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Abstract: This research develops evolutionary optimization (EVO) algorithm to resolve the 

dynamic inverse problem and make back propagation neural networks (BPNN) work better. 

Standard BPNN faces difficulties such as getting stuck in local minima and taking too long 

to converge while adjusting poorly to changing conditions. To overcome these challenges, 

this study introduces three key improvements: Our approach features mechanisms to preserve 

population diversity, updates that adjust to changing conditions, and an optimization system 

that handles multiple objectives. Our innovations strengthen the algorithm's global search 

power plus its fast reaction time while making it work better. The effectiveness of the 

improved algorithm is demonstrated through three experimental scenarios: Our research uses 

tools like dynamic system control, signal reconstruction, and fluid mechanics inverse models. 

Our experimental findings demonstrate that EVO-optimized BPNN achieves better 

optimization results than standard EVO and competing methods across all performance 

indicators. The new algorithm reduces reconstruction errors to 0.012 and cuts optimization 

time by about 35%. This study presents a new way to enhance BPNN performance and 

flexibility in changing environments.  

Keywords: Dynamic Inverse Problem, BPNN Optimization, Multi-objective Optimization, 

Evolutionary Algorithm. 

1. Introduction 

Dynamic inverse problems are prevalent in signal processing, fluid mechanics and system control. 

However, due to their nonlinear and dynamic nature, ordinary analysis cannot easily deal with these 

issues. For dynamic inverse problems, BPNN (machine learning based) back propagation neural 

network has gained significant popularity in recent years for its powerful nonlinear fit [1]. But 

classical EVO still suffers from population sparsity loss, slower convergence, and a lack of dynamical 

adaptability under dynamic situations. To overcome these issues, this paper suggests evolutionary 

algorithm that routinely improves BPNN performance with a dynamic population adjustment 

algorithm, multi-objective optimization model, and environmental adaptability update strategy. The 

experiment uses nonlinear dynamic system control, dynamic signal reconstruction, and fluid 

mechanics inverse problems as testing problems, and rigorously tests the algorithm on optimisation, 

dynamic adaptability, and robustness to bring forth a new method to solve dynamic inverse problems. 
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2. Literature Review 

Scientists studied dynamic inverse problem-solving techniques for many years. Traditional methods 

like regularization and optimization work well to solve inverse problems when the environment stays 

stable. The methods work well for basic conditions but struggle with advanced problems when the 

environment keeps changing. Back propagation neural networks (BPNN) stand out as machine 

learning tools because they process nonlinear tasks and adjust to various situations better than other 

methods. The diagram in Figure 1 shows how BPNN processes input data through hidden layers 

before calculating the output. The main benefit of BPNN comes from its ability to update weights 

during training thanks to backpropagation which helps the system learn from intricate datasets. 

Scientists now combine evolutionary optimization algorithms with neural networks to make them 

work better [2]. Figure 2 shows the basics of Genetic Algorithms with genes arranged in 

chromosomes that evolve across generations through natural selection and genetic mixing. GA shows 

strong results with stable tasks yet runs into diversity problems when handling dynamic settings [3]. 

Particle swarm optimization performs global searches by modeling group behavior yet needs longer 

time to find solutions when handling many input variables [3]. Although many people use differential 

evolution it struggles to escape local optima solutions in dynamic inverse problem situations. 

Although progress has been made in these areas, a significant challenge remains: Finding the best 

way to solve dynamic optimization problems while maintaining high-quality results and fast 

completion times. 

 

Figure 1: Structure of Back Propagation Neural Network (BPNN) and the Backpropagation Process 

(Source:geeksforgeeks.org) 

 

Figure 2: Overview of Genetic Algorithm: Genes, Chromosomes, and Population Evolution(Source: 

towardsdatascience.com) 
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3. Experimental Methods and Design 

3.1. Improved EVO Algorithm 

This study systematically improves the traditional evolutionary optimization algorithm (EVO) to 

solve the problems of population diversity loss, insufficient adaptability and low optimization 

efficiency in dynamic inverse problems. First, a dynamic population diversity maintenance 

mechanism is proposed. The population structure is analyzed in real time and the mutation rate and 

crossover rate are dynamically adjusted by introducing an entropy-based diversity monitoring method. 

Secondly, an environmental adaptability update strategy is designed, which combines genetic 

memory technology with a dynamic perturbation method to quickly adjust the population search 

direction [4]. Finally, this study constructed a multi-objective optimization framework, taking error 

minimization, model complexity reduction and convergence efficiency improvement as optimization 

goals. The optimization is mainly global search in the early stage, and gradually focuses on local 

optimization in the later stage to achieve a balance between global search and local refinement by 

dynamically adjusting the weights of each goal in stages. These improvements jointly improve the 

adaptability and solution efficiency of the EVO optimized BPNN model in dynamic inverse problems. 

