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Abstract: With the increasing demand for efficient traffic management driven by urbanization, 

predicting traffic patterns has become critical. This paper looks at the application of Markov 

chains in the field of transportation, focusing on their ability to model complex and dynamic 

traffic systems. Three Markov-based models are discussed: homogeneous Markov chains, 

Grey Markov chains, and Markov-based queueing models. Based on these three models, this 

paper provided the relevant applications, including pedestrian crash prediction, urban rail 

passenger flow forecasting, and bus stop zone length optimization. It is shown by the results 

that Markov chains are effective in these models. To elaborate, homogeneous Markov chains 

help identify high-risk areas for pedestrian crashes, which provides a targeted measurement 

for the traffic management departments. On the other hand, GM-Markov models improve the 

accuracy of passenger flow forecasting. Moreover, queueing models optimize bus stop 

efficiency, making transportation systems more reliable. These findings show that using 

Markov chains in transportation could lead to a better traffic system. As a result, cities can 

manage their transportation networks more effectively.  

Keywords: Markov chains, Grey Theory, Queueing problem, Traffic management 

1. Introduction 

A Markov chain is a mathematical model of random variables that transit through states, where the 

future state depends only on the current state and not on the previous state. This “memoryless” 

property makes Markov chains particularly useful in modelling dynamic systems with randomness 

and uncertainty. For example, the field of transportation. It has a complex combination of many 

different types of traffic systems, including road users, modes of transport, traffic flows, signal control, 

etc. In recent years, urban transportation demand has increased rapidly with the development of the 

economy, urbanization, and the automobile industry. Considering the growing need for efficient 

traffic management, Markov chains offer a practical way of understanding and optimizing traffic 

systems. 

Hitherto, the application of Markov chains in transportation has been widely explored. Traffic flow 

prediction is one of the most significant uses. For instance, Markov chain Monte Carlo algorithms 

have been used to estimate traffic flow using a Gauss model, which has increased the speed of traffic 

flow prediction [1]. In particular, some studies concentrated on short time traffic flow prediction [2], 

whereas others have focused on long term traffic flow prediction [3]. Another notable application is 

in traffic signal control. Ni et al. developed a Grey Markov chain (GM-Markov) method to optimize 

traffic signal control. They adjust the signal lights at intersections based on traffic and pedestrian flow 

to improve traffic efficiency [4]. Markov chains have also been applied to public transportation 
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systems. By combining Markov chains and Queueing Theory, researchers have developed models of 

bus delay at bays [5]. Similarly, Gong and Luo constructed a Markov-based queueing model for the 

average queue length at bus stops and used VISSIM simulation software to validate the feasibility 

and rationality of the model [6]. Moreover, Markov chains have been instrumental in traffic accident 

prediction. An improved GM-Markov was applied to forecast the future trend of traffic accidents [7]. 

In another study, pedestrian accident likelihood was assessed based on historical data, helping to 

identify high-risk areas for targeted preventive measures [8]. It is also worth noting that Markov 

chains have been applied in tourism transportation. Tang et al. utilized a Markov chain model to 

predict tourism traffic demand [9]. At the same time, Dong, Wang and Lei developed a passenger 

flow allocation model for tourism rail transit based on Markov chains [10]. 

It can be concluded from the previous research that Markov chains have played an essential part 

in the field of transportation. In this regard, this paper will mainly focus on three Markov-based 

models and the applications of them. 

2. Methodology 

This section provides the methodological framework used in this paper, focusing on three models, 

including the homogeneous Markov chains model, the Grey Markov chains model (GM-Markov), 

and the Markov-based queueing model. 

