSA). Feasible
3D structures of homologs are searched for in protein structure databases like PDB and PDB70
clusters [7-9], leading to the construction of a pairwise distance matrix between amino acids.
Sequence features and amino acid features are then extracted, and the MSA representation is
provided to the Evoformer. The input model serves as the foundation for AlphaFold2's prediction
process, directly influencing the accuracy and reliability of subsequent structural predictions.

The Evoformer treats protein structure prediction as a graph reasoning problem in
three-dimensional space, facilitating the exchange of information between residue pair
representations and MSA representations. It employs self-attention mechanisms to process MSA
data, enabling the model to consider information from all other residues when predicting the
structure of a particular residue. The self-attention mechanism allows for the exchange of
information between residue pairs, capturing long-range dependencies within the protein sequence.
A gating mechanism within the Evoformer selectively focuses on certain sequences or residue pairs
during MSA processing to enhance prediction accuracy. The Evoformer calculates the outer product
mean between residue pairs, assisting the model in understanding the relative spatial relationships
between residues. It also utilizes a triangular self-attention mechanism, based on the principle that
any two sides of a triangle can influence the third side, to further refine spatial relationships
between residues. Through iterative updates of residue representations, the Evoformer gradually
optimizes the prediction of protein structures, integrating information from different sequences and
using evolutionarily conserved patterns to guide structure prediction. The Evoformer transforms
information from MSA and pairwise distance matrices into residue representations, which are then
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further processed by the structural module. The output of the Evoformer is a refined residue
representation, which is passed to the structural module for the prediction of the protein's 3D
structure. The design of the Evoformer enables AlphaFold2 to effectively harness sequence
information and evolutionary signals for the prediction of protein 3D structures.

The structural module employs a Transformer neural network to convert the abstract
representation of the protein structure into specific three-dimensional spatial coordinates. Within
this module, each residue is treated as a separate entity, and the output module uses neural networks
to predict the rotation angles and spatial translation positions required to place each residue. These
predictions are based on the internal abstract representations and sequence features obtained in
previous steps. By applying the predicted rotations and translations to the residues, AlphaFold2
generates the 3D coordinates of the protein, representing its structure in space. The Predicted Local
Distance Difference Test (pLDDT) is used by AlphaFold2 as a confidence metric to assess the
reliability of the predicted structure. A higher pLDDT value indicates that the predicted local
structure is closer to the experimentally measured result. AlphaFold2 refines the prediction results
through multiple iterative loops, adjusting parameters based on the current predictions to optimize
subsequent results. Ultimately, AlphaFold2 outputs the 3D structure of the protein, which can be
used for further biological research, drug design, or other applications. The output 3D structure
typically requires professional software for visualization and analysis, aiding researchers in better
understanding the protein's functional and structural characteristics.

The iterative loop involves three cycles of data refinement to enhance the reliability of the
results.

Despite its achievements, AlphaFold2 has certain limitations. Its predictions of protein structures
are only about two-thirds as precise as laboratory measurements. It is currently limited to predicting
monomeric structures, and further improvements are needed for predicting protein complexes or
multimeric structures. The current interpretability of deep learning models is relatively low, which
restricts the application of the model in certain situations. AlphaFold2 mainly predicts static
structures and is still unable to accurately predict the real-time dynamic changes and functional
states of proteins. Its structure prediction is based on MSA data, which requires a large number of
evolutionarily related sequences, potentially leading to slower prediction speeds and other issues.

2.2. UniProt

UniProt is a comprehensive protein knowledge database maintained by the UniProt Consortium,
which includes the European Molecular Biology Laboratory’s European Bioinformatics Institute
(EMBL-EBI), the Swiss Institute of Bioinformatics (SIB), and the National Center for
Biotechnology Information (NCBI). UniProt contains the following main sub-databases:

UniProtKB (UniProt Knowledgebase): Provides detailed protein function annotations and
sequence information.

UniParc: A comprehensive protein sequence database used to track protein sequences across
different databases.

UniRef: Reduces sequence redundancy through clustering to facilitate rapid protein sequence
searches.

