
 

 

Bayesian Inference for Dynamic Demand Forecasting and 
Inventory Optimization 

Ziyang Xiao 

Department of Mathematics, University of Toronto, Toronto, Canada 

zoey.xiao@mail.utoronto.ca 

Abstract: This paper constructs a dynamic model suitable for demand forecasting and 

inventory optimization based on Bayesian theory. The model uses Bayesian inference to 

achieve real-time updates of demand data and combines cost minimization methods to control 

inventory. The study looks at seasonal changes and sudden market problems. It uses 

probability distributions to give detailed forecast results. Tests show this method works better 

to lower inventory costs and improve service levels. The model keeps updating demand 

predictions. This helps companies act fast when markets change. It also helps them manage 

their inventory better. The model adapts to changing demand patterns, making inventory 

management more flexible. It also reduces the risk of stock shortages or excess inventory. In 

addition, the paper discusses in detail the model design principles, data processing procedures, 

and actual application effects and suggests further optimizing the model. The results show 

that dynamic adjustment strategies can effectively cope with the uncertainty of market 

demand, thereby promoting the improvement of enterprise operational efficiency. 

Keywords: Bayesian inference, Demand forecasting, Inventory optimization, Dynamic 

updating, Uncertainty management 

1. Introduction 

The market today is complex and changes often. Businesses need to predict demand accurately and 

manage inventory well to succeed. Old methods struggle to handle demand changes and unpredictable 

factors. To this end, this paper explores the construction and application of a dynamic demand 

forecasting and inventory optimization model based on Bayesian inference. 

The core ideas of this study come from multiple cutting-edge studies. Xu & Guan proposed the 

application of Bayesian learning in dynamic inference, which provided theoretical support for 

constructing a dynamic Bayesian demand forecasting model in this study [1]. Hu & Li studied the 

method of combining a Bayesian network with particle swarm optimization (PSO) to achieve more 

accurate demand forecasting [2]. This method inspired this study to adopt an adaptive optimization 

strategy when dynamically adjusting the prior distribution. In addition, Chen et al. used a Bayesian 

neural network to predict express delivery demand, emphasizing the superiority of the Bayesian 

method in dealing with uncertain demand, which is highly consistent with the goal of this study [3]. 

Loaiza-Maya reviewed Bayesian forecasting methods in the 21st century [4]. Their work 

highlights how Bayesian methods can model uncertainty. This study uses these ideas and adds time 

series dynamics to build a Bayesian hierarchical model for retail demand forecasting. Yang et al. 

created a Bayesian deep learning method [5]. So, the forecasting model takes into account both 
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computational efficiency and forecasting accuracy. Lavine, Cron, & West studied the application of 

Bayesian computing in dynamic latent factor models, providing theoretical support for the 

computational framework of this study [6]. 

In terms of inventory management, Bayesian methods have been applied to fields such as public 

health, smart grids, and small-area forecasting [7,8]. Wang et al. studied the application of Bayesian 

methods in food safety data monitoring and demonstrated its reliability in a highly dynamic 

environment [7]. This paper draws on their ideas and constructs an inventory optimization framework 

based on Bayesian updates to adapt to demand fluctuations. Bauer et al. studied the small-area 

forecasting of opioid-related mortality and used the Bayesian spatiotemporal dynamic modeling 

method to provide a reference for the dynamic adjustment of inventory decisions in this study [8]. 

The main idea of this study is to use Bayesian inference, demand forecasting, and inventory 

optimization together. This helps create an inventory management system that updates over time. 

Traditional methods like SARIMA, ETS, and Prophet only give point forecasts. The Bayesian method 

does more. It also measures forecast uncertainty. This provides better information and helps make 

better inventory decisions. Experimental results show that this method has higher forecast accuracy 

and adaptability during holidays, high demand fluctuations, and abnormal market events (such as 

promotions and weather changes). 

2. Method and Theory 

Bayes’ theorem is a basic tool of probability theory, which is a systematic way of parameter 

estimation and decision-making in environments with uncertainties [9]. This section forms a 

groundwork of a methodological basis by extending the classical probability and mathematical 

statistics theory. Bayes’ theorem is shown at the core of a probabilistic demand modeling and its 

synergistic integration with inventory optimization models for dynamic demand uncertainty. A 

theoretical framework with strict mathematical expression is constructed by means of systematic 

analysis. 

The above subsections outline the two dimensions of probabilistic modeling and operation 

decision optimization of demand forecasting. International standards of mathematical notation are 

used: normal distributions, namely, Ν(𝜇, 𝜎2). and expectation operators, 𝛦[𝛸], in order to achieve 

methodological consistency through the whole research workflow. 

