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Abstract. Many physics and mathematics problems generate linear equation systems, and 

solving linear equation systems has become an important proposition. Therefore, combined with 

the characteristics of modern computers, various methods for solutions need to be sought. This 

article introduces applications of linear equation systems in different fields, as well as 

representative figures and works with outstanding achievements. It focuses on providing 

formulas and corresponding Matlab codes for Gauss elimination, Jacobi iteration, and G-S 

iteration to solve equation systems, and rigorously proves the sufficient and necessary condition 

for convergence of iterative formula and also proves the convergence of different iteration 

methods under different types of coefficient matrices. Based on these solving methods, two 

examples are practiced in Matlab, the running time and iteration times of different methods are 

comprehensively compared. Thus, the superiority of the G-S iterative method is obtained. Finally, 

when there are zero elements in the diagonal elements of the coefficient matrix, the article 

proposes an improved method to solve this problem.  
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1.  Introduction 

The study of linear equation systems can be traced back to ancient China. The earliest mathematical 

work in China, the Book of Arithmetic, included some early problems with linear equation systems. The 

Nine Chapters on Arithmetic, discussed the solutions to linear equation systems in the “Equations” 

chapter. 

In the late summer of 1949, Harvard University professor Wassily Leontief decomposed the 

American economy into 500 sectors, such as the coal industry, automobile industry, transportation 

system, and so on. For each department, he wrote a linear equation describing how the output of that 

department is allocated to other economic sectors. Leontief simplified the problem into a system of 42 

equations containing 42 unknowns. To solve Leontief’s 42 equations, the Mark II computer took 56 

hours of computation to obtain the final answer. Leontief was awarded the Nobel Prize in Economics in 

1973 and opened the door to a new era of economic mathematical modeling. The work at Harvard in 

1949 marked the beginning applying computers to analyse large-scale mathematical models, and since 

then, many researchers in other fields have applied computers to analyze mathematical models. Due to 

the large amount of data involved, these models are usually linear, that is, they are described by a system 

of linear equations. 
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In addition, linear equation systems have wide applications in different fields and aspects, and many 

mathematical and physical models ultimately boil down to solving linear equation systems. 

Consider n-order linear differential equation problems 

 𝑥(𝑛) + 𝑎1(𝑡)𝑥
(𝑛−1) +⋯+ 𝑎𝑛−1(𝑡)�̇� + 𝑎𝑛(𝑡)𝑥 = 𝑓(𝑡) (1) 

where the coefficient polynomials and right-hand polynomial are continuous functions. 

Set 

 𝑥1 = 𝑥,𝑥2 = �̇�,𝑥3 = �̈�,⋯,𝑥𝑛 = 𝑥
(𝑛−1) (2) 

there is 

  𝑥1̇ = 𝑥2,𝑥2̇ = 𝑥3,⋯,𝑥𝑛−1̇ = 𝑥𝑛 (3) 

 𝑥�̇� = −𝑎𝑛(𝑡)𝑥1 − 𝑎𝑛−1(𝑡)𝑥2 −⋯𝑎1(𝑡)𝑥𝑛 + 𝑓(𝑡) (4) 

set up 

 �̃� = (

𝑥1
𝑥2
⋮
𝑥𝑛

),�̇̃� = (

𝑥1̇
𝑥2̇
⋮
𝑥�̇�

) (5) 

then 

 �̇̃� =

(

 
 

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 1

−𝑎𝑛(𝑡) −𝑎𝑛−1(𝑡) −𝑎𝑛−2(𝑡) ⋯ −𝑎1(𝑡))

 
 
�̃� +

(

 
 

0
0
⋮
0
𝑓(𝑡))

 
 

 (6) 

This becomes a problem of linear differential equation systems, then we can explore the general 

theory of linear differential equation systems. 

When scientists and engineers study the flow in some networks, they will derive a system of linear 

equations. The problem of network analysis is to determine the traffic of each branch when local 

information (such as the input and output of the network) is known. The basic assumption of network 

flow is that the total inflow of the network is equal to the total outflow. Because traffic is conserved in 

each node, we have similarly, the traffic of each node can be described by an equation, and multiple 

nodes can be represented by a system of linear equations. 