2.1. Homogeneous Markov Chains Model 

A Markov chain is a stochastic process 𝑋 = {𝑋𝑡, 𝑡 ∈ 𝑍+} that transitions between a finite number of 

states 𝑆 = {𝑠0, 𝑠1, … , 𝑠𝑛}, where the future state of the system depends only on the current state and 

not on the past states. Mathematically, this can be expressed as: 

𝑃(𝑋𝑡+1 = 𝑠𝑗 |𝑋𝑡 = 𝑠𝑖, 𝑋𝑡−1 = 𝑠𝑘, … , 𝑋0 = 𝑠0) = 𝑃(𝑋𝑡+1 = 𝑠𝑗 | 𝑋𝑡 = 𝑠𝑖) (1) 

where 𝑃(𝑋𝑡+1 = 𝑠𝑗 | 𝑋𝑡 = 𝑠𝑖) represents the probability of transitioning from state 𝑠𝑖 to state  𝑠𝑗  in 

one step. The transitions between states are described by a transition matrix 𝑃, which is defined as: 

𝑃 = (
𝑃11 ⋯ 𝑃1𝑛

⋮ ⋱ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

) (2) 

where each 𝑃𝑖𝑗 represents the probability of moving from state 𝑠𝑖 to state 𝑠𝑗. The matrix satisfies the 

condition that for each row: ∑ 𝑃𝑖𝑗 = 1𝑛
𝑗=1 . 

A homogeneous Markov chain is a special case where the transition probabilities remain constant 

over time. Mathematically, this can be expressed as: 

𝑃(𝑋𝑡+1 = 𝑠𝑗 | 𝑋𝑡 = 𝑠𝑖) = 𝑃(𝑋𝑡+𝑘 = 𝑠𝑗 | 𝑋𝑡 = 𝑠𝑖) (3) 

which means the probability distribution at any time step 𝑡 is given by: 𝑝(𝑡 + 1) = 𝑃 × 𝑝(𝑡). 

If the Markov chain reaches a steady-state distribution, then as 𝑡 →∞, the system satisfies: 

𝜋 × 𝑃 = 𝜋. Solving this equation yields the stationary distribution 𝜋, which represents the long-term 

probabilities of the system being in each state. The uniqueness of 𝜋 is ensured if the transition matrix 

𝑃 is irreducible and aperiodic. 

2.2. Grey Markov Chains Model 

The GM-Markov combines the Grey System Theory with Markov chains, enabling improved 

forecasting when data is incomplete or highly uncertain. In transportation research, this model is 
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particularly suitable for the forecast of urban rail passenger flow, where the passenger flow exhibits 

both deterministic and stochastic properties. 

The forecasting process begins with the application of the Grey Model (GM (1,1)), which 

constructs a trend-based prediction by transforming an initial data sequence 𝑋(0) into an accumulated 

sequence 𝑋(1), defined as:  

𝑥(1)(𝑘) = ∑𝑥(0)(𝑖), 𝑘 = 1, 2, … , 𝑛

𝑘

𝑖=1

(4) 

The core differential equation of the 𝐺𝑀(1,1) model is expressed as:  

𝑑𝑋(1)

𝑑𝑡
+ 𝑎𝑋(1) = 𝑏 (5) 

where a is the development coefficient and b is the control variable. 

2.3. Markov-based Queueing Model 

A Markov-based queueing model describes a system where arrivals and services follow a Markov 

process. The arrivals are modeled by a Poisson distribution with rate 𝜆, whereas the service times 

follow an exponential distribution with rate 𝜇. 

The state transitions satisfy the following probabilities:  

𝑃𝑖,𝑖+1 = 𝜆, 𝑃𝑖,𝑖−1 = 𝜇, 𝑃𝑖,𝑖 = 1 − (𝜆 + 𝜇) (6) 

The average queue length is:  

𝐿𝑞 =
𝜆2

𝜇(𝜇 − 𝜆)
 (𝜆 < 𝜇) (7) 

The number of entities in the system is: 

𝐿 = 𝐿𝑞 +
𝜆

𝜇
(8) 

3. Application 

This section looks at three important applications, including pedestrian crashes prediction [8], urban 

rail passenger flow forecasting [11], and bus stop zone length optimization [6]. These applications 

illustrate how different Markov-based methodologies can benefit the modern transportation systems. 

3.1. Pedestrian Crashes Prediction 

Pedestrian safety remains a significant concern in urban environments, because road crashes with 

pedestrians in them often cause the highest death rate. Naturally, finding a way to predict and prevent 

this kind of accident is essential. Traditional statistical methods, such as regression analysis, often 

fail to represent the dynamic accident risks. Luckily, homogeneous Markov chains offer a better 

approach to modeling the accident risks. As a result, authorities can predict future accident rates based 

on historical data, and also optimize the use of available resources [8]. 