2.1. Bayesian Theorem and Probabilistic Foundations 

The main tool for using Bayes’ theorem in probability theory is to update beliefs given new evidence. 

Its classic expression is: 

Ρ(Α|Β) =
Ρ(Β|Α) ⋅ Ρ(Α)

Ρ(Β)
(1) 

The idea of conditional probability is explained in this formula, because the belief in event Α 

changes after new information B is acquired. The Bayesian theorem has special significance in 

inventory management since it allows researchers to reevaluate future demand prediction using 

observed demand data continuously. 

Bayesian inference is different from traditional statistics regarding how uncertainty is addressed. 

Parameters are treated as random variables in conventional frequency statistics, the distribution of 

which is defined by a probability. The Bayesian framework integrates classical statistical principles 

such as the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT) to create a more 

exhaustive probability model. It is especially helpful when one would like to model uncertainty in 

dynamic environments. 
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In selecting a prior distribution, one should take into account at least the complexity of the model 

and perhaps also the quantity of data available. The normal distribution Ν (𝜇, 𝜎2)  or uniform 

distribution is used for demand forecasting [9]. Very importantly, the choice of the prior distribution 

affects the posterior distribution, particularly in an early stage when the amount of data is small [10]. 

As data accumulates, the posterior distribution will gradually converge, and the influence of the prior 

will gradually weaken. To predict product demand, the normal distribution can be used as a prior. Its 

conjugate prior property helps simplify calculations. 

A normal distribution can be used as the prior when predicting commodity demand. Its conjugate 

prior property simplifies calculations. When new sales data arrive, Bayesian updating adjusts the 

posterior distribution parameters directly. This process avoids complex numerical integration. 

However, a single normal prior may cause prediction bias if actual demand has multiple peaks. In 

that case, a mixture distribution or a non-parametric method may be more suitable. 

For dynamically changing requirements, the Bayesian update process can be expressed as: 

Ρ(Demand|Data) =
Ρ(Data|Demand) ⋅ Ρ(Demand)

Ρ(Data)
(2) 

Here, Ρ(Demand)  is the prior distribution of demand, Ρ(Data|Demand)  is the likelihood of 

observing the data given a demand level, and Ρ(Demand|Data) is the posterior distribution after 

updating with new data. This approach leverages LLN and CLT by assuming that demand sample 

means are normally distributed for large datasets, facilitating probabilistic modeling of uncertainty in 

dynamic environments. In the real-world scenario, if people think that the demand follows a normal 

distribution, one can directly calculate the mean and variance of the posterior distribution. The benefit 

of this approach is that it provides not only a point estimate, but also a measure of forecast uncertainty, 

providing more detailed information for inventory selection. 

The innovation of this study is the analysis of the impact of changing requirements on Bayesian 

updating. These needs include seasonal changes and emergencies. Specifically, the study explores 

how time series instability affects the choice of prior distributions. This paper proposes a dynamic 

adjustment method for the demand that has a significant changing trend. To let the prior distribution 

automatically follow the changes in the demand, people can use the method. This paper designs a 

hierarchical Bayesian model for demand with seasonal changes. The key parameter used to improve 

the forecasting accuracy of the model is the seasonal effect. The Bayesian update method based on 

abnormal conditions is developed to handle a sudden change in demand due to events such as 

promotions or anomalous weather. This method can find outliers in the data and handle the weight of 

the likelihood function [9]. This can keep its short-term value but reduces the long-term impact of the 

anomaly data. It places this method to greatly improve the ability of the model to deal with unstable 

cases. 

The core formula for Bayesian parameter estimation is as follows: 

Ρ(𝜇|𝓍1, ⋯ , 𝓍𝓃) ∝ Ρ(𝓍1, ⋯ , 𝓍𝓃|𝜇) ⋅ Ρ(𝜇) (3) 

The prior distribution is denoted as Ρ(μ) (which stands for distribution of the parameter μ of the 

initial cognition). Ρ(𝓍1, ⋯ , 𝓍𝓃|𝜇) is the likelihood function, the probability of observing the data 
{𝓍1, ⋯ , 𝓍𝓃} given a specific value of 𝜇. It is a way to quantify how well the observed data explains 

the parameter μ. Nonetheless, since the accuracy of demand forecasts drives forward decision-making, 

this approach allows people to continuously optimize the learning process to enhance the accuracy of 

demand forecasts. 
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2.2. Inventory Optimization Model Design 

This section merges Bayesian theorem and probability foundations in order to develop an inventory 

optimization model under dynamic demand uncertainty. The model aims at balancing inventory 

holding costs, ordering costs and stock-out costs while achieving an established service level (e.g., 

95%) and the integration of seasonal demand and change, as well as rare and undesired demand or 

new technology changes. 