Proteomes: Contains information on proteomes from various organisms.
PIR-PSD (Protein Information Resource-Protein Sequence Database): A historically significant

protein sequence database.
Through UniProt, detailed protein sequences for MDM2, P53, and CDKN2A were obtained and

input into AlphaFold2 for three-dimensional structure prediction. The official UniProt website is
https://www.uniprot.org.

Specific information is as follows:
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MDM2 has the UniProt ID Q00987, and its sequence is:
MCNTNMSVPTDGAVTTSQIPASEQETLVRPKPLLLKLLKSVGAQKDTYTMKEVLFYLG

QYIMTKRLYDEKQQHIVYCSNDLLGDLFGVPSFSVKEHRKIYTMIYRNLVVVNQQESSDSG
TSVSENRCHLEGGSDQKDLVQELQEEKPSSSHLVSRPSTSSRRRAISETEENSDELSGERQR
KRHKSDSISLSFDESLALCVIREICCERSSSSESTGTPSNPDLDAGVSEHSGDWLDQDSVSDQ
FSVEFEVESLDSEDYSLSEEGQELSDEDDEVYQVTVYQAGESDTDSFEEDPEISLADYWKC
TSCNEMNPPLPSHCNRCWALRENWLPEDKGKDKGEISEKAKLENSTQAEEGFDVPDCKKT
IVNDSRESCVEENDDKITQASQSQESEDYSQPSTSSSIIYSSQEDVKEFEREETQDKEESVESS
LPLNAIEPCVICQGRPKNGCIVHGKTGHLMACFTCAKKLKKRNKPCPVCRQPIQMIVLTYFP

P53 has the UniProt ID P04637, and its sequence is:
MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAMDDLMLSPDDIEQWFTEDPGP

DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAKS
VTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE
RCSDSDGLAPPQHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCNSS
CMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENLRKKGEPHHELPPGS
TKRALPNNTSSSPQPKKKPLDGEYFTLQIRGRERFEMFRELNEALELKDAQAGKEPGGSRA
HSSHLKSKKGQSTSRHKKLMFKTEGPDSD

CDKN2A has the UniProt ID Q8N726, and its sequence is:
MVRRFLVTLRIRRACGPPRVRVFVVHIPRLTGEWAAPGAPAAVALVLMLLRSQRLGQQPL
PRRPGHDDGQRPSGGAAAAPRRGAQLRRPRHSHPTRARRCPGGLPGHAGGAAPGRGAAG
RARCLGPSARGPG

AlphaFold2 is an artificial intelligence program developed by DeepMind, dedicated to the
precise prediction of protein three-dimensional structures. Through deep learning and complex
computational models, AlphaFold2 is capable of predicting protein conformations at atomic
resolution. It finds significant applications in protein structure prediction, biological research, drug
design, disease research, protein engineering, and bioinformatics. The three-dimensional structures
of MDM2, TP53, and CDKN2A were predicted using AlphaFold2, and potential binding sites
within these structures were explored.

2.3. PLIP (Protein-Ligand Interaction Profiler)

PLIP is an advanced tool designed for the analysis of protein-ligand complexes, automatically
extracting and characterizing various interactions between proteins and ligands from their
three-dimensional structures. Developed by researchers at the University of Gothenburg, PLIP is
maintained as an open-source tool and is continuously updated by an active community[10].

The tool can identify and visualize a wide range of interaction types, including hydrogen bonds,
water bridges, salt bridges, halogen bonds, hydrophobic interactions, π-stacking, π-cation
interactions, and metal complexes. Through its intuitive graphical interface, PLIP provides detailed
insights into the structural and interactional aspects of protein-ligand complexes, thereby facilitating
a deeper understanding of molecular recognition and interaction mechanisms. This tool is
considered invaluable for advancing research in fields such as drug design, structural biology, and
molecular modeling.

3. Results

Predicted Structures and Binding Sites of MDM2, P53, and CDKN2A
The amino acid sequences of MDM2, P53, and CDKN2A proteins were retrieved from UniProt.