3.2. Experimental Scenarios and Data Sources 

The experimental design covers three typical dynamic inverse problem scenarios to fully verify the 

effectiveness and robustness of the improved EVO algorithm. The first category is the nonlinear 

dynamic system control problem, which is based on the Lorenz chaotic system, simulates dynamic 

parameter changes, and generates input and output data. The second category is the dynamic signal 

reconstruction problem, which evaluates the optimization ability of the algorithm in the signal 

processing scenario[5]. This scenario simulates the characteristics of the real signal with constantly 

changing frequency and amplitude in a dynamic environment, which is used to verify the adaptability 

and accurate reconstruction ability of the improved EVO algorithm to dynamic data patterns. The 

third category is the inverse problem of dynamic fluid mechanics. Data is generated through fluid 

dynamics simulation, and the dynamic characteristics of complex flow fields are reconstructed based 

on limited observation points [6]. This experimental scenario mainly tests the performance of the 

algorithm in high-dimensional complex optimization problems, especially the accuracy and 

efficiency of the reconstruction of flow field boundary conditions. Being derived from standard public 

data sets and custom simulations, the experimental data ensures the comprehensiveness and 

objectivity of the results. 

3.3. Performance Evaluation Indicators 

The improved EVO algorithm in different dynamic inverse problem scenarios, a comprehensive and 

objective performance evaluation indicator system is designed. First, the convergence speed is an 

important criterion for evaluating the efficiency of the algorithm, and the time cost of the algorithm 

to reach the optimal solution is measured by the number of iterations. The design goal of the improved 

EVO is to significantly reduce the number of iterations while ensuring accuracy. Secondly, the 

optimization accuracy is measured by the relative error between the objective function value and the 

actual solution, indicating the algorithm's ability to solve in complex dynamic scenarios. Dynamic 

adaptability is another key indicator used to evaluate the algorithm's ability. To respond quickly to 

environmental changes, the stability of the algorithm is reflected by measuring the performance 

fluctuation amplitude and adjustment time. Finally, robustness is tested through the consistency of 

multiple sets of experimental results to analyze the impact of different initial conditions on the 
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algorithm results [7]. Table 1 below summarizes key performance indicators for the improved EVO 

algorithm. 

Table 1: EVO Algorithm Performance Evaluation  

Indicator Description 

Convergence Speed Number of iterations to reach the optimal solution. 

Optimization Accuracy Relative error between objective function value and actual solution. 

Dynamic Adaptability Ability to adapt quickly to environmental changes. 

Robustness Consistency of results across different initial conditions. 

4. Experimental Results and Data Analysis 

4.1. Nonlinear Dynamic System Control 

The improved EVO-BPNN showed significant performance advantages in nonlinear dynamic system 

control experiments. Experimental data shows that the average error of this algorithm is 0.026. 

Compared with 0.085 of PSO, the optimization accuracy has been greatly improved. At the same time, 

the convergence speed of the improved algorithm is significantly improved, and a stable solution can 

be achieved with only 40 iterations, which is about 28% less iterations than traditional EVO. Through 

the dynamic population diversity maintenance mechanism, the algorithm can effectively maintain the 

global exploration ability of the population in the early stage of search and avoid falling into local 

optimality. In the later stage of search, the dynamic adjustment mechanism enhances the accuracy of 

local search. In addition, experimental results show that even in complex dynamic parameter 

changing scenarios, the performance of the improved EVO-BPNN still maintains a high degree of 

stability [8]. This shows that the algorithm not only has good adaptability when dealing with nonlinear 

dynamic system control problems, but also achieves an effective balance between global search and 

local optimization. Table 2 shows the performance comparison between the improved EVO-BPNN 

and traditional EVO and PSO in the nonlinear dynamic system control experiment. 

Table 2: Nonlinear Dynamic System Control Performance 

Metric Improved EVO-BPNN Traditional EVO PSO 

Average 

Error 
0.026 0.073 0.085 

Convergence 

Speed 

40 iterations (28% less than 

traditional EVO) 

More iterations 

required 

More iterations 

required 

Global 

Exploration 

Maintains diversity in early 

search stage, avoids local 

optimality 

Less effective in 

maintaining diversity 

Not designed for 

effective diversity 

maintenance 

Local 

Optimization 

Enhanced accuracy in later 

search stage 

Lower accuracy in 

later search stage 

Lower optimization 

accuracy 

Stability 
High stability in dynamic 

parameter scenarios 

Performance less 

stable 

Limited stability in 

dynamic scenarios 

4.2. Dynamic Signal Reconstruction 

In the dynamic signal reconstruction experiment, the improved EVO-BPNN performed equally well, 

with a reconstruction error of only 0.012, while the errors of traditional methods were higher than 

0.035. The experimental scenario simulated a complex environment in which the signal frequency 

dynamically changed within the range of [0.5Hz, 3Hz]. The results showed that the improved 
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algorithm could quickly capture frequency changes and achieve accurate reconstruction. Especially 

in the case of signal mutations, the algorithm shows strong adaptability, and its optimization time is 

shortened by about 35% compared with traditional methods, reflecting a significant improvement in 

efficiency. This superior performance is mainly attributed to the introduction of the environmental 

adaptive update strategy, which not only enhances global search capabilities through the combination 

of dynamic perturbation and genetic memory, but also improves the ability to respond quickly to local 

changes in the dynamic environment [9]. Experimental results show that the improved EVO-BPNN 

can achieve higher optimization accuracy and efficiency in dynamic signal processing, providing a 

reliable solution. Table 3 shows the performance comparison between the improved EVO-BPNN and 

the traditional method in the dynamic signal reconstruction experiment. 