The first is the demand forecasting integration. This model uses Bayesian inference and introduces 

posterior demand distribution: 

Ρ(Demand|Data) ∝ Ρ(Data|Demand) ⋅ Ρ(Demand) (4) 

where Ρ(Demand)  is the prior distribution such as normal distribution Ν(𝜇, 𝜎2) , and 

Ρ(Data|Demand) is the likelihood function. According to LLN and CLT, under the assumption of 

independent and identical distribution (i.i.d.), the sample demand mean is close to a normal 

distribution. The reorder point R is determined by: 

R = Ε[Demand|Data] + 𝓏 ⋅ 𝜎Demand|Data (5) 

where 𝓏 is the safety factor for the target service level, like 𝓏 = 1.65 for 95%.  

In the cost minimization framework, the model optimizes total cost: 

C = h ⋅ Ε[Inventory Level] + o ⋅ Ε[Order Frequency] + s ⋅ Ρ(Stockout) (6) 

where h is holding cost, o is ordering cost, and s is stockout cost. The dynamic Bayesian update 

mechanism ensures that cost estimates can be adjusted in real time as demand changes. 

The Hierarchical Bayesian Model and the parameter 𝑆𝑡 are introduced to handle the seasonal 

demand and optimize under dynamic demand. The requirements are modeled as follows: 

Dt = μ + St + ϵt,   ϵt ~ Ν(0, 𝜎2) (7) 

Here, St is historical data updates to keep inventory for seasonal patterns. Further, the model also 

optimizes the predictions in terms of likelihood weight becoming adjusted for sudden changes (like 

weather changes and promotions): 

Ρ(Data|Demand, Anomaly) = w ⋅ Ρ(Data|Demand) + (1 − w) ⋅ Ρ(Anomaly) (8) 

They maintain short-term responsiveness where w is dynamically updated to minimize long-term 

bias [9]. It combines Bayesian demand forecasting with dynamic decision-making for dealing with 

non ­ stationary demand. 

3. Results and Application 

3.1. Data Description and Preprocessing 

The purpose of the application of Bayesian demand forecasting and inventory optimization models is 

introduced in this section. Retail sales data from the “Store Item Demand Forecasting Challenge” in 

Kaggle are used for testing the model [11]. Results are shown for adapting the model to changing 

demands and inventory management. The dataset from Kaggle consists of 50 products sales over 10 

stores over the years from 2013 – 2018 [11]. The dataset contains about 913,000 records. The dataset 

exhibits several key characteristics: Strong seasonal patterns, including annual, monthly, and weekly 

cycles, and various trends across product categories.  

The first step is to preprocess the data before applying the model. The researchers aggregated daily 

sales data into weekly data to reduce noise and preserve seasonal characteristics. The researchers 

detected and marked outliers that exceeded three standard deviations from the mean. They filled 
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missing values with the mean of the adjacent weekly data, as missing values were less than 1%. The 

data was divided into the first four years for training and the last year for testing. Three representative 

products are selected: item 1 in store 1 (high sales, obvious seasonality), item 27 in store 5 (medium 

sales, medium trend), and item 43 in store 8 (low sales, high variability). 

The Bayesian forecasting model was applied using normal distribution priors. The priors were 

based on the first 12 weeks of data. Item 1: Ν(45.2, 64), an average demand of 45.2 units with 

standard deviation of 8 units. Item 27: Ν(22.8, 36), an average demand of 22.8 units with standard 

deviation of 6 units. Item 43: Ν(11.5, 16), an average demand of 11.5 units with standard deviation 

of 4 units. 

The model updates the demand estimates weekly using the Bayesian Eq. (4). To account for 

seasonal effects, using a hierarchical Bayesian model [see Eq. (7)]. St  optimizes inventory for 

seasonal patterns, which updates based on historical data. Anomaly detection methods are also 

applied. If the demand changes by more than 2.5 standard deviations, the model adjusts the weights 

of the likelihood function. This enables the model to respond quickly to changes without being misled 

by short-term anomalies. 

