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Abstract: Large-scale deep learning weather prediction models are revolutionizing the field 

of weather forecasting. GraphCast is the current state-of-the-art model, but its training is not 

explicitly designed for predicting extreme weather events. However, extreme weather 

prediction is more critical because it directly impacts public safety, potentially saving a lot of 

lives and resources. This paper improves large-scale weather models such as GraphCast by 

introducing an uncertainty estimation module to differentiate the importance of extreme 

weather data. We hypothesize and demonstrate that regions with higher uncertainty are more 

prone to cause prediction errors. By fine-tuning large-scale weather prediction models such 

as GraphCast with our uncertainty-aware weighting method, we enhance extreme weather 

forecasting in extreme cases where predictions were previously poor. Our approach provides 

a pathway for more accurate extreme weather forecasts and a pipeline for future model fine-

tuning efforts.  
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1. Introduction 

Weather-forecasting has been a main goal and pursuit of human society after the emerging boost of 

technologies. Weather forecasting technology is of great significance to the development of human 

civilization. From the agricultural perspective, the ability to foretell weather information provides 

chances for farmers to avoid potential damage to the crops and reasonably plan their farming calendar. 

In disaster management, extreme weather such as typhoons and heatwaves can cause tremendous 

losses of economics and human lives. According to CBS News [1], 480,000 people were killed by 

extreme weather in the last 20 years globally. With the recently proposed idea of “Sustainable 

Development Goals”[2] (SDGs), the UN agreed that climate action is the greatest opportunity to drive 

the world forward towards these goals in the 21st century. Therefore, investigating weather-

forecasting skills would be important to achieve a better measurement and understanding of climate, 

so as to provide a guiding role for future climate solvencies. 

In modern societies, the Atmospheric model high-resolution (HRES) is generally considered to be 

the most precise NWP (Numerical Weather Prediction)-based weather model in the world. In recent 

years, with the integration of artificial intelligence and other techniques, people started to rapidly 

approach precise weather forecasting and predictions of future environmental status. Especially, 

large-scale foundation models in weather and atmosphere [3] are now being developed based on 

multiple decades of real-world weather observation and analysis data, which excels the previous 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/100/2025.21681 

© 2025 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

83 



 

 

small-scale deep learning models and traditional methods by a large-margin. A few large-scale 

models have now even achieved better forecasting results than the traditional NWP [4]. GraphCast is 

so far one of the leading weather-forecasting algorithms among the existing deep learning 

benchmarks, which uses machine learning and graph neural networks (GNN) over a uniform mesh 

around the Earth's surface to process historical weather data in order to make quick predictions. 

GraphCast has hundreds of millions of parameters in its model. Research by Remi Lam and his team 

had suggested [5] that GraphCast has equivalent or better performance than HRES across all 

categories. Essentially, it’s undoubtful to say that GraphCast was recognized as the world’s most 

accurate 10-day global weather forecasting system, continues Silvia Conti [6]. 

However, in the history of the development of weather forecasting, there is a uniform question in 

the face of all algorithms, that is, how are they going to predict extreme weather? As common sense 

for people, extreme weather always comes immediately and barely follows any trackable logic. They 

are generally more devastating and terrifying than general climate shifts or changes in weather. When 

dealing with natural disasters, the model’s ability to accurately capture and predict extreme weather 

is far more important than obtaining a good performance on average for spacetime across the globe. 

Yet, the ability to predict extreme weather would still be a great challenge for machine-learning 

algorithms, since the AI models, such as GraphCast, are not trained to specifically tackle extreme 

weather. 

GraphCast uses data from the ECMWF (European Centre for Medium-Range Weather Forecasts), 

and to enhance the ability of the algorithm, the code for GraphCast as well as the data are all open-

sourced. This allows the general public to gain access and investigate, or even test and modify it to 

solve issues coping with various datasets and real-life situations. Our motivation in this paper is 

threefold: 1) first, identify the regions and weather variables that GraphCast failed to predict well, 

and verify whether they align with the extreme weather conditions; 2) second, modify the model 

architecture to better cope with the extreme weather forecasting task; 3) last, fine-tune the modified 

GraphCast model on extreme weather data so that the model will be upgraded to a version that could 

tackle extreme weathers much better. 