2.  Three common methods 

Studying how to solve linear equation systems is an important issue, and we have the following three 

common methods for solving the system of linear equations. 

2.1.  Gauss elimination method 

Set the initial linear equation system 

 {

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

⇔

{
 
 

 
 𝑎11

(1)
𝑥1 + 𝑎12

(1)
𝑥2 +⋯+ 𝑎1𝑛

(1)
𝑥𝑛 = 𝑏1

(1)

𝑎21
(1)
𝑥1 + 𝑎22

(1)
𝑥2 +⋯+ 𝑎2𝑛

(1)
𝑥𝑛 = 𝑏2

(1)

⋮

𝑎𝑛1
(1)
𝑥1 + 𝑎𝑛2

(1)
𝑥2 +⋯+ 𝑎𝑛𝑛

(1)
𝑥𝑛 = 𝑏𝑛

(1)

 (7) 

the coefficient matrix is A. This article only discusses the reversible case of A. 

If 𝑎11
(1)
≠ 0,let 𝑙𝑖1 =

𝑎𝑖1
(1)

𝑎11
(1),𝑖 = 2,3⋯𝑛,subtract the i-th equation from the first equation and multiply 

it by 𝑙𝑖1(𝑖 = 2,3⋯𝑛) to obtain the following system of equations 
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{
 
 

 
 𝑎11

(1)
𝑥1 + 𝑎12

(1)
𝑥2 +⋯+ 𝑎1𝑛

(1)
𝑥𝑛 = 𝑏1

(1)

                 𝑎22
(2)
𝑥2 +⋯+ 𝑎2𝑛

(2)
𝑥𝑛 = 𝑏2

(2)

⋮

                 𝑎𝑛2
(2)
𝑥2 +⋯+ 𝑎𝑛𝑛

(2)
𝑥𝑛 = 𝑏𝑛

(2)

 (8) 

where 

 𝑎𝑖𝑗
(2)
= 𝑎𝑖𝑗

(1)
− 𝑙𝑖1𝑎1𝑗

(1)
, 𝑏2
(2)

=𝑏𝑖
(1)

-𝑙𝑖1𝑏1
(1)
(𝑖, 𝑗 = 2,3⋯𝑛) (9) 

If 𝑎22
(2)
≠ 0 ,let 𝑙𝑖2 =

𝑎𝑖1
(2)

𝑎22
(2) , 𝑖 = 3,4⋯𝑛 ,Subtract the i-th equation from the second equation and 

multiply it by 𝑙𝑖2, 𝑖 = 3,4⋯𝑛.Generally, at step k, there is a system of equations. 

 

{
 
 
 

 
 
 𝑎11

(1)
𝑥1 + 𝑎12

(1)
𝑥2 +⋯+ 𝑎1𝑛

(1)
𝑥𝑛 = 𝑏1

(1)

                 𝑎22
(2)
𝑥2 +⋯+ 𝑎2𝑛

(2)
𝑥𝑛 = 𝑏2

(2)

⋮

                 𝑎𝑘2
(𝑘)
𝑥𝑘 +⋯+ 𝑎𝑘𝑛

(𝑘)
𝑥𝑛 = 𝑏𝑘

(𝑘)

⋮

                 𝑎𝑛𝑘
(𝑘)
𝑥𝑘 +⋯+ 𝑎𝑛𝑛

(𝑘)
𝑥𝑛 = 𝑏𝑛

(𝑘)

 (10) 

where  

𝑎𝑖𝑗
(𝑘)

= 𝑎𝑖𝑗
(𝑘−1)

− 𝑙𝑖,𝑘−1𝑎𝑘−1,𝑗
(𝑘−1)

,𝑏𝑖
(𝑘)

= 𝑏𝑖
(𝑘−1)

− 𝑙𝑖,𝑘−1𝑏𝑘−1
(𝑘−1)

,𝑙𝑖,𝑘−1 =
𝑎𝑖,𝑘−1
(𝑘−1)