3.2. Forecasting Performance Results 

By comparing the Bayesian model against three traditional forecasting methods popular in retail. The 

first is seasonal ARIMA (SARIMA), the second is exponential Smoothing with seasonality (ETS), 

and the third is time series forecasting model developed by Facebook (Prophet). 

Performance was evaluated by using Mean Absolute Percentage Error (MAPE), Root Mean 

Square Error (RMSE) and Mean Absolute Error (MAE) on the test dataset, see Table 1 and Table 2 

for Item 1 and Item 27, respectively. 

Table 1: Results for Item 1 (high sales, obvious seasonality) 

Method  MAPE RMSE MAE 

Bayesian 8.4% 7.21 5.83 

SARIMA 10.1% 8.56 6.92 

ETS 9.7% 8.12 6.64 

Prophet 9.2% 7.95 6.41 

Table 2: Results for Item 27 (medium sales, medium trend) 

Method  MAPE RMSE MAE 

Bayesian 12.3% 4.65 3.52 

SARIMA 13.8% 5.21 4.07 

ETS 13.1% 4.98 3.85 

Prophet 12.7% 4.83 3.68 

 

From these two Tables, it is definite that the Bayesian model performed better than all other 

methods on every metric. It showed especially strong results in the following cases: 

• During holiday periods, where it reduced MAPE by 17.5% compared to the next best method. 

• During promotions, where its anomaly adjustment kept forecast errors at 14.2% on average, 

compared to 21.6% for SARIMA. 

• After significant demand shifts, where its continuous updates helped it adapt 22% faster. 
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One key advantage of the Bayesian model was that it provided full probability distributions instead 

of just point forecasts. This made it possible to measure uncertainty in predictions. 

3.3. Inventory Optimization Application 

The inventory optimization model applies Bayesian demand forecasting. The goal is to minimize total 

costs while maintaining a 95% service level. The reorder points were calculated using formula Eq. 

(5), where 𝓏=1.65 corresponds to the 95% confidence level. Cost parameters are based on industry 

averages: holding costs(h) are $1.8 per unit per week, ordering costs(o) are $45 per order, and 

stockout costs(s) are $12 per unit. The total cost function was Eq. (6). 

Over a one-year testing period, simulation results showed significant improvements: total 

inventory costs were reduced by 14.2 percent, service levels increased from 92.1 percent to 95.7 

percent, average inventory levels decreased by 9.6 percent, and out-of-stock events were reduced by 

41.3 percent, compared to the company’s previous fixed reorder point policy. The most significant 

improvement occurred for item 43(low sales, high variability). Out-of-stocks decreased by 53%, 

while inventory levels remained stable. 

3.4. Practical Implications 

This research shows the key benefits of using Bayesian methods for managing inventory. First, the 

model can keep updating itself whenever new data comes in. This helps keep the forecasts accurate. 

Second, the Bayesian approach can spot and fix unusual changes in demand. This prevents long-term 

mistakes. Also, the model gives a way to measure uncertainty. That helps managers make better 

decisions about inventory using this probability pattern. Finally, the model can automatically pick up 

weekly and yearly seasonal changes. No manual adjustment is needed, and the forecasts are more 

flexible. 

Although the Bayesian model performs well in inventory optimization, it still has some limitations. 

For products with highly unstable demand, the typical prior may not accurately describe the data 

distribution, so hybrid models or non-parametric methods can be considered to improve forecasts in 

the future. For new products with less historical data, the model relies on prior information set by 

experts when there is insufficient data support, which may affect the forecast effect. Future research 

can explore more automated prior setting methods to improve the applicability of the model in 

different business scenarios. 

4. Conclusion 

This paper constructs a dynamic demand forecasting and inventory optimization model. The model 

updates real-time demand data through Bayesian inference. At the same time, the cost minimization 

framework is used to reasonably regulate inventory. The study fully considers seasonal fluctuations 

and sudden abnormal situations and uses probability distribution to provide more comprehensive 

forecast information. The experimental results show that this method has substantial advantages in 

reducing inventory costs, improving service levels, and quickly responding to market anomalies. This 

essay mentions the advantages and disadvantages of the model design and proposes hybrid models 

and non-parametric methods as future improvement directions. It also recommends further 

exploration of data preprocessing and automatic adjustment mechanisms for model parameters. The 

research provides a scientific basis for enterprises to manage inventory in an uncertain environment 

and points out the direction for subsequent study in related fields. The model generally has high 

practical value and application prospects and can provide strong support for enterprises to improve 

operational efficiency and optimize decision-making processes. At the same time, it also lays a solid 

foundation for further theoretical research and practical improvement. 
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