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Abstract: In the era of digital transformation, dealing with big data that alters over time is 

necessary. Markov chain is a fundamental concept in the field of stochastic processes for 

modeling systems that evolve probabilistically over time, and especially it can be used in 

computer science for data analysis. This paper focused on analyzing the applications of 

Markov chain in predicting cloud service trusted state and network traffic. The main problem 

addressed is how to integrate Markov chains into the complicated computation systems. By 

employing discrete Markov processes, hidden Markov chains, and fuzzy Markov fields, one 

can use the transition probability matrix and the stationary distribution of Markov chains to 

ascertain the stable state of the systems, predict the future state, and then conduct 

optimizations. The results indicated that if the stationary distribution of Markov process exists, 

then the future state can be predicted. With the training of some extra parameters, the 

optimized scheme can be achieved. This research is significant as it provides practical 

guidance for educators and institutions to utilize Markov chain under digital era. 

Keywords: Markov chain, transition matrix, stationary distribution, cloud service trusted state, 

network traffic 

1. Introduction 

The Markov chain, first proposed by the Russian mathematician Markov in 1906, was initially used 

for the study of linguistic statistics. Markov described the probability of the occurrence of words by 

using a sequence of random variables. Subsequently, Kolmogorov laid the theoretical foundation for 

it. Later, Metropolis proposed Markov Chain Monte Carlo, and Baum and other researchers proposed 

hidden Markov Model. Concepts such as the Markov decision process appeared successively. The 

current hot issues of Markov process concentrate on firstly, the integration of Markov chains with 

cutting-edge technologies such as deep learning to extract more value from data. Secondly, in high-

dimensional and complex data scenarios, the further optimization of Markov chain algorithms to 

improve computational efficiency and model generalization ability. Thirdly, the expansive 

applications of Markov chains in emerging fields, such as quantum computing and brain science, 

providing new methods and ideas for interdisciplinary research. 

Previous studies and literatures have shown that Markov chain can be used extensively in the field 

of computer science. For instance, Qian et al. use improved Markov chain to construct efficient 

domain name generation algorithm [1]. Chelly et al. utilize the Markov chain-based generation flow 

network to achieve consistent amortized clustering [2]. Li et al. have researched the combination of 

deep computer technique and Markov theorem for deep computerized adaptive testing to 
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revolutionize contemporary assessment practices in education and behavioral health by dynamically 

adapting test material to meet individual examinees' needs during the evaluation process [3]. Further, 

Chen et al. have researched for using Markov chain to select important nodes in random network by 

creating efficient sampling procedure [4]. The importance of exploring the applications of Markov 

chain lies in improving data manipulation in digital age. 

This paper is structured as follows. Section 2 will introduce some basic method and theory with 

the inclusion of the definition of Markov process and some properties of Markov chain. Section 3 

will present some background information about the importance of using Markov chains and 

introduce two famous applications of Markov chain in the transformation of cloud service trusted 

state and the prediction of network traffic. Section 4 will conclude the paper with summaries of the 

findings and the expectations for future researches. 

2. Method and Theory 

2.1. Definition of Markov Process 

Markov process is a probabilistic process that is used to model systems where the state that will occur 

in the future is contingent solely upon the present state and has no connection or reliance on the state 

that preceded it. Given the present state in order to predict the future state. 

The two main types of Markov process are discrete Markov process and continuous Markov 

process. For a discrete Markov process, the parameter takes discrete values which are usually 

represented by the set of integers ( 𝑛 = 0,1,2, ⋯, ) and the state space is usually discrete. It is clear 

that discrete time points are used to observe the change of system's state. It is suitable for the analysis 

of web browsing behavior and text generation. For a continuous Markov process, the time parameter 

takes continuous values which are usually represented by the set of non-negative real numbers (𝑡 ≥
0), and the state space is usually continuous. It means that the system state can be observed at any 

moment. It is often used in field such as queuing theory and the dynamics of biological populations. 