𝑎
𝑘−1,𝑘−1
(𝑘−1) (𝑖, 𝑗 = 𝑘, 𝑘 + 1⋯𝑛) (11) 

If the value of each step 𝑎𝑖𝑖
(𝑖)
≠ 0, 𝑖 = 1,2⋯𝑛,the system of equations can ultimately be 

 

{
 
 

 
 𝑎11

(1)
𝑥1 + 𝑎12

(1)
𝑥2 +⋯+ 𝑎1𝑛

(1)
𝑥𝑛 = 𝑏1

(1)

                 𝑎22
(2)
𝑥2 +⋯+ 𝑎2𝑛

(2)
𝑥𝑛 = 𝑏2

(2)

⋮

                                           𝑎𝑛𝑛
(𝑛)
𝑥𝑛 = 𝑏𝑛

(𝑛)

 (12) 

We can use back substitution 

 𝑥𝑛 =
𝑏𝑛
(𝑛)

𝑎𝑛𝑛
(𝑛),𝑥𝑘 = (𝑏𝑘

(𝑘)
− ∑ 𝑎𝑘𝑗

(𝑘)𝑛
𝑗=𝑘+1 𝑥𝑗)/𝑎𝑘𝑘

(𝑘)
,𝑘 = 1,2⋯𝑛 − 2, 𝑛 − 1. (13) 

As discussed above, this method requires 𝑎𝑖𝑖
(𝑖)
≠ 0 at each step.It can be proven that the necessary 

and sufficient condition for 𝑎𝑖𝑖
(𝑖)
≠ 0 is that each order principal minor determinant of the coefficient 

matrix A is all non-zero. 

The Gauss elimination method in MATLAB algorithm is simple as follows: 

for k=1:(n-1) 

 m=A(k+1:n,k)/A(k,k); 

 A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-m*A(k,k+1:n); 

 b(k+1:n)=b(k+1:n)-m*b(k); 

 A(k+1:n,k)=zeros(n-k,1); 

end 

x=zeros(n,1); 

x(n)=b(n)/A(n,n); 

for k=n-1:-1:1 
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 x(k)=(b(k)-A(k,k+1:n)*x(k+1:n))/A(k,k); 

end 

In addition, there are also the following iterative methods. Consider a system of linear equations 

A𝑥 = b,where A = D − L − U and D is a matrix composed of the main diagonal elements of A,-L is 

the strict lower triangular matrix of A (with diagonal elements of 0),-U is the strict upper triangular 

matrix of A.The following only considers the case where D is an invertible matrix. 

2.2.  Jacobi iterative method 

The following only considers the case where D is an invertible matrix. 

 A𝑥 = b⇔ (D − L − U)𝑥 = b⇔D𝑥 = (L + U)𝑥 + b⇔ 𝑥 = D−1(L + U)𝑥 + D−1b (14) 

thus the Jacobi iteration method is 

 𝑥(𝑘+1) = 𝐷−1(𝐿 + 𝑈)𝑥(𝑘) + 𝐷−1𝑏 (15) 

This shows the reason why D needs to be reversible. 

The Jacobi iterative method and Matlab algorithm are as follows: 

ep=1e-6; 

D=diag(diag(A)); 

L=-tril(A,-1); 

U=-triu(A,1); 

x=D\(L+U)*x0+D\b; 

while norm(x-x0)>=ep 

 x0=x; 

 x=D\(L+U)*x0+D\b; 

end   

2.3.  Gauss-Seidel iteration method (G-S iteration) 

Similar to the Jacobi iteration method, except that 

 𝑥(𝑘+1) = 𝐷−1(𝐿 + 𝑈)𝑥(𝑘) + 𝐷−1𝑏 (16) 

this step is transformed to 

 𝑥(𝑘+1) = 𝐷−1(𝐿𝑥(𝑘+1) + 𝑈𝑥(𝑘)) + 𝐷−1𝑏 (17) 

and simply it to  

 𝑥(𝑘+1) = (𝐷 − 𝐿)−1𝑈𝑥(𝑘) + (𝐷 − 𝐿)−1𝑏 (18) 

Here appears (𝐷 − 𝐿)−1,a lower triangular in common with the main diagonal elements of D. It can 

be inferred that this only requires D to be reversible to ensure reversibility. 