These sequences were then input into the AlphaFold2 program, which employs deep learning and
complex computational models to predict their structures. The predicted structures revealed the
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binding sites between MDM2 and P53, as well as between CDKN2A and MDM2. The interaction
between MDM2 and P53 is characterized by the involvement of α-helices, β-strands, and disordered
regions. Similarly, the interaction between CDKN2A and MDM2 is also characterized by the
presence of α-helices, β-strands, and disordered regions in Figures 1 and 2.

Figure 1: The structure and binding sites of MDM2 and P53, along with their confidence scores.
The predicted local Distance Difference Test (plDDT) scores are represented as follows: orange
(plDDT < 50), yellow (50 < plDDT < 70), light blue (70 < plDDT < 90), and dark blue (plDDT >
90).

Figure 2: The structure and binding sites of MDM2 and CDKN2A, along with their confidence
scores. The predicted local Distance Difference Test (plDDT) scores are represented as follows:
orange (plDDT < 50), yellow (50 < plDDT < 70), light blue (70 < plDDT < 90), and dark blue
(plDDT > 90).
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PLIP Prediction of CDKN2A and MDM2 Interactions

.
Figure 3: The interaction interface of p53 and MDM2. Blue: Protein, Orange: Ligand, Purple:
Water, Yellow: Charge center, White: Aromatic ring center, Pink: Metal ion, Dark Blue: Hydrogen
bond, Green: π-Stacking, Orange-Yellow: Salt bridge.

Figure 4: The interaction interface of CDKN2A and MDM2. Blue: Protein, Orange: Ligand, Purple:
Water, Yellow: Charge center, White: Aromatic ring center, Pink: Metal ion, Dark Blue: Hydrogen
bond, Orange-Yellow: Salt bridge.

PLIP results suggest that the binding site between p53 and MDM2 may involve hydrophobic
interactions, hydrogen bonds, and salt bridges as shown in Table 1 and Figure 3. Similarly, the
binding site between CDKN2A and MDM2 also involves hydrophobic interactions, hydrogen bonds,
and salt bridges as shown in Table 1 and Figure 4. The interference of CDKN2A with the MDM2
binding site may occur at hydrophobic interaction sites at amino acids 19 and 280, and at hydrogen
bond sites at amino acids 16 and 283, while no salt bridge interaction is involved.

In summary, the structural predictions for MDM2, P53, and CDKN2A proteins, derived through
AlphaFold2, elucidate critical binding interactions that are essential for understanding their
biological functions. The analyses indicate that the interactions between MDM2 and P53, as well as
between CDKN2A and MDM2, are characterized by key structural elements, including α-helices,
β-strands, and disordered regions. Additionally, the PLIP results highlight the significance of
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hydrophobic interactions, hydrogen bonds, and salt bridges in these binding sites. Notably,
CDKN2A's interference with MDM2 binding may specifically target hydrophobic and hydrogen
bond interactions at designated amino acid positions, underscoring the complex regulatory
mechanisms involved in these protein interactions.

Table 1: Potential binding sites of p53 and MDM2 (left); Potential binding sites of MDM2 and
CDKN2A (right).

p53 and MDM2 MDM2 and CDKN2A
Hydrophobic Interactions
1 17A GLU
2 17A GLU
3 19A PHE
4 19A PHE
5 19A PHE
6 19A PHE
7 23A TRP
8 23A TRP
9 23A TRP
10 25A LEU
11 25A LEU
12 26A LEU
13 26A LEU
14 27A PRO
15 28A GLU
16 30A ASN
17 32A LEU
18 32A LEU
19 32A LEU
20 49A ASP
21 51A GLU
22 52A GLN
23 52A GLN
24 136A GLN
25 137A LEU
26 181A ARG
27 280A ARG
28 280A ARG
Hydrogen Bonds
1 15A SER
2 16A GLN
3 17A GLU
4 17A GLU
5 17A GLU
6 17A GLU
7 19A PHE
8 21A ASP
9 25A LEU