In this paper, the author mainly focused on analyzing the Discrete Markov process. The 

mathematical definition of Discrete Markov process is that concerning a succession of random 

variables𝑋1, 𝑋2,⋯ , 𝑋𝑛, for all 𝑛 ≥  0, and for all possible values 𝑥1, 𝑥2,⋯ , 𝑥𝑛 of the random variables, 

satisfy the following formula 

𝑃 (𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛 , 𝑋𝑛−1 = 𝑥𝑛
1
,⋯ , 𝑋0 = 𝑥0) = 𝑃 (𝑋𝑛+1|𝑥𝑛+1) (1) 

A Markov process is often typified by a transition probability matrix 𝑃. Each element, which 

denoted by 𝑃𝑖𝑗, in the matrix 𝑃 denotes the probability by which there is a shift from state 𝑖 to state 

𝑗 in one state. It satisfies the following relation 

𝑃𝑖𝑗 = 𝑃(𝑋𝑛+1 = 𝑥𝑗|𝑋𝑛 = 𝑥𝑖) (2) 

The form of the transition probability matrix is thus 𝑃 = (
𝑃00 ⋯ 𝑃0𝑛

⋮ ⋱ ⋮
𝑃𝑛0 ⋯ 𝑃𝑛𝑛

). 

2.2. Properties of Markov Chain 

The irreducibility and stationary distribution are two properties of Markov chain. An irreducible 

Markov chain means that no matter starting from what states, it is possible to reach the other states 

within a finite number of steps. The mathematical definition of the irreducibility of Markov chains is 

that for a Markov chain {𝑋𝑛} with a state space 𝑆, if for any 𝑖, 𝑗 ∈ 𝑆 there exists a positive integer m, 
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such that the probability of transitioning from state 𝑖 to state 𝑗 in m steps 𝑃𝑖𝑗(𝑚) > 0, that is, 𝑃(𝑋𝑛 =

𝑗|𝑋0 = 𝑖) > 0, then this Markov chain is irreducible [5]. 

The stationary distribution of discrete Markov process is that after the Markov chain ran for a long 

enough time, the probabilities of the system being in various states no longer change with time, 

reaching a stable state. This stable probability distribution is the steady-state distribution of Markov 

chain [5]. The existence conditions for the steady-state distribution are that the Markov chain has the 

properties of irreducibility, aperiodicity and positive recurrence. The mathematical definition of 

stationary distribution is that for a Markov process {𝑋𝑛 , 𝑛 = 0,1,2, ⋯}, if there exists a probability 

distribution 𝜋 = (𝜋1, 𝜋2,⋯ , 𝜋𝑖 ,⋯ ) , ∑𝜋𝑖 = 1, such that for all states i and any 𝑛 ≥ 0, 𝑃(𝑋𝑛 = 𝑖) =
𝜋𝑖. The probability distribution 𝜋 does not change with the passage of time [5].  

There are three calculation methods for stationary distribution. Firstly, one is calculating 𝜋𝑃 = 𝜋 

(where 𝑃 is the transition matrix). Since the value of the input vector of P equals to the output vector, 

vector 𝜋 is the stationary distribution [5]. The second one is calculating 𝜋(𝑘+1) = 𝜋𝑘 𝑃, until 𝜋𝑘 

converges, it represents the stationary distribution [1]. The third one is calculating 𝑃𝑛 (where 𝑃 is the 

transition matrix), when reaching the values of all rows tend to be equal and the sum of the values of 

each row is 1, each row represents the stationary distribution [5]. 

3. Results and Applications 

3.1. Markov Chain-Based Cloud Service Trust Condition 

3.1.1. Construction of Markov Model 

IT tactics have been completely transformed by cloud computing. However, choosing the best cloud 

service is still difficult because of the wide range of performance characteristics, the market's 

competitiveness, and the fact that traditional performance metrics frequently fail to take real-time 

fluctuations into account, leading to assessments that might not adequately match business 

requirements [6]. Researchers use a Markov chain model to continuously track and analyze changes 

in users’ responses because assessing aspects like performance, dependability, scalability, and 

security is crucial [6]. This allows for a more thorough and rapid evaluation than static models. 