The Gauss Seidel iterative method and Matlab algorithm are as follows: 

ep=1e-6; 

D=diag(diag(A)); 

L=-tril(A,-1); 

U=-triu(A,1); 

x=(D-L)\U*x0+(D-L)\b; 

while norm(x-x0)>=ep 

 x0=x; 

 x=(D-L)\U*x0+(D-L)\b; 

end 
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3.  Convergence 

In 2.2 and 2.3, it is natural to ask when the iterative vector sequence converges to the exact solution of 

the system of equations, thus leading to the following convergence discussion. 

3.1.1.  Convergence of iterative method 

Consider transforming A𝑥 = 𝑏into𝑥 = 𝐺𝑥 + 𝑑(simply split A and perform a simple transformation), 

which means the iterative formula is 𝑥(𝑘+1) = 𝐺𝑥(𝑘) + 𝑑,where G is called the iterative matrix,and the 

spectral radius is set to ρ(G). 

Theorem 3.1.1: The sufficient and necessary condition for iterative formula 𝑥(𝑘+1) = 𝐺𝑥(𝑘) + 𝑑 

converge is that 𝜌(𝐺)<1. 

Proof: Let  

 ε(k) = 𝑥(k) − 𝑥∗ (19) 

𝑥∗ be the solution of  

 A𝑥 = b (20) 

so as to 

 𝑥(k+1) = G𝑥(k) + d converge⇔ ε(k) → 0,k→∞ (21) 

We can know that 

 ε(k+1) = Gε(k) = Gkε(1) (22) 

thus 

 ε(k) → 0,k→∞⇔Gk → 0, k→∞ (23) 

It can be seen that the proof of theorem 3.1.1 turns into the proof of 

  Gk → 0, k→∞⇔ ρ<1 (24) 

This requires knowledge of the subordinate norm of matrix, the subordinate norm of matrix A is  

 ||A|| = max
𝑥≠0

||𝐴𝑥||

||𝑥||
= max

||𝑥||=1
||𝐴𝑥|| (25) 

and the norm of vector x can be p-norm ||𝑥||𝑝(p=1,2,⋯∞)or any other norm.We provide following 

properties without proof: 

(i) ||A|| ≥ 0, ||A|| = 0 if and only if A=0; 

(ii) |αA| = |α|||A||,for ∀α ∈ R; 

(iii) ||A + B|| ≤ ||A|| + ||B||, ∀A, B ∈ Rn×n; 

(iv) ||Ax|| ≤ ||A|| ∙ ||x||, ∀x ∈ Rn; 

(v) ||AB|| ≤ ||A|| ∙ ||B||, ∀A, B ∈ Rn×n; 

(vi) ||𝐺||∞ = max
𝑖
∑ |𝑎𝑖𝑗|
𝑛
𝑗=1 ; 

On the one hand, consider “⇒”.Assume a certain eigenvalue λ of G and |λ| ≥1 and 

  G𝑥 = λ𝑥(𝑥 ≠ 0) (26) 

then 

 𝐺𝑘𝑥 = 𝜆𝑘𝑥 (27) 

 ||𝐺𝑘𝑥|| = ||𝜆𝑘𝑥|| ≥ ||𝑥|| (28) 
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By definition of the subordinate of G, 

 ||Gk|| ≥
||𝐺𝑘𝑥||

||𝑥||
≥1 (29) 

This is contradictory to 

 Gk → 0, k→∞ (30) 

On the other hand, another derivation direction is more difficult. We can easily deduce that ρ(G) ≤
||G||. 