Through experiments, we find that GraphCast has significant errors in predicting the temperature 

for the African continent and the mean sea-level pressure for African, Arabic, and Tibetan areas on 

the earth. We are motivated by these extreme weather cases to investigate solutions to make AI 

models more accurate across different regions. Specifically, we analyze the drawback of the 

optimization of GraphCast: it is driven by the MLE objective to minimize the mean error across the 

data, while the extreme weather in certain regions may be harder to predict than the normal weather 

in other regions due to scarcity in the database. Some previous works such as [7] have proposed to 

adjust training loss to pay more attention to extreme weather cases in history, however, these works 

cannot capture the inherent uncertainty in the atmosphere. There are no guarantees that the very few 

extreme weather cases in the historical data are representative to reflect all possible extreme cases in 

the future. For example, identical initial conditions may lead to different outcomes and certain 

extreme cases only appear with very low probabilities. Ideally, we can benefit better from a model 

with uncertainty estimation modules. 

Luckily, there are abundant statistical methods that could approximately tell us which of the data 

samples are harder to learn for the AI model. Bayesian learning that can specify the uncertainty in 

prediction is one of the methods, which can estimate the variance of prediction by Monte Carlo 

Dropout on the GraphCast model. We hypothesize that the more uncertain a model is about a certain 

region, the more likely it has a higher prediction error. Following this paradigm, we first perform an 

uncertainty estimation and calculate the weights for different data samples, and then fine-tune the 

GraphCast model dynamically according to the weights.   
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In experiments, we find that the uncertainty aligns well with the prediction error, and the forecasts 

after fine-tuning the GraphCast model have a more even error distribution, instead of performing 

especially badly in extreme weather as in the case of the African continent. Moreover, in the literature, 

people still do not know whether fine-tuning a weather foundation model could improve the 

performance in specific areas. We find that, after fine-tuning, the overall error is also going down, 

which well demonstrates the effectiveness of fine-tuning. To make it easier for future followers, we 

build a pipeline that incorporates every step needed for fine-tuning a GraphCast, from the data 

downloading API to model training and evaluation. 

2. Related Works 

In the realm of meteorological prediction, the advancement of data-driven models has significantly 

enhanced forecasting capabilities, particularly when trained on comprehensive datasets like ERA5 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Traditional 

forecasting techniques have been bolstered by physics-based models such as ECMWF’s Integrated 

Forecast System (IFS), which offers both high-resolution deterministic forecasts and probabilistic 

ensemble forecasts (IFS ENS). Complementary to these classical approaches, machine learning (ML) 

methodologies have emerged as a strong force in meteorology recently. Models such as Pangu-

Weather [8] by Huawei and GraphCast by Google DeepMind utilize machine learning to generate 

deterministic forecasts, operating at resolutions ranging from 0.25° to 1°. Independently developed 

by Ryan Keisler [9], another ML-based model also contributes to the forecasting ecosystem. FuXi 

[10], a creation of Fudan University, and SphericalCNN by Google Research [11] further diversify 

the ML landscape, each offering unique insights into predictive analytics.  

Innovations in model design have led to the development of hybrid systems that integrate physical 

laws with machine learning algorithms, exemplified by the NeuralGCM series from Google Research 

[12]. These models aim to improve forecast accuracy by leveraging the strengths of both physics-

based understanding and data-driven prediction techniques. Integration of machine learning (ML) 

models into the domain of extreme weather prediction has opened new avenues for improving 

forecast accuracy, yet it remains a field with significant uncharted territory. Existing methodologies 

often focus on regional predictions or are constrained by low-resolution outputs, thereby limiting their 

applicability to global-scale, high-resolution forecasting. 

Zhao et al. pioneered an approach using wavelet transform, a technique that enables the analysis 

of varying-frequency information within time series data, to anticipate extreme weather events [13]. 

However, this method only predicts the likelihood of occurrence without providing precise values. 

Porto et al. advanced this work by integrating multiple models to better understand and predict diverse 

patterns of extreme weather, albeit at a higher computational cost [14]. In contrast, Annau et al. 

focused on enhancing the representation of high-frequency components in the data through 

convolutional operations, aiming to improve the prediction of extreme values [15]. Despite these 

advancements, challenges persist in effectively highlighting the extreme weather events in the model 

training stage. 