Table 3: Dynamic Signal Reconstruction Performance 

Metric Improved EVO-BPNN Traditional Methods 

Reconstruction Error 0.012 >0.035 

Frequency Range [0.5Hz, 3Hz] [0.5Hz, 3Hz] 

Adaptability to Signal 
Mutations 

Strong adaptability, accurate 
reconstruction 

Limited adaptability, less accurate 

Optimization Time 35% less than traditional methods Longer optimization time 

Key Mechanisms 

Environmental adaptive update 

strategy with dynamic perturbation and 
genetic memory 

Lacks advanced adaptation mechanisms 

4.3. Inverse Problem of Dynamic Fluid Mechanics 

In experiments on inverse problems of dynamic fluid mechanics in high-dimensional complex 

environments, the performance of the improved EVO-BPNN is particularly outstanding. 

Experimental results show that the mean error of the algorithm is 0.024 and the standard deviation is 

only 0.008, which is significantly lower than the mean error (0.038) and standard deviation (0.015) 

of traditional EVO. This result shows that the improved algorithm not only has higher accuracy but 

also shows strong stability in high-dimensional dynamic scenes. The dynamic perturbation 

mechanism can quickly adjust the search direction when the environment changes, and the genetic 

memory module accelerates the convergence process of the global optimal solution by guiding the 

population to move closer to the historical optimal solution [10]. In addition, experiments also show 

that under more complex flow field boundary conditions, the robustness of the improved algorithm 

is still superior, and the error fluctuation range of multiple experimental results remains at a low level. 

Figure 3 demonstrates that the improved algorithm significantly outperforms the traditional algorithm 

in both the mean error and standard deviation metrics, showing higher accuracy and stability. 

 

Figure 3: Performance Comparison 
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5. Discussion 

5.1. Algorithm Advantages and Improvements 

In this study the improved evolutionary optimization algorithm proposed shows excellent 

performance advantages in solving dynamic inverse problems. And its innovative design significantly 

improves the algorithm's global search capability, dynamic response capability, and optimization 

efficiency. At the same time, the environmental adaptability update strategy significantly improves 

the algorithm's ability to respond quickly to environmental changes.  Ensuring that the population can 

adjust the search direction in a timely manner in dynamic scenarios and maintain stable optimization 

performance by combining genetic memory and dynamic perturbation methods [11]. In addition, the 

multi-objective optimization framework meets the diverse needs in dynamic inverse problems 

through dynamic equilibrium error minimization, model complexity control and convergence speed, 

making the algorithm more comprehensively adaptable in complex environments. Remarkable effects 

in experiments have been shown by these innovative designs, including the verification of the 

algorithm's wide applicability and efficiency in nonlinear system control, dynamic signal 

reconstruction, and inverse problems of fluid mechanics. 

5.2. Limitations and Future Directions 

Although the improved EVO algorithm has achieved significant results in several experimental 

scenarios, there are still some limitations that need to be further optimized. First, the computational 

complexity of the algorithm is high, and it relies more on hardware resources when dealing with high-

dimensional dynamic problems, which may bring certain challenges to the promotion of practical 

applications. Second, the selection of dynamic perturbation parameters has a large impact on the 

performance of the algorithm, and the current parameter adjustment mainly relies on empirical 

settings, lacks a high degree of adaptivity, and may not perform stably enough in some special 

scenarios. Therefore, future research can focus on exploring automated parameter tuning strategies 

to further improve the robustness and generalization ability of the algorithm by introducing adaptive 

control mechanisms [12]. In addition, in order to reduce the computational cost, trying to combine 

distributed computing or multi-threading technology, from the hardware and software level to jointly 

optimize the efficiency of the algorithm. 

6. Conclusion 

The study significantly enhances the global search capability, dynamic adaptation capability and 

convergence efficiency of the algorithm by introducing the dynamic population diversity preservation 

mechanism, the environment adaptive updating strategy, and the multi-objective optimization 

framework. The experimental results show that the improved EVO-BPNN exhibits excellent 

performance in nonlinear dynamic system control, dynamic signal reconstruction and hydrodynamic 

inverse problems, with higher optimization accuracy and adaptability, and the convergence speed is 

significantly improved compared with the traditional method, which verifies the validity and 

robustness of the method. This study not only provides an efficient technical solution for solving 

dynamic inverse problems, but also provides strong support for the development and practice of 

optimization algorithms. 
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