In fact, for ∀λ , λ is the  eigenvalue of  G , 𝑥  is a rea𝑙 eigenvector belonging to λ .Combine 

property(iv)  

 ||G𝑥|| ≤ ||G|| ∙ ||𝑥||  (31) 

with 

 ||G𝑥|| = ||λ𝑥|| = |λ|||𝑥|| (32)then 

  |λ| ≤ ||G|| (33) 

Therefore 

 ρ(G) ≤ ||G|| (34) 

What if it adds a little more? 

When ρ(G) has a slight perturbation, it becomes to ρ(G)+ε,then we have following theorem. 

Theorem 3.1.2:For ∀𝜀 > 0, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑛𝑜𝑟𝑚 𝑜𝑓 𝐺 𝑡ℎ𝑎𝑡  ||𝐺|| ≤ 𝜌(𝐺)+𝜀. 
Proof:Let 

 G = PJP−1 (35) 

J is the standard type of A, 

 J = [

J1
J2

⋱
JS

],𝐽𝑖 = [

λi 1

λi ⋱
⋱ 1

λi

]

𝑛𝑖×𝑛𝑖

,∑ ni
s
i=1 = n (36) 

Let  

 D = [

1
ε

⋱
εn−1

]

n×n

 (37) 

Then 

  𝐽 = 𝐷−1𝐽𝐷 (38) 

has the following form: 

 𝐽 =

[
 
 
 
J̃1

J̃2
⋱

J̃S ]
 
 
 
, 𝐽𝑖 = [

λi ε

λi ⋱
⋱ ε

λi

]

𝑛𝑖×𝑛𝑖

 (39) 

Thus  

 ||𝐽||∞ ≤ ρ(G) + ε (in fact,the equal sign holds) (40) 
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Consider the relationship between G and 𝐽,Let 

 Q = PD (41) 

Then 

 G = QJ̃Q−1,J̃ = Q−1GQ (42) 

 ||𝐽||∞ = max
||𝑦||∞=1

||𝐽𝑦||∞ = max
||𝑦||∞=1

||𝑄−1𝐺𝑄𝑦||∞ (43) 

Let 

  𝑄𝑦 = 𝑥,  (44) 

Then 

  ||𝐽||∞ = max
||𝑄−1𝑥||∞=1

||𝑄−1𝐺𝑥||∞ (45) 

Through observation, we can let 

  ||𝑥|| = ||Q−1𝑥||∞ (46) 

 ||𝐽||∞ = max
||𝑄−1𝑥||∞=1

||𝑄−1𝐺𝑥||∞ = max
||𝑥||=1

||𝐺𝑥|| = ||𝐺|| (47) 

Then 

  ||G|| ≤ ρ(G) + ε (48) 

Now we can prove “⇐” of theorem 3.1.1. We can always find a ε that 

  ρ(G) + ε < 1 (49) 

holds. By property(v), 

 ||Gk|| ≤ ||G||k ≤ (ρ(G) + ε)k →0 (50) 

By property(i), 

 ||Gk|| → 0⇔ Gk → 0 (51) 

proof completed. 

When the coefficient matrix is some special matrix, there will be some special results. 

3.2.  Special coefficient matrix 

3.2.1.  The coefficient matrix is a strictly diagonally dominant matrix 

Theorem 3.2.1:If A is a strictly diagonally dominant matrix, then the G-S iteration method and Jacobi 

iteration method for solving the linear equation system Ax=b both converge. 

Proof: Firstly, prove the convergence of the G-S iterative method. 

In the discussion of theorem 3.1.1 and the G-S iterative method mentioned above, it is necessary to 

prove that the spectral radius of G = (D − L)−1U is less than 1.Proof by contradiction, assuming a 

certain eigenvalue of G |λ| ≥ 1. 

 |λI − (D − L)−1U| = |(D − L)−1||λ(D − L) − U| = |(D − L)−1||λD − λL − U| (52) 

because 

  |(D − L)−1| ≠ 0(A is a strictly diagonally dominant matrix) (53) 

 |λD − λL − U| only needs to be considered,λD− λL−U is denoted as B  (54) 
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∑ |𝑏𝑖𝑗|
𝑛
𝑗=1
𝑗≠𝑖