Bias correction techniques have also been explored to refine predictions of extreme weather 

phenomena. Morozov et al. applied quantile regression to adjust for biases in extreme value 

predictions, although this approach is limited by its reliance on a fixed number of quantiles, which 

might not fully represent the underlying data distribution [16]. Additionally, some studies have 

experimented with modifying loss functions to emphasize the learning of extreme values. For instance, 

Lopez-Gomez et al. introduced an exponential-based loss function to increase the weight of extreme 

values during training [17]. This strategy, however, can lead to numerical instability in practice 

(Wang et al.) [18]. Ni suggested leveraging Generative Adversarial Network (GAN) loss to enhance 

model performance in predicting extremes [19], but noted optimization challenges associated with 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/100/2025.21681 

85 



 

 

GANs (Berard et al.) [20].  Currently, there lacks a method that is both stable and low-cost to correct 

data biases and emphasize the extreme weathers in the model optimization. This motivates us to 

innovate and propose new methods to address the issues unsolved yet by the previous works. 

3. Methods 

3.1. GraphCast modeling 

GraphCast is a global weather forecasting algorithm that takes in two most recent states of Earth’s 

weather—the current time and six hours earlier—and predicts the next state of the weather six hours 

ahead. It is an autoregressive model in that its own prediction can be used as input to predict future 

steps in a rollout way. To predict the next state, GraphCast first employs an encoder that maps weather 

states in an area into a latent space. Then, it uses a processor to aggregate the latent information from 

adjacent regions with message-passing neural networks on multiple meshes. Afterward, a decoder 

uses the adjacent latent space to predict the next weather state. The figure from GraphCast [5] 

illustrates the modeling. 

 

Figure 1: The diagram of GraphCast [5] that illustrates its modeling process. 

3.2. Theoretical analysis of the weakness of GraphCast 

The optimization of GraphCast is based on the Mean Square Error (MSE) loss function, which 

originates from the Maximum Likelihood Estimation (MLE) principle.  

ℒ
𝑀𝑆𝐸

(𝜃) =
1

𝑁
∑ ∑ ∑(�̂�𝑖,𝑗,𝑘 − �̂�𝑖,𝑗,𝑘(𝜃))2

ℎ

𝑘=1

𝑚

𝑗=1

𝑁

𝑖=1

 

where N is the number of samples (data points), m is the number of spatial grids, h is the number of 

weather variables, 𝑦𝑖,𝑗,𝑘 is the true value for the k-th weather variable at the j-th spatial grid for the i-

th sample, and �̂�𝑖,𝑗,𝑘  is the predicted value from the model. 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/100/2025.21681 

86 



 

 

In statistical inference, the likelihood function measures the fitness of a statistical model to data 

samples (X, Y) of the model parameters θ. Here, X denotes historical weather variables, Y denotes 

future weather variables. The estimation function 𝐿(𝜃|𝑋, 𝑌) is used to choose the value of θ that 

maximizes the probability of observing (X, Y), which is expressed as follows: 

𝐿(𝜃|𝑋, 𝑌) = 𝑓(𝑋, 𝑌|𝜃) = ∏ 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝑥𝑖; 𝜃)

𝑖=1

 

Hereby, by maximizing the likelihood function, we obtain 

𝜃𝑀𝐿𝐸 = arg max𝜃 ∏ 𝑝𝑚𝑜𝑑𝑒𝑙 (𝑦𝑖|𝑥𝑖; 𝜃)

𝑛

𝑖=1

 = arg max𝜃 log ∏ 𝑝𝑚𝑜𝑑𝑒𝑙(𝑦𝑖|𝑥𝑖; 𝜃)
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𝑛
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Assuming that the target label is 𝑦𝑖 ∈ 𝑅𝑛×𝑚×ℎ , where 𝑛 × 𝑚 is the spatial grids around the globe, 

ℎ is the number of weather variables. It obeys the Gaussian distribution 𝑁(𝜔⊤𝑥𝑖 , 𝜎2 ), we set the 

optimization goal to maximize the probabilistic density, which is equivalent to maximizing the sum 

of log-likelihood 
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, if σ is fixed.

 

According to the MLE, GraphCast optimizes via the overall MSE loss, which is a sum of all the 

prediction times of all the variables across the globe. Each data point is treated equally. Thus, the 

model cannot distinguish between normal weather data, which is easier to learn, and extreme weather 

data which could be harder to learn, due to the scarcity of the data.  

3.3. Our improved modeling upon GraphCast 

To address the drawback in GraphCast optimization and improve the modeling of extreme weather, 

we first propose an uncertainty estimation module with ensemble methods, which uses Monte Carlo 

Dropout, a Bayesian approach, to estimate the predictive uncertainty of the model. The schematic 

diagram for this method is visualized in Figure 2. By running multiple forward passes through the 

model with different dropout masks in the ensemble, we can obtain a distribution of predictions for 

each data point. With this, we then up-weight the loss associated with high-uncertainty predictions, 

forcing the model to pay more attention to data points that are hard to learn. We hypothesize that 
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these predictions with high uncertainty are more likely related to extreme weather events, according 

to our empirical data visualization and analysis results. The overall model framework is shown in 

Figure 3. 

