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Abstract: The most popular feature-selection method is PCA, and is often used for high-

dimensional data such as gene expression data. This article presents the use of PCA to reduce 

dimensionality and classification of cancer. In this dataset (Cancer gene expression data from 

TCGA), we perform PCA to simplify the gene expression data but maintain the highest 

variance. Our models learn from complete feature sets and PCA reduced feature sets 

respectively with machine learning algorithms such as SVM and RF. We found that PCA 

yields robust improvements in classification accuracy, precision, recall and F1 score without 

overfitting or extra computational overhead. We also evaluate PCA with other feature 

selection approaches (correlation-based selection, Random Forest feature importance, and L1 

regularization). These results suggest that PCA is an optimal solution for both performance 

and computational difficulty, and a very promising feature selection technique for cancer 

classification.  
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1. Introduction 

Classification of cancers, primarily based on gene expression data, is an important but daunting task 

in bioinformatics. Gene expression datasets typically contain thousands of features, each one mapping 

expression of different genes for a tissue. These datasets tend to be high dimensional, which is 

particularly problematic for the machine learning model as overfitting can be risky, expensive to 

compute and it is hard to detect subtle patterns in these datasets. Many redundant or irrelevant features 

only make the classification further inefficient and cause model underperformance. For such issues, 

PCA has been a useful tool. Changing the original correlated features into smaller set of uncorrelated 

PCs, PCA reduces the dimensionality of the data while preserving the maximum variance. This allows 

for faster model training, generalization, and computing efficiency. Additionally, by discarding noise 

and non-relevant features, PCA can determine which features are most important for distinguishing 

different cancer subtypes. In this paper, we employ PCA to classify cancer using cancer gene 

expression data in The Cancer Genome Atlas (TCGA) and compare its performance against 

classification. In this paper, we seek to show the efficacy of PCA for the reduction of dimensionality 

in gene expression data, specifically for classification of cancers. In this study, we are training full 
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and PCA-reduced feature sets and classify them with support vector machine (SVM) and Random 

Forest (RF). Also, we compare the effect of PCA with different feature selection methods such as 

correlation feature selection, Random Forest feature importance, and L1 regularization [1]. This 

comparison will show PCA's classification accuracy, precision, recall and F1 score improvements, 

its handling of overfitting, and computational simplicity. 

2. Literature Review   

2.1. Principal Component Analysis to Choose Features 

PCA has become a popular feature choice tool in many areas especially in high-dimensional datasets 

such as gene expression data. The strength of PCA is that it reduces the number of dimensions but 

still retains most of the variance in the data. By converting the original features to a new pair of 

orthogonal elements, PCA filters out and prioritises the features with most variance in the data. It’s 

the result of a smaller feature space and the most informative features are left behind, which will 

make subsequent machine learning models more accurate and efficient. In this process, PCA 

eliminates noise and redundant features, which often skew model results. The data also has lower 

dimensionality and hence classifiers find underlying patterns better and it will perform more 

accurately with less computation time and no overfitting is possible. Figure 1 shows how this is done 

where the original feature set is first PCA converted to new features with the highest variance. Feature 

ranking and stepwise elimination follows next to make more changes to the feature set for optimal 

model performance [2]. Thus, PCA has been used to optimally select features for many difficult 

problems, such as gene expression analyses in cancer studies.  

 

Figure 1: Workflow for Feature Selection Using PCA and Random Forest (RF) for Cancer 

Classification (Source: Researchgate.com) 

2.2. Use of PCA for Cancer Classification 

PCA has been most applicable in cancer classification, which typically contains thousands of features 

from gene expression data, as part of bioinformatics. Cancer classification often involves stratifying 

cancers into subtypes, and to do this you must look for the biomarkers or patterns that are 

characteristic of each subtype. Since gene expression data are very dimensional, PCA is an 

opportunity to simplify them without discarding important data. The scientists can use PCA to distill 

that information into a smaller matrix defining the most important sources of variation across cancers. 

This reduction not only saves classification models time, it also makes them more sensitive to subtle 
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subtype variations of cancer. In most cancer research, PCA has been shown to yield a large 

classification advantage over models based on the full feature set with noise and irrelevant data 

leading to overfitting [3]. What’s more, PCA can detect enigmatic patterns in the data, which makes 

it particularly helpful for early on in cancer studies, where gene-cancer interactions remain poorly 

understood.  

