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Abstract: In contemporary society, social networks have played a conspicuous role in 

people’s life, yet accurately analyzing them is still challenging. This paper applies maximum 

likelihood estimation for Erdős–Rényi graph in social network analysis. It begins with 

interpreting the significance of social network analysis and the objective of the research. 

Subsequently, theoretical knowledge of Erdős–Rényi graph and Maximum Likelihood 

Estimation are presented, including definitions, properties, and the derivation of Maximum 

Likelihood Estimation calculation formula for estimating the probability of connection in 

Erdős–Rényi graph. After that, a real-world example is involved in order to thoroughly 

comprehend the mechanism of this model. Through multiple trials of simulations, the 

accuracy of Maximum Likelihood Estimation is explored by illustrating a graph about the 

relationship between the number of nodes and percentage error with the help of python 

program, revealing the trend that a larger network size contributes to a more accurate 

estimation. The advantages, including simplicity and statistical rigor and disadvantages that 

contain the uniform assumption of connection probability and limitations are 

comprehensively analyzed as well, followed by a proposal of future research directions 

related to a more sophisticate model added by functions in order to be applied to friendship 

social networks, aiming to offer insights to further studies.  

Keywords: Erdős–Rényi Graph, Maximum Likelihood Estimation, Social Network Analysis, 

Adjacency Matrix  

1. Introduction 

Social networks have become a prominent part of modern society, existing in every aspect of people’s 

lives [1,2]. There are billions of users on platforms like Facebook, Twitter and Instagram, which 

forms sophisticated networks where information and thoughts are spread rapidly. Analyzing these 

social networks can offer a useful approach to investigate aspects like, human behavior, information 

dissemination and community formation. Celebrities, for example, can be advantageous for 

businesses to promote their goods and services more efficaciously during marketing campaigns [3]. 

Additionally, social network analysis gives people access to understanding how diseases spread 

among individuals [4]. Public health official can predict the spread of contagious diseases and 

implement targeted prevention policies, by investigating the probability of one person to infect 

another one [5,6]. 

The primary objective of this research is to incorporate Maximum Likelihood Estimation (MLE) 

to estimate the connection probability parameter 𝑝 for Erdős–Rényi graph in social network analysis 
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[7,8]. The Erdős–Rényi graph provides a mathematical framework to visualize the structure and 

model social networks, and obtaining the estimation of 𝑝 is vital in understanding the network’s 

structure and behavior. The research is significant, since it offers an efficient method for analyzing 

social networks, which may substantially assist in making decisions in various fields, like business, 

public health and so on. 

2. Theoretical Foundations 

2.1. Erdős–Rényi Graph Models: Mechanisms and Properties 

The Erdős–Rényi graph, which is named after mathematicians Paul Erdős and Alfred Rényi, is a 

random graph model, specializing in analyzing the structure and behavior of social networks. There 

are two basic forms of expression which are 𝐺 (𝑛, 𝑚) and 𝐺 (𝑛, 𝑝) respectively and the 𝐺 (𝑛, 𝑝) is 

the focus of the study, consisting of 𝑛 nodes. In this model, each pair of nodes is connected by an 

edge with a probability 𝑝. To exemplify, if a social network is expressed as a 𝐺 (𝑛, 𝑝) graph with 𝑛 =
40 and 𝑝 = 0.3, it means that the average probability of each person getting connected to another 

person in the network of 40 individuals is 30%. With the help of Python program, three visualizations 

are presented below given that 𝑛 = 40 but different parameters p. 

 

Figure 1: Three visualizations presented below given that n=40 but different parameters p. (Picture 

credit : Original) 

As shown in Figure 1, from left to right, parameter p increases from 0.1 to 0.2 to 0.3, leading to a 

continuous increase in density of connections which are represented by black lines between blue 

nodes. Blue nodes represent 40 individuals in total which are randomly distributed every single time 

on the plane [9]. 

For a graph with N nodes, it can be mathematically represented by an N*N adjacency matrix 

denoted by X. For two nodes i and j, the element Xij is situation of connection. Xij is either 1 or 0, 

since there are only two options which are being connected or not being connected. In simple terms, 

element  Xij follows Bernoulli distribution and the adjacency matrix obeys the rules:  

 𝑃(𝑋𝑖𝑗 = 1) = 𝑝 (1) 

 𝑃(𝑋𝑖𝑗 = 0) = 1 − 𝑝 (2) 

The probability density function of the entire graph can be expressed as: 

 𝑓𝑋(𝑥; 𝑝) = ∏  𝑁
𝑖=1

∏  𝑁
𝑗=1

𝑝𝑥𝑖𝑗(1 − 𝑝)1−𝑥𝑖𝑗 (3) 
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2.2. Maximum Likelihood Estimation: Principles and Derivation 

Maximum Likelihood Estimation is a powerful statistical method for parameter estimation. Given a 

set of independent and identically distributed observed data 𝑥1, 𝑥2, … , 𝑥𝑛 from a probability 

distribution 𝑓𝑋(𝑥; 𝑝) with parameter θ, the likelihood function is derived as: 

 𝐿(𝜃; 𝑥) = ∏ 𝑓(𝑥𝑖; 𝜃)𝑛
𝑗=1

 (4) 

2.3. Derivation of MLE for Erdős–Rényi Graphs 

However, if directly deal with the probability mass function, it might be computationally difficult. 