 

Figure 2: The schematic diagram for our algorithm. Extreme weathers represent rare cases in the 

global weather database, therefore, it forms a biased dataset for the training of machine learning 

models. In our method, we use Bayes method to estimate the uncertainty of each data sample, and 

use that to generate a sampling weight for it. After sample weighting, the rare cases will be enhanced 

and the uncertainty of data samples will be more even. This strategy helps improve the performance 

of foundational machine learning models on extreme weathers. 

 

Figure 3: The workflow for our model. First, we perform multiple runs under different random 

dropout of the last layer of the original weather prediction model 𝑓(). We use the same model for all 

the runs, and we freeze all the model parameters at the first stage, which ensures that our method does 

not require additional training efforts and excessive computational resources other than the fine-

tuning. Then, after calculating the sample weights for data samples, we use the weighted loss function 

to optimize the model. At this stage, the model is finally being fine-tuned, which costs most of the 

computational resources. In general, our carefully designed framework is very efficient and easy to 

deploy.  

With Monte Carlo Dropout enabled, we perform multiple stochastic forward passes through the 

model, yielding a set of predictions {�̂�𝑖,𝑗,𝑘(1), . . . , �̂�𝑖,𝑗,𝑘(𝑇)}, where T is the number of stochastic 

passes, i and j denote the latitude and longitude of the data sample, k denotes the index of the variable 

list to predict. Each prediction �̂�𝑖,𝑗,𝑘 = 𝑓(𝑥𝑖,𝑗,𝑘), where 𝑓() is the large-scale weather prediction 
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model that processes the historical weather events 𝑥𝑖,𝑗,𝑘  to predict future events �̂�𝑖,𝑗,𝑘 . The mean 

prediction can be calculated as follows: 

�̂�𝑖,𝑗,𝑘 =
1

T
∑ ŷ

𝑖,𝑗,𝑘

(t)

T

t=1

 

The predictive variance can be calculated as follows: 

𝜎𝑖,𝑗,𝑘
2

=
1

𝑇
∑(�̂�𝑖,𝑗,𝑘

(𝑡)
− �̅�𝑖,𝑗,𝑘)

2
𝑇

𝑡=1

 

We modify the MSE loss to include an uncertainty-aware weighting. The intuition is to upweight 

the loss for cases with higher uncertainty, making the model pay more attention to these difficult-to-

predict extreme cases. The modified loss function can be written as: 

ℒ
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𝑚
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𝑁
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where 𝜔𝑖,𝑗,𝑘  is the uncertainty-based weighting factor for each prediction, calculated as 

𝑤𝑖,𝑗,𝑘 = 1 + 𝜆 ∙ 𝜎𝑖,𝑗,𝑘
2  

where 𝜆 is a hyperparameter that controls the influence of the uncertainty on the loss function. In this 

paper, we simply set 𝜆 = 1, as a proof of concept to implement our idea.   

In addition, given the computational demands of training a large-scale model like GraphCast, 

especially when incorporating additional modules such as uncertainty estimation, it is crucial to 

optimize the training process for feasibility and efficiency. To achieve this, we implement a technique 

called fine-tuning. We directly take the pre-trained GraphCast and further train the model using the 

ERA5 data in the year 2023 with the proposed uncertainty estimation module. This step ensures that 

the model becomes adept at handling rare events, which are underrepresented in the pre-training 

dataset. To improve efficiency, we propose to freeze most layers of the pre-trained model during fine-

tuning and update only the decoder. The rationale behind it is that the encoder has been pre-trained 

by Google well to represent the weather data, while the decoder is task-specific and is relevant for 

generating predictions. This strategy of fine-tuning is also commonly used in other large-scale models, 

such as large language models [21], where tuning the decoder or the final few layers is standard 

practice.  

4. Experiments 

The experiments are designed for verifying the effectiveness of our proposed method. The experiment 

mainly consists of two parts, i.e., the development of a large model fine-tuning framework and the 

evaluation as well as comparison of model performance. We will build a pipeline to finetune 

GraphCast and compare the original GraphCast with our proposed model. 