2.3. Other Dimensionality Reduction Techniques   

PCA is the most popular dimensionality reduction algorithm, however some bioinformatics 

alternatives have been proposed for cancer feature selection. One is Independent Component Analysis 

(ICA), which aims at splitting data into statistically independent components rather than uncorrelated 

ones, like PCA. This can be especially useful when the data model is non-Gaussian or if the 

component of interest are statistically independent, not simply uncorrelated. ICA has also been used 

in some cancer classification and has been promising, especially when the data have non-linear 

relations complex that PCA can’t pick up on. Another interesting one is t-Distributed Stochastic 

Neighbor Embedding (t-SNE) which is used mostly for visualization rather than feature selection. t-

SNE does a good job of keeping local features in the data, so it is a great tool for clusters or patterns 

in big data [4]. But t-SNE can work well to represent relationships among data points but is not 

commonly used for classification model dimensionality reduction, because it is computationally 

demanding and it cannot be used to extract the axes of the embedding.  

3. Experimental Methodology   

3.1. Dataset Description   

In this experiment, we used a cancer gene expression dataset from The Cancer Genome Atlas (TCGA), 

which is publicly available. It includes gene expression data for cancers of the breast, prostate and 

lung. Each point identifies the expression levels of thousands of genes for a set of cancer tissue 

samples. The dataset is assigned with the type of cancer to be supervised, and each sample can be 

either cancer or normal tissue [5]. The gene expression values are calculated from transcriptomics 

data, which is typically expressed as normalized counts or log-transformed values. The dataset is 

divided into training and testing files where the classifier gets tested against hidden data in order to 

gauge its generalization potential.  

3.2. Data Preprocessing   

Prior to PCA, the gene expression data go through a few preprocessing steps. Second, the data are 

normalised so that all features (genes) are scaled to the same size so that dominant genes with a greater 

range of expression do not overwhelm the data. Standardization methods such as Min-Max scaling 

or Z-score standardisation are used to center the data into a fixed range. Second, if there are missing 

values in the dataset, they are imputation (for example, mean imputation or K-nearest neighbor 

imputation). These imputation algorithms compensate for the missing information by matching up 

nearby samples [6]. Finally, feature selection is done to remove genes with low variance as they do 

not make a significant difference to the variance and hence could introduce noise to the analysis. 

After these processing, the dataset is available for PCA transformation to fit into both PCA and 

machine learning models.  

3.3. Principal Component Analysis Procedure   

The gene expression data is transformed using Principal Component Analysis (PCA) to reduce its 

dimension. This is done to reduce the original array of correlated features (genes) to a subset of 
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uncorrelated PCs that preserve the maximum variance in the data. The number of principal 

components to keep is calculated by looking at the explained variance ratio, where we look at the 

threshold (usually 95%) of the total variance to keep the most valuable features. The principal 

components are given by the data’s covariance matrix, and each component is a linear addition of the 

raw features divided by their eigenvalues [7]. These components are then ordered by the level of 

variance they account for in the data. The first few components with maximum variance are saved 

and the data is projected onto them to be analysed and classified. 

3.4. Machine Learning Model  

After dimensionality reduction using PCA, the dataset is ready for classification. A variety of machine 

learning models are applied to the reduced feature set, including Support Vector Machines (SVM) 

and Random Forests (RF). These models are trained on the transformed data, where the features 

correspond to the selected principal components. The classifiers are evaluated based on several 

performance metrics, including accuracy, precision, recall, and F1 score. The performance of the 

models is assessed using cross-validation, where the dataset is split into multiple folds, and each fold 

is used for both training and validation to ensure robust evaluation. The formula for calculating 

accuracy, one of the key performance metrics, is as follows:  

 Accuracy =  TP +  TN / (TP +  TN +  FP +  FN) (1) 

Where TP = True Positives (correctly predicted cancer cases), TN = True Negatives (correctly 

predicted normal cases), FP = False Positives (incorrectly predicted cancer cases), FN = False 

Negatives (incorrectly predicted normal cases) [8]. In addition to accuracy, precision, recall, and the 

F1 score are calculated to assess the classifier’s performance in distinguishing between cancer and 

normal tissue. The F1 score is particularly useful when dealing with imbalanced datasets, as it 

provides a balanced measure of both precision and recall. 

4. Experimental Process   

4.1. Initial Data Exploration   

An initial exploratory data analysis (EDA) is conducted to find out how the gene expression data is 

distributed and whether there are any trends or outliers. EDA helps us uncover key features of the 

dataset, like how genes correlate to each other, if the data contains any anomalies, and how the gene 

expression values are arranged in general. The outliers or skewed distributions are identified through 

visualization using histograms, scatter plots and box plots. Additionally, we compute correlation 

matrices to calculate how many genes are correlated with each other. It picks out high correlated 

features and reduces them, which is an important pre-requisite for PCA.  