Definition of trustworthiness level of cloud service is that a service is trusted if it consistently evolves 

in the anticipated direction. In contrast, a service is not trusted if it is unable to continue operating 

regularly because of a trustworthiness issue [7]. 

There are five extra parameters that associate with the construction of Markov model. The specific 

cloud service-relevant reliability characteristic model is shown in Figure 1. For these parameters, 𝛽𝑖 

represents three classes of the cloud service trustworthiness 𝛽1, 𝛽2, 𝛽3, which denote the reliability of 

the operational and maintenance tasks of service providers, the dependability of service data, and the 

credibility of the quality standard of service, respectively [7]. 𝛼𝑖  represents the 16 significant 

indicators that impact the reliability of cloud services through the research of the literature and experts’ 

visits [7]. 𝐹 is the parameter that shows the frequency of issues with trustworthiness in the long-run 

functioning of cloud services. The frequency of issues with cloud service trustworthiness increases 

with a greater value of 𝐹 [7]. The parameter 𝐿 shows the degree of cloud service failure severity 

during extended use. The harm brought on by the cloud service trustworthiness issue increases with 

the value of 𝐿 [7]. Fuzzy entropy, denoted by 𝐸(𝐴), is a quantitative measure reflects the degree of 

uncertainty of elements belonging to the fuzzy set. When the boundary of a fuzzy set is less clear and 

the membership degree distribution of elements is more dispersed, the fuzzy entropy is larger [7]. 
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Figure 1: The cloud service-relevant reliability characteristic model [7]. 

Since Markov process is characterized by its memoryless property, the transitions between four 

trusted states 𝑆1, 𝑆2, 𝑆3, 𝑆4 can be predicted based on Markov chain principle by modeling a transition 

probability matrix. They represent a state of utmost trustworthiness, a fundamental assurance state, a 

crucial assurance state, and a doubted state, respectively [7]. The trusted state matrix is 

𝑇𝑀 =

[
 
 
 
 
 
 𝑃𝑠𝑖 (𝑆(1→1)) 𝑃𝑠𝑖 (𝑆(1→2)) 𝑃𝑠𝑖 (𝑆(1→3)) 𝑃𝑠𝑖 (𝑆(1→4))

𝑃𝑠𝑖 (𝑆(2→1)) 𝑃𝑠𝑖 (𝑆(2→2)) 𝑃𝑠𝑖 (𝑆(2→3)) 𝑃𝑠𝑖 (𝑆(2→4))

𝑃𝑠𝑖 (𝑆(3→1)) 𝑃𝑠𝑖 (𝑆(3→2)) 𝑃𝑠𝑖 (𝑆(3→3)) 𝑃𝑠𝑖 (𝑆(3→4))

𝑃𝑠𝑖 (𝑆(4→1)) 𝑃𝑠𝑖 (𝑆(4→2)) 𝑃𝑠𝑖 (𝑆(4→3)) 𝑃𝑠𝑖 (𝑆(4→4))]
 
 
 
 
 
 

(3) 

where the element Psi(𝑆𝑚→𝑛) is the probability of the reliability condition transforming from state 𝑚 

to state 𝑛, and ∑ 𝑃𝑠𝑖(𝑆(𝑚→𝑛)) = 14
𝑚=1 . 

3.1.2. Method of Computing the Reliable Condition of the Cloud Service 

Expert evaluation of underlying indicators is that for each trusted attribute indicator 𝛼𝑗 , experts 

evaluate its frequency level interval [𝐹𝑚𝑖𝑛(𝛼𝑗), 𝐹𝑚𝑎𝑥(𝛼𝑗)], and the severity of loss level interval 

[𝐿𝑚𝑖𝑛(𝛼𝑗), 𝐿𝑚𝑎𝑥(𝛼𝑗)]. 