Data on road crashes with pedestrians in them were collected from the reports of Badajoz in Spain. 

Using the Markov chain model, it is possible to determine the probability that a system will go from 

state 𝑖 to state 𝑗 in time 𝑡. State will be replaced by level in this study. Therefore, the system that 

evolves in time (𝑡 = 0, 1, … ) is in level 𝑖𝑡 at instant 𝑡, and in level 𝑖𝑡−1 at instant 𝑡 − 1: 
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𝑃(𝑋𝑡 = 𝑖𝑡|𝑋0 = 𝑖0, … , 𝑋𝑡−1 = 𝑖𝑡−1) = 𝑃(𝑋𝑡 = 𝑖𝑡|𝑋𝑡−1 = 𝑖𝑡−1) = 𝑝𝑖𝑡−1,𝑖𝑡
(9) 

In the case of a homogeneous chain, those in which no term 𝑝𝑖𝑗(𝑡) depends on 𝑡 and satisfies 

equation: 

𝑝(𝑡) = 𝐴𝑡𝑝(0) where 𝐴(𝑡) = (
𝑝11(𝑡) ⋯ 𝑝1𝑛(𝑡)

⋮ ⋱ ⋮
𝑝𝑛1(𝑡) ⋯ 𝑝𝑛𝑛(𝑡)

) (10) 

where the number of times the system changes from level 𝑖  to level 𝑗 at time 𝑡 (1 < 𝑖, 𝑗 < 𝑛) is 

represented by the transition matrix A(t). 

This equation should also be met if matrix A exhibits the irreducible and primitive 

property:

lim
𝑡→∞

𝑝(𝑡) = lim
𝑡→∞

𝐴𝑡𝑝(0) =
1

∑𝑣𝑖
(

𝑣1

⋮
𝑣𝑛

) = 𝐸𝑉𝐸 𝑜𝑓 𝐸𝑉𝐴 1, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (11) 

where EVE is the eigenvector of the matrix and EVA is the eigenvalue 1 of the matrix. 

In this approach, pedestrian accident risk is classified into five levels according to the monthly 

number of pedestrian crashes. 

It is possible to obtain the probability matrix and the transition matrix based on the historical data 

that is currently accessible. Accordingly, one can thus obtain the values of EVAs and EVEs, the 

diagonal and the stationary matrices, and the characteristic polynomial. To simplify, this paper will 

only show the circumstance of one sector into which the city is divided. The results are shown in 

Table 1. 

Table 1: Results of the prediction model for sector 1 in the city of Badajoz, including the transition 

matrix and probability matrix [8]. 

Transition Matrix Probability Matrix 

(

 
 

1 10 5 1 0
9 8 10 2 1
5 11 20 2 2
1 0 4 0 0
0 1 2 0 0)

 
 

 

(

 
 

0.0625 0.3333 0.1220 0.2000 0
0.5625 0.2667 0.2439 0.4000 0.3333
0.3125 0.3667 0.4878 0.4000 0.6667
0.0625 0 0.0976 0 0

0 0.0333 0.0488 0 0 )

 
 

 

Diagonal matrix Stationary matrix 

(

 
 

1 0 0 0 0
0 −0.2870 0 0 0
0 0 0.1981 0 0
0 0 0 0.0133 0
0 0 0 0 −0.1074)

 
 

 

(

 
 

0.1790 0.1790 0.1790 0.1790 0.1790
0.3191 0.3191 0.3191 0.3191 0.3191
0.4187 0.4187 0.4187 0.4187 0.4187
0.0520 0.0520 0.0520 0.0520 0.0520
0.0311 0.0311 0.0311 0.0311 0.0311)

 
 

 

EVA EVE characteristic polynomial 

[
 
 
 
 

1
−0.2870
0.1981
0.0133

−0.1074]
 
 
 
 

 

[
 
 
 
 
0.1790
0.3191
0.4187
0.0520
0.0311]

 
 
 
 

 

𝜆5 −
8039

9840
𝜆4 −

6877

29520
𝜆3 +

729

16400
𝜆2 +

821

147600
𝜆 −

1

12300
 

 