4.1. Data Preparation  

At first, denoted that according previously to Lam’s research [5], datasets from GraphCast were “from 

a subset of ECMWF’s ERA5 archive, which is a large corpus of data that represents the global 
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weather from 1959 to 2017, at 0.25° latitude/longitude resolution, and 1-hour increments.” Within 

the experiment, in order to make a fair comparison to the original GraphCast model, we will use the 

same ERA5 archive as the training dataset, but we use the first days of all the 12 months data in 2023 

as the test dataset.   

 

Figure 4: The different data variables used in the ERA5 database for training GraphCast.  

GraphCast contains 14 different data variables as listed in Figure 4, such as temperature, wind, 

and humidity. GraphCast uses an autoregressive training strategy, which continues to take the 

predicted weather as ground truth input to further predict data of the next time event. This 

optimization objective for GraphCast is to minimize the errors between the predicted state and the 

actual state, using Mean Square Error (MSE).  

4.2. Fine-tuning framework  

In the literature, there has been no tool or research that implements the fine-tuning of a large weather 

model like GraphCast. To fine-tune GraphCast, we build an experimental pipeline to fine-tune 

GraphCast based on our method. The schematic diagram is shown in Figure 5 below. With the whole 

process being pipelined, we provide a clear process for future users. For example, future users can 

focus on the extreme weather in certain regions, seasons, or weather variables, etc. The improved 

modeling will then apply to the selected attention of the extreme weather pattern of interest. Since 

the ERA5 data could be in the GRIB format and does not fit the training of GraphCast directly, we 

also provide a comprehensive codebase to convert GRIB into the readable format for GraphCast and 

then adapt to the ‘xarray’ format for fine-tuning GraphCast.  
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Figure 5: The fine-tuning pipeline of this paper. First, we download data from ERA5 and fine-tune 

the improved GraphCast model using the training dataset. Then, we evaluate the model based on the 

test dataset. 

4.3. Data Analysis and Anomaly Discovery 

We use a remote server with sufficient GPU resources and memories to store the datasets and perform 

the calculation. To know how well extreme weathers are predicted in GraphCast, we randomly select 

and visualize a few cases where the predictions of temperature and mean sea-level pressure in certain 

areas at a given time are significantly inaccurate. As shown in Figure 6, the model prediction errors 

in temperature are high in the African continent, where the true (target) temperature is extremely high, 

but GraphCast predicts a lower temperature. Similarly, in Figure 7, the true (target) mean sea-level 

pressure in Tibet is extremely high, but GraphCast predicts an even higher pressure, which makes the 

prediction highly inaccurate. Moreover, the predictions in the East African, Arabic, and Tibetan areas 

are inaccurate, and these areas are known to have extreme height and/or temperatures. These two 

cases lead us to a further investigation of whether GraphCast can handle a precise prediction of areas 

with extreme weathers.  

 

Figure 6: The left subfigure shows the actual temperature distribution in the world at a given time 

point. The middle subfigure shows the predicted temperature distribution. In both figures, a lighter 

color denotes a higher temperature. The right subfigure shows the differences between the actual and 

predicted temperature, where the red color denotes the underestimation of the actual temperature 

while the blue color denotes the overestimation.  

 

Figure 7: The left subfigure shows the actual mean sea-level pressure distribution in the world at a 

given time point. The middle subfigure shows the predicted pressure. In both figures, In both figures, 

a lighter color denotes a higher pressure. The right subfigure shows the differences between the actual 

and predicted pressure, where the red color denotes the underestimation of the actual pressure while 

the blue color denotes the overestimation. 
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We use the student T-test to identify time and location in the dataset where GraphCast has the 

statistically significant prediction errors. These represent the cases where the current model is not 

doing well enough. We calculate the absolute error between predicted and actual values of 

temperature, and then we compute the standard deviation, which is 2.698. Regions, where the error 

exceeds the significant threshold (more than 2 standard deviations above the mean, which is ±5.396), 

would be flagged as having statistically significant errors. It is clear that GraphCast is specifically 

performing less satisfactory on the African continent, in terms of 2m temperature forecasting at 500 

pressure level. GraphCast has an error that is way above +5.396 here, as shown in Figure 6. This 

anomaly occurs in the GraphCast model using the setting of single-step prediction with mesh size 4, 

GNN message passing size 4, and latent size 32.  