Calculation of the Membership Degree 𝜇𝑆𝑛
(𝛼𝑗) is that the membership degree of the indicator 𝛼𝑗 

belong to state 𝑆𝑛  is calculated by the geometric region overlapping method 𝜇𝑆𝑛
(𝛼𝑗) =

Square(𝛼𝑗)∩Square(𝑆𝑛)

Square(𝛼𝑗)
 , where Square(𝛼𝑗) is the coverage area of 𝛼𝑗 in the risk matrix, and 𝑆𝑞𝑢𝑎𝑟𝑒(𝑆𝑛) 

is the geometric region of state 𝑆𝑛  [7]. Calculation of Transition Probabilities by Integrating 

Membership Degrees is that for each trusted category 𝛽𝑖, the element 𝑃(𝑆𝑛 → 𝑆𝑚 , 𝛽𝑖) of its transition 

matrix 𝑇𝑀(𝛽𝑖 ) is calculated by formula 𝑃𝑠𝑖(𝑆𝑛 → 𝑆𝑚 , 𝛽𝑖) = ∑ 𝜇𝑆𝑚
𝑡𝑜𝑡𝑎𝑙
𝑗=1 (𝛼𝑗) when 𝜇𝑆𝑛

(𝛼𝑗) > 0 [7]. 

The trusted state matrix is given by 
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𝑇𝑀(𝛽𝑖) =

[
 
 
 
 
 
 𝑃𝑠𝑖 (𝑆(1→1) , 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(1→2), 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(1→3) , 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(1→4) , 𝛽𝑖)

𝑃𝑠𝑖 (𝑆(2→1) , 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(2→2), 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(2→3) , 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(2→4) , 𝛽𝑖)

𝑃𝑠𝑖 (𝑆(3→1) , 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(3→2), 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(3→3) , 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(3→4) , 𝛽𝑖)

𝑃𝑠𝑖 (𝑆(4→1) , 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(4→2), 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(4→3) , 𝛽𝑖) 𝑃𝑠𝑖 (𝑆(4→4) , 𝛽𝑖)]
 
 
 
 
 
 

(4) 

Markov Chain Prediction: Suppose the probability vector of the trusted state at the current time 𝑡 

is 𝜇𝑡 = [𝜇𝑆1

𝑡 , 𝜇𝑆2

𝑡 , 𝜇𝑆3

𝑡 , 𝜇𝑆4

𝑡  ] , and the probability vector at the next moment is calculated by the 

transition matrix: 𝜇𝑡+1 = 𝜇𝑡 ∙ 𝑇𝑀(𝛽𝑖) [7]. 

In conclusion, this method quantifies uncertainties through fuzzy entropy and dynamically predicts 

state transitions using the Markov chain. It provides a systematic evaluation framework for the 

trustworthiness of cloud services from underlying indicators to global states, and is applicable to 

scenarios that require dynamic monitoring and risk prevention [7]. 

3.2.  Markov Model for Predicting Network Traffic 

3.2.1. Establishment of the Hidden Markov Model 

In the immediate future, precise network traffic forecasts are essential for effective traffic 

management, which includes congestion reduction and traffic control [8]. For the foreseeable future, 

accurate network traffic forecasting will be crucial to the success of different traffic control techniques. 

However, because transportation systems are inherently unpredictable and chaotic, it can be difficult 

to achieve accurate forecasting in both free-flow and congested traffic conditions [8]. 