= |𝜆|∑ |𝑎𝑖𝑗|
𝑖−1
𝑗=1 + ∑ |𝑎𝑖𝑗|

𝑛
𝑗=𝑖+1 ≤ |𝜆|∑ |𝑎𝑖𝑗|

𝑖−1
𝑗=1 + |𝜆| ∑ |𝑎𝑖𝑗|

𝑛
𝑗=𝑖+1 ≤ |𝜆|(∑ |𝑎𝑖𝑗|

𝑖−1
𝑗=1 +

∑ |𝑎𝑖𝑗|
𝑛
𝑗=𝑖+1 ) < |𝜆||𝑎𝑖𝑖| = |𝑏𝑖𝑖|   (55) 

This indicates that B is also a strictly diagonally matrix, thus B is a non-singular matrix, 

 |B| ≠ 0 (56) 

This λ contradicts the eigenvalue of G, so the spectral radius of G is less than 1.In accordance with 

the theorem 3.1.1,proof completed. 

Further, prove the convergence of Jacobi iteration method. 

At this point,G = D−1(L+ U), it is actually similar to the convergence proof of the G-S iteration 

method, just note that 

  |λI − D−1(L + U)| = |D−1||λD − L − U| (57) 

 B = λD − L − U (58) 

 ∑ |𝑏𝑖𝑗|
𝑛
𝑗=1
𝑗≠𝑖

= ∑ |𝑎𝑖𝑗|
𝑖−1
𝑗=1 +∑ |𝑎𝑖𝑗|

𝑛
𝑗=𝑖+1 ≤ |𝜆|(∑ |𝑎𝑖𝑗|

𝑖−1
𝑗=1 + ∑ |𝑎𝑖𝑗|

𝑛
𝑗=𝑖+1 ) < |𝜆||𝑎𝑖𝑖| = |𝑏𝑖𝑖| (59) 

B is a strictly diagonally matrix, therefore B is a non-singular matrix, 

 |B| ≠ 0 (60) 

so this λ contradicts the eigenvalues of G. 

3.2.2.  The coefficient matrix is a positive definite real symmetric matrix 

Theorem 3.2.2:If A is a real symmetric positive definite matrix, then when 2D-A is positive, the Jacobi 

iteration method converges. 

Proof: The iterative matrix  

 𝐺 = 𝐷−1(𝐿 + 𝑈) = 𝐷−1(𝐷 − 𝐴) = 𝐼 − 𝐷−1𝐴,𝑥 ≠ 0,𝑥 ∈ 𝑅𝑛 (61) 

||𝐺𝑥||𝐴
2 = (𝐴𝐺𝑥, 𝐺𝑥) = (𝐴(𝐼 − 𝐷−1𝐴)𝑥, (𝐼 − 𝐷−1𝐴)𝑥) = ||𝑥||𝐴

2 − ((2𝐷 − 𝐴)𝐷−1𝐴𝑥, 𝐷−1𝐴𝑥) (62) 

we easily know 𝐷−1𝐴 positive definite, and 2D − A is a positive definite. 

Therefore, 

 ((2𝐷 − 𝐴)𝐷−1𝐴𝑥, 𝐷−1𝐴𝑥) > 0 (63) 

then  

 ||𝐺𝑥||𝐴 < ||𝑥||𝐴 holds (64) 

Thus 

 ||𝐺||𝐴 = max
𝑥≠0

||𝐺𝑥||𝐴

||𝑥||𝐴
< 1,𝜌(𝐺) ≤ ||𝐺𝑥||𝐴 < 1 (65) 

then the Jacobi iterative method converges. 

4.  Example 

We will give two examples of system of linear equations Ax=b, run them in MATLAB, solve them 

using the three methods mentioned above, and compare the results of their runs. For the iterative 

methods, an initial value x0 needs to be given. 