4.4. Results and Discussion 

To demonstrate that our improved uncertainty modeling upon GraphCast can mitigate the model 

predictions with extreme weather, especially, the anomalies of the weather prediction on the African 

continent, we fine-tune the GraphCast model with the setting of single-step prediction with mesh size 

4, GNN message passing size 4, and latent size 32.  

The goal of fine-tuning in this paper is achieved by first calculating the statistical uncertainty of 

different spatial regions and then weighing different samples based on uncertainty factors, focusing 

on regions with high prediction uncertainty for the 2m temperature weather variable. First, we find in 

Figure 8 that the sample weights are larger in the African continent than in the other places. The 

sample weights in different regions represent the degree of uncertainty of the GraphCast model 

calculated by our Monte Carlo modeling. Note that the Monte Carlo estimation of sample weights is 

dynamically updated per epoch throughout the fine-tuning. Thus, our calculation of sample weights 

happens before the next round of training. The result shows that the modeling with uncertainty can 

be a good indicator of where the errors could be high for the GraphCast model before actually training 

the GraphCast model.  

 

Figure 8: The left subfigure shows the differences between the actual and predicted temperature by 

the original GraphCast model. The right subfigure shows the sample weight calculated by our 

uncertainty-based Monte Carlo dropout modeling. We find that the weight highly aligns with the high 

errors in the African continent.  

We are even more pleased to find that after the fine-tuning, the GraphCast model seems well 

positioned and does not have a biased prediction error on the African continent anymore. As Figure 

9 shows, after fine-tuning, the error magnitude decreases and the errors are distributed more evenly 

across different regions on Earth. It shows that our improved modeling mitigates the errors in extreme 

weather areas successfully. 
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Figure 9: The left subfigure shows the differences between the actual and predicted temperature by 

the original GraphCast model. The right subfigure shows the effect of differences by the improved 

GraphCast model with an additional 30 epochs of fine-tuning under uncertainty with the ERA5 data 

in 2023. The improved modeling clearly removes the anomaly in the African continent, making the 

prediction more even and fair across areas. 

We are even more pleased to find that after the fine-tuning, the GraphCast model seems well 

positioned and does not have a biased prediction error on the African continent anymore. As both 

Figure 9 and Figure 10 show, after fine-tuning the original GraphCast model using our framework, 

the error magnitude decreases and the errors are distributed more evenly across different regions on 

Earth. These findings demonstrate that our improved modeling mitigates the errors in extreme 

weather areas successfully.  

 
Figure 10: The left subfigure shows the differences between the actual and predicted mean sea-level 

pressure by the original GraphCast model. The right subfigure shows the effect of differences by the 

improved GraphCast model with an additional 30 epochs of fine-tuning under uncertainty with the 

ERA5 data in 2023. The improved modeling clearly makes the prediction more even and fair across 

areas, without high errors in certain areas. 

5. Limitations and Future Works  

Throughout the experiment, there are still a few non-negligible limitations on fine-tuning. In the 

methodology, despite Monte Carlo dropout being a sufficient way to complete fine-tuning, one main 

restraint is still on the computational resources. An overall fine-tuning of data requires a heavy 

workload for the computer, therefore it’s difficult to directly fine-tune with an overly large dataset. 

As a result, there is also a limitation on the amount of data that we can use, which may potentially 

restrain the scope of our results. In comparison, it’s obviously better to use a full ERA5 dataset across 

all years to train the model, since it provides more detailed perspectives which may all serve as a 

critical point where the experiment can dive deeper. The investigation of extreme weather is also tied 

closely with the data, the results of this experiment may provide further insight into more objectives 

for further improving the predictions of these situations. Moreover, there must have been much more 

extreme weather cases we can test, such as areas with high wind speed, etc. Due to the scope of the 

study, we prioritize the demonstration of temperature of the African continent as an example. There 

are a variety of future opportunities for exploring the AI forecasts of more extreme weather cases. 

Furthermore, for further application, changes can be made to create a web-based interface to replace 

the code-based pipeline made in the experiment, such that additional fine-tunings can be made more 

conveniently for users who may not be proficient in coding and machine learning. 
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6. Conclusion 

The purpose of this experiment is to foreshadow the effect of fine-tuning through the lens of solving 

abnormal predictions on the African continent as a proof of concept for future applications. The effort 

serves as the foundation for future fine-tuning when more applicable computing resources are allowed. 

Finally, this experiment anticipates to serve as a supplementary material for potential guidance on 

future upcoming modification of the algorithm. The construction of the pipeline would to the greatest 

extent relieve some effort and provide conveniences for future studies. 
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