This paper showed a method that need to construct a hidden Markov model. The Hidden Markov 

Model, abbreviated as HMM, is a statistical model which is employed to depict a Markov process 

where there are hidden, unknown parameters [9]. It includes hidden states and observable states. The 

hidden states satisfy the Markov property, that is, the hidden state at the next moment depends only 

on the current hidden state and is independent of other historical states. Each hidden state will output 

an observable state with a certain probability [9]. HMM consists of observation set, which composed 

of all possible observation values; state transition probability matrix, which describes the probability 

of transitioning from one hidden step to another hidden step; and observation probability matrix, 

which represents the probability of generating each observation value under each hidden state [9]. In 

this case (prediction for network traffic), hidden states represent different levels or patterns of network 

activity, such as low traffic load, medium traffic load, and high traffic load states [8]. The observable 

states are the actual measurements of network traffic, which can be the number of packets transmitted 

per unit time [8]. The HMM attempts to classify the traffic fluctuations' results. 

Construct a hidden Markov model with 3 hidden states 𝑀1,𝑀2,𝑀3, which represents heavy traffic 

burden, moderate traffic burden and light traffic burden, respectively. The probability of transitioning 

between each state is based on the previous researches on specific observation states. As shown in 

the following matrix, where 𝑃 stands for the matrix of concealed state transitions and 𝜋 is the vector 

of original states probability [8]: 

𝑃 =

[
 
 
 
 𝑃 (𝑀(1→1)) 𝑃 (𝑀(1→2)) 𝑃 (𝑀(1→3))

𝑃 (𝑀(2→1)) 𝑃 (𝑀(2→2)) 𝑃 (𝑀(2→3))

𝑃 (𝑀(3→1)) 𝑃 (𝑀(3→2)) 𝑃 (𝑀(3→3))]
 
 
 
 

(5) 
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𝜋 = [𝑝 (𝑀1) , 𝑝 (𝑀2) , 𝑝 (𝑀3)] (6) 

If from state 𝑖 transitions to state 𝑗 occurs 𝑁𝑖𝑗 times, then 𝛼𝑖𝑗 = 𝑁𝑖𝑗 ∑ 𝑁𝑖𝑘𝑘⁄ . 

The calculating ways to predict the future states are shown in the follow. Using the transition 

matrix to iteratively compute future state distributions. For single-step prediction: the current state is 

𝜋𝑡, then the next state distribution satisfies 𝜋𝑡+1 = 𝜋𝑡 ∙ 𝑃 [8]. For multi-step prediction: the future 

state 𝜋𝑡+𝑘 satisfies that 𝜋𝑡+𝑘 = 𝜋𝑡 ∙ 𝑃𝑘 [8]. For example, if the observation state of the current state 

of the network traffic is "medium traffic load", that is, 𝜋 = [0,1,0]. The transition matrix is  𝑃 =

[
0.6 0.3 0.1
0.2 0.5 0.3
0.1 0.4 0.5

] . Therefore, the next state distribution is 𝜋𝑃 = [0.2,0.5,0.3] , that is, have 20% 

probability of “high traffic load”, 50% probability of “medium traffic load”, and 30% probability of 

“low traffic load”. For multi-step prediction, calculating 𝜋𝑡+𝑘 = 𝜋𝑡 ∙ 𝑃𝑘 , as a result, 𝜋𝑡 converges 

to [0.283,0.431,0.304], satisfies the stationary distribution. Therefore, no matter what the conditions 

are, the probability of “high traffic burden” is 0.283, the probability of “medium traffic burden” is 

0.431, and the probability of “low traffic burden” is 0.304. 

3.2.2. Optimization: Training and Parameter Estimation of HMM 

The Baum-Welch Algorithm (EM Algorithm) is shown as the follow. In E-step need to compute 

forward probability 𝛼𝑡(𝑖) = 𝑃(𝑥1, 𝑥2,⋯ , 𝑥𝑡,⋯ , 𝑧𝑡 = 𝑞𝑖), which represents the joint probability that 

at time t, the state is 𝑞𝑖  and the sequence 𝑥1,⋯ , 𝑥𝑡 has been observed. The backward probability 

𝛽𝑡(𝑖) = 𝑃(𝑥𝑡+1, ⋯ , 𝑥𝑇|𝑧𝑡 = 𝑞𝑖) , which represents the probability of observing the sequence 