Therefore, taking logarithm of the function successfully turns a product to a sum, which is a lot easier 

to perform subsequent calculations. The log-likelihood function is defined as [10]: 

 log 𝐿(𝑝|𝑋) = ∑  𝑁
𝑖=1

∑  𝑁
𝑗=1

{𝑥𝑖𝑗log𝑝 + (1 − 𝑥𝑖𝑗)𝑙𝑜𝑔(1 − 𝑝)} (5) 

In order to figure out the maximum of the log-likelihood function, taking the derivative with 

respect to 𝑝 is necessary. Using rules of differentiation, derivative is expressed as: 

 
𝑑

𝑑𝑝
log𝐿(𝑝|𝑥) =

𝑑

𝑑𝑝
{∑  𝑁

𝑖=1
∑  𝑁

𝑗=1
{𝑥𝑖𝑗log𝑝 + (1 − 𝑥𝑖𝑗)log(1 − 𝑝)}} = ∑  𝑁

𝑖=1
∑  𝑁

𝑗=1
(

𝑥𝑖𝑗

𝑝
−

1−𝑥𝑖𝑗

1−𝑝
) (6) 

Then, set the derivative equal to zero to find the maximum estimation of 𝑝: 

Let 𝑆 = ∑  𝑁
𝑖=1 ∑  𝑁

𝑗=1 𝑥𝑖𝑗, which represents the total number of edges meaning connections between 

individuals. Substituting S into the equation and perform several algebraic manipulations, it becomes: 

 
𝑆

𝑝
−

𝑁2−𝑆

1−𝑝
= 0 (7) 

 (1 − 𝑝)𝑆 − 𝑝(𝑁2 − 𝑆) = 0 (8) 

 𝑆 − 𝑆𝑝 − 𝑁2𝑝 + 𝑆𝑝 = 0 (9) 

 𝑆 = 𝑁2𝑝 (10) 

Therefore, the estimation of probability can be written as: 

 �̂�𝑀𝐿 =
𝑆

𝑁2
=

1

𝑁2
∑  𝑁

𝑖=1
∑  𝑁

𝑗=1
𝑥𝑖𝑗 (11) 

The �̂�ML  is the maximum-likelihood estimation of the connection probability 𝑝 in the Erdős–

Rényi graph. 

3. Application Analysis in MLE for Erdős–Rényi 

3.1. Case Study 

Having comprehensively delved into the theoretical basis, a connection between theory and a real-

world scenario is indispensable, since the true value of a theoretical framework lies in its ability and 

to be applied and tested under practical backgrounds [11]. An appropriate practical instance is related 

to a virus transmission within a city during the epidemic. Suppose the study monitors 500 individuals 

who are infected or in close contact to the infected. 

For each pair of individuals, if there is evidence of a risky contact that could potentially lead to 

virus transmission, a connection is established between them. These relationships are manipulated in 
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a 500*500 adjacency matrix, where a value of 1 at position (𝑖, 𝑗) indicates a potential transmission 

link between individual 𝑖 and 𝑗, and 0 indicates no such link. 

The Maximum Likelihood Estimation (MLE) approach is incorporated to calculated the 

connection probability �̂�𝑀𝐿 . After carefully counting all the potential transmission links, the total 

number of potential transmission edges S = 6000, Then: 

 �̂�𝑀𝐿 =
𝑠

𝑁2
=

6000

500
2
 (12) 

3.2. Accuracy exploration 

After incorporating such an approach to a real-world case, the accuracy of this methodology is 

focused on. In this study, the relationship between the value of N which represents the total number 

of nodes and the percentage error [12]. Here, percentage error is defined as the absolute value of the 

difference between the estimated connection probability (�̂�𝑀𝐿) obtained via the Maximum Likelihood 

Estimation methodology and the true connection probability, relative to the true connection 

probability (𝑝)  

 Percentage error = |
𝑝𝑀𝐿−𝑝

𝑝
| × 100% (13) 

To further investigate the relationship, set N to a great variety of values from 50 to 600 at the 

interval of 50, visualizing the trend clearly. Multiple parameters 𝑝  ranging from 0.1 to 0.9 are chosen 

to construct the image. The number of simulations under the context of each N value and each 

parameter  𝑝 is set highly to 1500, so that average percentage error can be figured out, enhancing the 

reliability of the result. Though utilization of python program, the relationship between N and average 

percentage error is illustrated as a graph: 

 

Figure 2: Relationship between N and average percentage error. (Picture credit : Original) 

As shown in Figure 2, the graph is drawn by linking the dots which represent the average error 

percentage under a specific parameter and the relationship is visualized by colorful lines. After 

multiple trials of code execution, there is a consistent trend showing that the percentage error falls 
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with the increase in number of nodes under all parameter values. This suggests that the methodology's 

error minimizes if N is a huge number, which simultaneously gives us some valuable insights that 

should guarantee that N is large enough when utilizing this approach to avoid significant errors. 