 A=(
4 2 1

3 7 2

1 −1 3

),b=(
10

3

5

),𝑥0=(
0

0

0

) (66) 
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Operation results Run solution Duration 

time/second  

Number of iterations  

Gauss elimination method [2.8529,-0.9118,0.4118]’ 0.001969 \ 

Gauss-Seidel iterative method [2.8529,-0.9118,0.4118]’ 0.000453  11 

Jacobi iterative method [2.8529,-0.9118,0.4118]’ 0.001062 22 

 A=(

10 2 3 4
4 13

7 1

9 8

5 3

9 0

3 21

),b=(

2

7
5

3

),𝑥0=(

0

0
0

0

) (67) 

Operation results Run solution/10^-1 Duration 

time/second 

Number of iterations 

Gauss elimination method [0.009,3.553,5.153,-0.665]’ 0.001742 \ 

Gauss-Seidel iterative method [0.009,3.553,5.153,-0.665]’ 0.000374  14 

Jacobi iterative method [0.009,3.553,5.153,-0.665]’ 0.000728 149 

From the table, it can be seen that the Gauss-Seidel iteration method has the shortest duration, the 

fastest solution, and the least number of iterations. Therefore, if Gauss-Seidel iteration can be used 

among the three methods, this method should be adopted. 

5.  Improvement of the iterative method 

The Jacobi iterative and G-S iterative methods require the condition that D is reversible, so what 

improvement should be taken when D is irreversible. At this point, we need to make some changes to 

A. Obviously, doing so will result in the solution and we are supposed to take the impact of disturbance 

of A on the solution into consideration. 

Set Δ be a matrix with very small absolute values of its component elements, the exact solution of 

A𝑥 = b is 𝑥∗.When A𝑥 = b transforms into (A + Δ)𝑥 = b,the solution of the equations become 𝑥∗ +
𝛿,thus (A + Δ)(𝑥∗ + 𝛿) = b.Expand and simplify it,we can obtain 

  δ = −A−1 ∙ Δ ∙ 𝑥∗ − A−1 ∙ Δ ∙ δ.  (68) 

Therefore, 

 ||δ|| ≤ ||A−1|| ∙ ||Δ|| ∙ ||𝑥∗|| + ||A−1|| ∙ ||Δ|| ∙ ||δ|| (69) 

or 

 (1 − ||A−1|| ∙ ||Δ||)||δ|| ≤ ||A−1|| ∙ ||Δ|| ∙ ||𝑥∗||. (70) 

Due to the character of Δ, ||A−1|| ∙ ||Δ|| < 1 can always hold. 

Thereby 

 
||𝛿||

||𝑥∗||
≤

||A−1||∙||Δ||

1−||A−1||∙||Δ||
=

||A−1||∙||A||∙(
||Δ||

||A||)⁄

1−||A−1||∙||A||∙(
||Δ||

||A||)⁄
 (71) 

Using the condition number of A,cond(A) = ||A|| ∙ ||A−1||,further obtain 

 
||𝛿||

||𝑥∗||
≤

cond(A)∙(
||Δ||

||A||)⁄

1−cond(A)∙(
||Δ||

||A||)⁄
.  (72) 

Through the character of the formula, when cond(A) is very small, the slight perturbation of the 

coefficient matrix A makes the relative error of solution very small.So adding a very small non-zero 

number to the zero diagonal element of A makes D reversible,thus Jacobi and G-S methods can be used. 
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6.  Conclusion 

This article summarizes the formulas and corresponding Matlab codes for Gauss elimination, Jacobi 

iteration, and G-S iteration in solving system of equations. The convergence of different iteration 

methods under different types of coefficient matrices is studied, and it is found that when the coefficient 

matrix is strictly diagonal, both Jacobi iteration and Gauss-Seidel iteration converge. The coefficient 

matrix is a positive definite real symmetric matrix, and when 2D-A is positive, Jacobi iteration method 

converges Meanwhile, through simulation programming, two tables were obtained, from which the 

running results show that the Gauss-Seidel iteration method has the shortest duration, the fastest solution, 

and the least number of iterations. Therefore, when the diagonal elements of the coefficient matrix are 

non-zero, the Gauss-Seidel iteration method has the best effect. When there are zero elements in the 

diagonal elements and the condition number of A is small, the iterative methods can be used by 

perturbing at the zero elements. 
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