𝑥𝑡+1, ⋯ , 𝑥𝑇 given that the state at time 𝑡 is 𝑞𝑖  [8]. M-step is used to update the parameter 𝑃 (the state-

transition matrix), 𝐵 (the observation probability matrix), and 𝜋 (the original state probability vector) 

to maximize the likelihood function 𝑃(𝑋) = 𝜋𝑍1
∙ ∏ 𝑝𝑧𝑡𝑧𝑡+1

𝑇−1
𝑡=1 ∙ ∏ 𝑏𝑧𝑡

(𝑥𝑡)
𝑇
𝑡=1 , which describes the 

probability of the observed sequence 𝑋 = (𝑥1,⋯ , 𝑥𝑇 ) occurring when given the parameters 𝜋, 𝑃, 

and 𝐵. By continuously adjusting 𝜋, 𝑃, and 𝐵, 𝑃(𝑋) can increase [8]. 

 

Figure 2: Determined hidden states based on varying sojourn densities, utilizing a model with 3 

hidden states and incorporating 1 Gaussian mixture component [8]. 
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Construction of Gaussian Mixture Model is 𝑏𝑗(𝑥) = ∑ 𝑐𝑗𝑙𝑁(𝑥|𝜇𝑗𝑙 , ∑ )𝑗𝑙
𝑘
𝑙=1 , where 𝑘 is the number 

of mixture components, 𝑐𝑗𝑙 is the weight of the 𝑙 − 𝑡ℎ Gaussian component in the 𝑗 − 𝑡ℎ state, and 

𝑁(𝑋|𝜇𝑗𝑙 , ∑ )𝑗𝑙  is the Gaussian distribution function with mean 𝜇𝑗𝑙  and covariance ∑  [𝑗𝑙 10]. As shown 

in Figure 2. 

The overall goal is that after iteratively optimizing between the E-step and the W-step, the 

parameter combinations 𝜋, 𝑃, 𝐵 and the parameters in Gaussian mixture model (if exist) that enhance 

the possibility to the likelihood of the observed data can be found to make the probability of the 

observed sequence occurring under the current parameters the largest [8]. One can then build up a 

multi-state dynamics model to capturing non-stationary through hidden states. In summary, the 

applications of hidden Markov model in modeling traffic by defining state and setting probability, 

estimating traffic by learning parameter, inferencing state and predicting traffic, and detecting 

anomaly by modeling normal patterns can help to better understand the patterns and dynamic changes 

of network traffic. They can also predict future traffic trends. As a result, it may enable human being 

to optimize the allocation of network resources, improve the quality of network services, and enhance 

network security protection. 

4. Conclusion 

In this paper, the author has explored the concepts and applications of Markov chains in computer 

science field. Citing the predictions of cloud service trusted state’s transformation and network traffic 

as two great examples, to show that with the great use of integrating Markov chain into some 

computation systems, training the systems by adapting the values of some important parameters, 

which were added into the Markov process, the future state can be predicted and then optimized. 

However, the limitations of this paper lie in lack of the support from some valid data and some 

computations of the operation of Markov process to verify the normal functioning of the systems. 

In the future, Markov chain can also be used in the following fields of computer science. Such as 

in strengthening deep reinforcement learning by combing Markov chain with deep neural networks 

to handle sequential data with long-term dependencies, capture complex modes in time series more 

effectively, and improve the accuracy of the model's prediction of future states. This can be applied 

to multimodal tasks such as video analysis and speech recognition. In addition, in modeling the user's 

interaction behaviors in the virtual environment, such as the order and frequency of the user's 

interactions with virtual objects. Use Markov chains to generate more natural and user-habit-

compliant interaction experiences, providing a basis for the design and optimization of the virtual 

environment. Overall, this paper may serve as a starting point for further investigations of Markov 

chain in computer science field. 
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