By analyzing the results obtained in Table 1, it can be seen that the values of the diagonal matrix 

coincide with the corresponding EVA values, which also correspond to the roots of the fifth-degree 

characteristic polynomial. Furthermore, the stationary distribution matrix representing road crash 

evolution over time shows equal column values, matching the EVE values of EVA 1, consistent with 

the equations shown above. Following the trend predicted by Markov chains, multiplying these values 

by 100 gives the probability percentages of each sector being at a certain risk level. The results are 

shown in Figure 1. 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/100/2025.22033 

174 



 

 

This study proves the validity of Markov chains model in pedestrian traffic accident prediction, 

which can provide dynamic risk assessment and scientific basis for urban traffic management 

departments. Future research can further combine machine learning technology to optimize the state 

division and improve the model's prediction accuracy. 

 

Figure 1: Findings from the Markov model analysis for Badajoz's first sector expressed as a 

percentage (%) [8]. 

3.2. Urban Rail Passenger Flow Forecasting 

With the acceleration of urbanization, urban rail has become a crucial way to relieve the pressure of 

urban traffic. Passenger flow forecast is very important for subway scheduling and improving 

passenger service quality. Traditional passenger flow forecasting methods (such as ARIMA, neural 

network, etc.) have limitations in dealing with short-term passenger flow fluctuations, thus this study 

proposes a new prediction method based on a GM-Markov. The long-term trend analysis ability of 

the GM (1,1) and the short-term state transition correction ability of Markov chains are combined to 

improve the prediction accuracy [11]. The passenger flow prediction process of urban rail transit 

using GM (1,1) is shown in Figure 2. 
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Figure 2: GM (1,1) Urban Rail Transit Passenger Flow Prediction Process [11]. 

After obtaining the predicted value, it is essential to ensure that they satisfy the Markov property, 

also known as the memoryless property, for the model to be considered valid. This implies that the 

future state of passenger flow should depend solely on the current state and not on the sequence of 

past states. In the case study, the model was applied to forecast passenger flow data on Zhengzhou 

Metro Line 2 during commuting hours. The results are shown in Figure 3. 

 

Figure 3: Passenger Flow of Commuting Hours [11]. 

In order to better evaluate the results of passenger flow prediction, root mean square error 𝐸𝑚𝑠 and 

average relative error 𝐸𝑚 are measured. The formula for calculating 𝐸𝑚𝑠 and 𝐸𝑚 is: 
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𝐸𝑚𝑠 = √∑(𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1

, 𝐸𝑚 =
1

𝑛
∑

|𝑦𝑖 − ŷ𝑖|

𝑦𝑖

𝑛

𝑖=1

(12) 

where 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑛]  is the passenger flow of the subway station, ŷ𝑖 = [ŷ𝑖 , ŷ𝑖 , … , ŷ𝑖]  is the 

predicted passenger flow of the subway station. It is calculated that the 𝐸𝑚 is less than 10%, implying 

a relatively high prediction accuracy. The Grey-Markov significantly enhances the short-term 

forecast accuracy, making it suitable for dynamic scheduling adjustments. 

3.3. Bus Stop Zone Length Optimization 

The bus stop zone length is an important index to measure the capacity of a bus stop. If the bus stop 

zone is too short, buses will queue outside the stop, increasing passenger waiting time and reducing 

the traffic efficiency of intersections and other vehicles. Conversely, if the zone is too long, it may 

lead to disordered bus docking, thus also reducing efficiency, wasting space, and increasing costs. 

Therefore, optimizing bus stop zone length is essential for balancing service efficiency and traffic 

flow. A Markov-based queueing model provides a feasible approach for analyzing bus arrival rates, 

dwell times, and congestion levels to design an optimal stop zone length [6]. 

This research assumed that the bus arrival process obeys Poisson distribution. Then Markov chains 

were used to help determine the berths. It was tested by the VISSIM that the model was useful. As a 

result, a modification scheme could be proposed. 

This model improves bus stop efficiency by preventing excessive queuing and service delays. 