Hydrophobic Interactions
1 18B GLN
2 19B ILE
3 19B ILE
4 19B ILE
5 21B ALA
6 189B ILE
7 189B ILE
8 191B LEU
9 191B LEU
10 193B PHE
11 193B PHE
12 195B GLU
13 197B LEU
14 199B LEU
15 199B LEU
16 202B ILE
17 204B GLU
18 205B ILE
19 245B PHE
20 245B PHE
21 245B PHE
22 254B LEU
23 274B GLU
24 274B GLU
25 276B TYR
26 278B VAL
27 280B VAL
28 280B VAL
29 285B GLU
30 323B TRP
31 323B TRP
32 323B TRP
33 439B VAL
Hydrogen Bonds
1 16B THR
2 16B THR
3 16B THR
4 18B GLN
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10 30A ASN
11 32A LEU
12 49A ASP
13 49A ASP
14 120A LYS
15 120A LYS
16 136A GLN
17 178A HIS
18 181A ARG
19 181A ARG
20 181A ARG
21 239A ASN
22 241A SER
23 241A SER
24 243A MET
25 243A MET
26 276A ALA
27 277A CYS
28 280A ARG
29 280A ARG
30 280A ARG
31 280A ARG
32 280A ARG
33 280A ARG
34 280A ARG
35 283A ARG
36 337A ARG
π-Stacking
1 178A HIS
Salt Bridges
1 120A LYS
2 139A LYS
3 273A ARG
4 280A ARG
5 333A ARG

5 19B ILE
6 22B SER
7 22B SER
8 24B GLN
9 196B SER
10 196B SER
11 201B VAL
12 201B VAL
13 203B ARG
14 203B ARG
15 205B ILE
16 206B CYS
17 206B CYS
18 208B GLU
19 208B GLU
20 255B ASP
21 273B ASP
22 275B VAL
23 275B VAL
24 276B TYR
25 277B GLN
26 277B GLN
27 277B GLN
28 279B THR
29 279B THR
30 279B THR
31 281B TYR
32 281B TYR
33 283B ALA
34 284B GLY
35 284B GLY
36 286B SER
37 286B SER
38 442B GLN
Salt Bridges
1 204B GLU
2 248B GLU
3 274B GLU
4 274B GLU
5 285B GLU
6 285B GLU

4. Conclusion

The UniProt database was utilized in this study to determine the protein sequences of CDKN2A,
MDM2, and p53. Subsequently, the protein sequences of MDM2 in complex with p53, as well as

Table 1: (continued).
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CDKN2A in complex with MDM2, were input into AlphaFold 2 to obtain their three-dimensional
structures [11]. Thereafter, the PLIP software was employed to analyze the resulting
three-dimensional structures in order to identify potential binding sites [12]..

Artificial intelligence techniques were applied in this study to explore whether CDKN2A can
replace the binding of MDM2 with p53, thereby reducing p53 degradation [13, 14]. AlphaFold 2, an
artificial intelligence tool capable of predicting protein three-dimensional structures with
experimental-level accuracy, was employed, significantly enhancing the efficiency of scientific
research. Compared to traditional experimental methods, AlphaFold 2 not only saves time and costs
but also provides precise predictive models for many proteins that are challenging to resolve
through experimental means. However, certain limitations are associated with AlphaFold's
application in dynamic structures and complex biological systems[15]. Overall, as an AI tool,
AlphaFold excels in efficiently and accurately predicting protein structures; nonetheless, there is
still room for improvement in the prediction of dynamic structures and the practical handling of
complex biological systems.

The research findings suggest that p53 may interact with CDKN2A at specific sites through
different types of molecular interactions: primarily hydrophobic interactions at amino acid positions
19 and 280 of p53, and predominantly hydrogen bonding at positions 16 and 283. This discovery
provides new insights into the potential role of CDKN2A in regulating p53 stability. The developers
of AlphaFold were awarded the 2024 Nobel Prize in Chemistry, marking a significant breakthrough
for artificial intelligence in the scientific domain. This award recognizes the contributions of the
DeepMind team in utilizing deep learning techniques to address the protein folding problem. This
achievement not only advances the field of structural biology but also offers powerful tools for drug
discovery and biomedical research.

This trend reflects the increasingly important role of AI in scientific research, particularly in data
analysis and the resolution of complex problems [16]. It has the potential to transform our
understanding and methodologies in scientific inquiry.
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