4. Advantages and disadvantages 

4.1. Advantages 

The most conspicuous superiority is the simplicity. The concept of Maximum Likelihood Estimation 

is relatively straight forward, and the calculation of �̂�𝑀𝐿  is computationally efficient. This gives 

researchers and practitioners access to different levels of mathematical and computational expertise. 

For instance, a social scientist with basic statistical knowledge can easily understand and apply 

Maximum Likelihood Estimation to analyze social network data 

The second upside worthing mentioning is the statistical rigor. Maximum Likelihood Estimation 

provides a powerful statistical framework for parameter estimation and it possesses several desirable 

properties in Statistics, such as consistency and asymptotic normality. Consistency means that as 

sample size expands, the estimation �̂�𝑀𝐿  tends to infinitely approach the actual probability. 

Asymptotic normality implies that the distribution of �̂�𝑀𝐿 for a large sample size could be 

approximately regarded as the normal distribution, which is conducive to statistical inference. 

4.2. Disadvantages 

The first downside is the assumption of uniform connection probability. The Erdős–Rényi graph 

model assumes a uniform connection probability between all pairs of nodes, which in fact is 

impossible. In real-world social networks, the connection probability will definitely be affected by 

other factors instead uniform. For example, when it comes to a case about friendship, the probability 

of any two students to cultivate friendship is never supposed to be uniform in practice, since elements 

such as age, hobby and personality are not taken into account. To be more specific, an extroverted 

possesses a stronger tendency to make friends with those who are extroverted. Hence, this assumption 

causes estimated �̂�𝑀𝐿  to deviate substantially from the true connection probability in different 

networks. 

Another drawback is the limitation of the static model. The Erdős–Rényi Graph is static, while 

social networks are dynamic, meaning that nodes and edges may change overtime in real world. 

Continuing with that friendship example, it is entirely possible for new friendships to form and 

existing friendship to vanish. The current models and Maximum Likelihood Estimation have nothing 

to do with these dynamic alterations, confining the effectiveness in analyzing dynamic social network. 

Therefore, the insights obtained from a static model may not comprehensively analyze the social 

network, especially in the long term. 

5. Future research directions 

A promising future research direction is to incorporate age and personality factors into social network 

analysis, especially when studying friendships, since these factors will greatly influence a person’s 

friend making choice. 

Take a school as an example, the students' ages will potentially divide them into different age 

groups. More specifically, younger students tend to form friendships more easily with those in the 

same grade since they have similar classes and daily schedules. When it comes to personality, 

outgoing students are often more likely to make friends quickly at school events, while introverted 

students may form closer connection with quieter classmates. 
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Mathematically, new elements can be added to the Erdős–Rényi graph model. The connection 

probability p as a function 𝑝(𝑎1, 𝑎2, 𝑝𝑒𝑟1, 𝑝𝑒𝑟2). Here, 𝑎1 and 𝑎2 are the ages of two people and 

𝑝𝑒𝑟1 and 𝑝𝑒𝑟2 stand for their personalities. This new function can show how likely two people are 

to become friends based on their ages and personalities which can be directly added to the previous 

model. Therefore, the model is optimized by adding more functions and manages to give a more 

holistic result in a real-world scenario [13]. The model is further optimized by incorporating 

additional factors like shared hobbies; for example, a mutual interest in playing basketball can 

increase the likelihood of friendship. This approach not only aids in understanding how friendship 

social networks develop but can also be utilized in schools to arrange activities that foster friendships 

and in social apps to refine friend recommendation systems. Future research might explore advanced 

visualization techniques to better understand the structure and dynamics of social networks. 

Visualization plays a crucial role in revealing hidden patterns from data and presenting results clearly. 

Interactive visualizations could allow users to delve into network structures and observe changes over 

time, while 3D visualizations might offer a more comprehensive view of large-scale social networks. 

6. Conclusion 

In this essay, it is discovered that the use of Maximum Likelihood Estimation (MLE) incorporated in 

the Erdős–Rényi graph model is an effective approach to estimate connection probabilities in social 

networks. Besides, the Maximum Likelihood Estimation formula for the Erdős–Rényi model is 

derived and applied to a real-world scenario about the virus transmission. 

A major focus of this study is to examine accuracy. Extensive simulations are performed to see 

how the average percentage error changes in response to sample size changes. The results clearly 

show that when the number of nodes grows, the percentage error in estimating the connection 

probability consistently decreases, which proves that Maximum Likelihood Estimation works the 

most accurately for large sized networks. Furthermore, the visual graph, showing the relationship 

between the number of nodes and average percentage error, produced by utilizing python program 

clearly display this trend, which confirms that larger networks lead to better estimation accuracy. 

In terms of advantages, the strength of MLE lies in its simplicity and ease of use with large data 

sets. The method uses an adjacency matrix, where each entry indicates whether a connection between 

two nodes exists, with the connections following a simple probability rule. This straightforward 

approach makes it accessible to researchers in many fields, even those who are not experts in 

advanced statistics. 
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