Future research can integrate real-time GPS tracking, allowing the model to adjust the bus stop zone 

length based on different demand patterns. 

4. Conclusion 

This paper introduced how Markov chains can be applied to the field of transportation, focusing on 

three key models: homogeneous Markov chains, Grey Markov chains (GM-Markov), and Markov-

based queueing models. Homogeneous Markov chains effectively predict pedestrian crash risks by 

identifying high-risk areas and providing targeted solutions. GM-Markov improved short-term 

forecasting accuracy for urban rail passenger flow, making it easier for the government to manage. 

Markov-based queueing model helped optimize the bus stop zone length, improving service 

efficiency. These findings demonstrate that Markov chains are very effective in modelling and 

improving the transportation system. However, some limitations remain. The accuracy of Markov 

chain models depends on the quality of the data, which can be hard to collect in real-world scenarios. 

Future research may consider combining machine learning with Markov chains to improve prediction 

accuracy and better adapt to the ever-changing conditions. On the other hand, due to time and resource 

constraints, no new methods or models were proposed in this paper. Still, it provides a strong 

foundation for future research and practical improvements in transportation management. 

References  

[1] Hu, J., Li, L., Li, Z., Yao, D., Zhang, Y. and Wang, S. (2016). Markov chain Monte Carlo algorithm based traffic 

flow deficiency data estimating method, involves calculating deficiency data value, and calculating traffic flow 

deficiency rate value according to gauss model (CN105206039A). China National Intellectual Property 

Administration. 

[2] Cao, Y., Shen, Q., Wang, Y., Huang, Y. and Liu, H. (2019). Markov-based gray Verhulst short time traffic flow 

prediction method, involves obtaining initial prediction value, and correcting residual of initial predicted value by 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/100/2025.22033 

177 



 

 

using Markov chain to obtain final predicted value (CN109637128B). China National Intellectual Property 

Administration. 

[3] Xie, K.B. (2017). Long-term Prediction of Traffic Volume Based on Combined Model of Markov Chains (Master’s 

thesis). Beijing JiaoTong University. 

[4] Ni, X., Guo, P., Fang, Z., Song, Z., Liu, P. and Rao, L. (2023). Method for controlling signal lamp of cross port 

relating to technical field of traffic such as low-flow intersection based on grey Markov chain, involves adjusting 

traffic light duration data of vehicle traffic signal lamp according to corrected prediction result (CN116110237B). 

China National Intellectual Property Administration. 

[5] Sun, F., Sun, L., Sun, S.W. and Wang, D.H. (2015). Study on the Calculation Models of Bus Delay at Bays Using 

Queueing Theory and Markov Chain. Computational Intelligence and Neuroscience, 2015, Article 750304.  

[6] Gong, K. and Luo, D. (2018). Study on Length Optimization of Bus Stop Zone. Automobile Applied Technology, 

2018(07), 187-191. 

[7] Chen, K.M., Xie, L.F. and Xiang, W.S. (2012). Traffic Accidents Prediction Using Improved Grey-Markov Model. 

Applied Materials and Electronics Engineering, PTS 1-2, 378-379, 222-. 

[8] Moreno-Sanfélix, A., Gragera-Peña, F.C. and Jaramilo-Morán, M.A. (2024). Predictive Model of Pedestrian 

Crashes Using Markov Chains in the City of Badajoz, Sustainability, 16(22), Article 10115. 

[9] Tang, X., Lv, Y., Luo, T., Guo, X. and Lin, T. (2021). Method for predicting travel traffic demand based on Markov 

chain for roaming traffic in tourist area, involves determining state value of Markov chain prediction model for 

next time period according to initial state matrix and tourism traffic transition matrix to predict tourism traffic 

demand (CN113449932A). China National Intellectual Property Administration. 

[10] Dong, H., Wang, H.F. and Lei, J.Q. (2022). Passenger Flow Assignment Model of Tourist Rail Transit Based on 

Markov Chain, Urban Mass Transit, 2022, 25(09), 38-44. 

[11] Wu, M. (2023). Research on Ridership Prediction of Urban Rail Transit based on Markov chain, Journal of 

Chengdu Technological University, 26 (1), 62-65. 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/100/2025.22033 

178 