4.2. Application of PCA   

PCA is applied to the gene expression data to reduce its dimensionality. The principal components 

are chosen based on the explained variance ratio, which calculates how much of the original variance 

is removed by each component. A value is typically chosen (say, 95%) to retain enough components 

to keep most of the variance intact. The input data are then mapped onto a space in lower dimensions 

using the principal components that are selected, which reduces the complexity but retains the 

information-rich properties. By focusing on the most relevant patterns in the data, this reduces 

dimensionality to process and improve the performance of machine learning algorithms.  
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4.3. Cross Compatibility With Full Functionality Package  

The dimensionality reduction effect can be assessed by evaluating the performance of the model with 

the full features over the performance with PCA. The table 1 below gives the SVM and Random 

Forest models’ performance with the full feature set and PCA-reduced feature set respectively. It can 

be observed that the models on PCA-reduced data are overall superior to those on the full feature set 

when it comes to accuracy, precision, recall and F1 score, with the Random Forest model showing 

slight advantages on the full feature set. This comparison also demonstrates how PCA can contribute 

to classification accuracy by picking out the relevant features and suppressing noise and overfitting 

[9]. 

Table 1: Model Performance Comparison 

Model Accuracy Precision Recall F1 Score 

SVM (Full Features) 0.85 0.83 0.82 0.82 

Random Forest (Full Features) 0.87 0.85 0.84 0.84 

SVM (PCA Features) 0.92 0.90 0.89 0.89 

Random Forest (PCA Features) 0.90 0.88 0.87 0.87 

5. Experimental Results   

5.1. Stable with Full Features Suite 

The cancer classification models are trained on the full feature set before PCA is applied. The models’ 

accuracy, precision, recall, F1 score are assessed. The outputs suggest that although the models do 

have acceptable precision, they can overfit in high-dimensional data. These many features can result 

in model noise, poor accuracy and recall if the data is unbalanced. These without-PCA outputs also 

show the drawbacks of having a large set of features: computational overhead and reduced 

generalisability of models.  

5.2. Performance After PCA   

After performing feature selection with PCA, the models are very efficient. PCA reduces the 

dimension of the data to the most relevant features that account for most variance. This reduction 

offers some advantages, such as a better classification accuracy, overfitting handling, and computing 

performance. The reduced dataset makes the model able to focus on the most relevant features and 

be more generalisable to new data [10]. The lower feature count also leads to a shorter training time 

and less computational overhead in the model. In Table 2, performance of PCA-reduced feature 

trained models compared to other feature selection methods is also shown.  

5.3. Comparison with Other Methods   

Alongside PCA, feature selection methods like correlation-based feature selection, Random Forest 

feature importance, and L1 regularization are discussed. Also, these techniques try to limit features 

while maintaining the most useful data. According to Table 2, PCA performs better than the other 

methods in accuracy, precision, recall and F1 score. Correlation-based selection and Random Forest 

feature importance deliver good results, but are no match to the performance of PCA, which extracts 

variance and noise efficiently. L1 regularization while delivering classifier performance in some 

instances, cannot compete with PCA. The comparison shows that PCA provides the highest 

performance/complexity tradeoff and is therefore the most promising feature selection method in this 

work [11]. 
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Table 2: Comparison of Feature Selection Methods 

Method Accuracy Precision Recall F1 Score 

PCA 0.92 0.90 0.89 0.89 

Correlation-based 0.87 0.84 0.83 0.83 

Random Forest Feature Importance 0.89 0.87 0.85 0.86 

L1 Regularization 0.85 0.83 0.80 0.81 

6. Conclusion 

This study successfully demonstrates the efficacy of Principal Component Analysis (PCA) as a 

feature selection technique for cancer classification using gene expression data. The results show that 

PCA not only improves classification accuracy, precision, recall, and F1 score, but also reduces 

overfitting and computational overhead, making it an ideal choice for high-dimensional datasets. By 

transforming the data into principal components that capture the most significant variance, PCA 

enables machine learning models to focus on the most relevant features, resulting in improved 

generalization and faster training times. The comparison with other feature selection methods, such 

as correlation-based selection, Random Forest feature importance, and L1 regularization, further 

highlights the superior performance of PCA. While other methods provide useful results, they fall 

short in handling high-dimensional data with as much efficiency as PCA. As cancer classification 

tasks often involve large, complex datasets, the ability to reduce dimensionality without losing 

important information is critical for achieving accurate and reliable results. In future studies, we 

recommend exploring hybrid approaches that combine PCA with other machine learning techniques 

or dimensionality reduction methods to further enhance classification performance.  
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