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Abstract: This study evaluates the practical dimensionality reduction efficacy of Principal 

Component Analysis (PCA) and its consequential impacts on regression-based housing price 

prediction by comparing three models—multiple linear regression, ridge regression, and 

LASSO regression—applied to California housing data, while preliminarily exploring the 

underlying mechanisms. The research first establishes a “spatial-economic-social” 

framework influencing housing prices through data dimensionality reduction. This process 

initiates with KMO-Bartlett validation of the dataset, followed by variable screening 

conducted under comprehensive consideration of variables’ practical significance, and 

subsequently implements Kaiser criterion-guided PCA to derive three primary factors 

governing housing prices within this spatiotemporal context: “Spatial Distribution & 

Density”, “Geographic Location”, and “Economic Status”, thereby yielding interpretable 

components reflecting spatial, geographic, and economic dimensions. Further findings reveal 

that all models exhibit quantitatively comparable declines in predictive performance post-

PCA implementation, with ridge and LASSO regression demonstrating nearly equivalent 

performance to ordinary linear regression, suggesting limited benefits of regularization in this 

scenario. These results challenge the presumed utility of PCA in regression workflows, 

highlighting that simplistic PCA dimensionality reduction may discard inherent latent 

predictive signals within housing datasets. These insights advocate for circumspect adoption 

of PCA in real estate analytics and emphasize the necessity for domain-specific regularization 

strategies to balance interpretability with predictive fidelity. 

Keywords: Principal Component Analysis, Regression Modeling, Housing Price Prediction, 

Model Performance, Linear Regression. 

1. Introduction 

The accurate prediction of housing prices has always posed a significant challenge in the realm of 

quantitative real estate analysis. This complexity arises not only from the inherent spatial 

heterogeneity of real estate markets, such as location correlation and geographic spillovers, but also 

from the dynamic interplay of multiple socio-economic variables. These variables include population 

mobility, industrial agglomeration, and infrastructure networking. In order to systematically analyse 

these high-dimensional and non-linear relationships, regression analysis models can be constructed 

through parameter estimation from the perspective of mathematical modelling. This enables the 

quantification of the effects of explanatory variables on house prices. For complex dimensions, 
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dimensionality reduction techniques such as Principal Component Analysis (PCA) can be introduced 

in order to effectively extract the essential features of the data or eliminate redundant information. 

In the field of house price prediction, regression methods have been subject to extensive research 

and development. The proposal of the linear combination model provided the theoretical foundation 

for the subsequent development of traditional linear regression [1]. Subsequently, geostatistical 

techniques, such as Kriging, have emerged as a significant advancement [2,3]. The advent of the 

machine learning revolution has further enhanced predictive capabilities, with ensemble methods 

such as Artificial Neural Networks (ANN) [4], decision trees [5], Support Vector Machines (SVM) 

[5,6], and XGBoost [7,8] addressing nonlinear relationships and feature interactions. PCA is a core 

tool for the application of dimensionality reduction and feature extraction in house price prediction, 

as it can sometimes imporve the stability based on the hedonic model [9].  

The study assesses the impact of PCA on three fundamental regression models (linear, ridge, and 

LASSO). Employing statistical validation (KMO test, Bartlett's test of sphericity) and interpretable 

component extraction, the study firstly achieves a dimensionality reduction of the data as a means of 

providing a high level overview of the main factors affecting regional house prices at the time and 

space scales in which they are located. In the subsequent phase, the analysis explores performance 

degradation mechanisms and theoretical contradictions. 

2. Methodology 

The dataset, sourced from Kaggle's California housing repository, presents a structured framework 

for predictive modeling with 20,640 observations and 10 covariates. Numeric variables exhibit two 

measurement scales: continuous (e.g., coordinates, income) and count data (e.g., rooms, population). 

The sole categorical variable Ocean Proximity contains five mutually exclusive classes: INLAND, 

<1H OCEAN, ISLAND, NEAR BAY, and NEAR OCEAN, requiring nominal encoding strategies 

for regression compatibility. Missing data occurs exclusively in Total Bedrooms (207 in total, 

approximately 1%). Significantly, Median House Value is considered as the target variable. 

2.1. Problem Deconstruction and Preparation 

The utilisation of regression analysis in the construction of house price prediction models constitutes 

a particularly valuable research option, primarily due to the fact that regression models provide clear 

parameter estimates.  

The study will, at first, commence with the assumption that the target variable has a linear 

relationship with the other variables. Suppose that there are m samples and n original features for 

each sample. With the observed features, the original sample matrix and the design matrix can be, 

respectively, denoted as  

𝑋𝑜𝑟𝑖𝑔 = (

𝑥11 𝑥12

𝑥21 𝑥22

⋯ 𝑥1𝑛

⋯ 𝑥2𝑛

⋮ ⋮
𝑥𝑚1 𝑥𝑚2

⋱ ⋮
⋯ 𝑥𝑚𝑛

) , 𝑋𝑑𝑒𝑠𝑖𝑔𝑛 =

(

 
 

1 𝑥11

1 𝑥21

𝑥12 ⋯ 𝑥1𝑛

𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮

1 𝑥𝑚1

⋮ ⋱ ⋮
𝑥𝑚2 ⋯ 𝑥𝑚𝑛)

 
 

. 

Following the implementation of PCA, the original n features of each sample are obtained as N 

principal components, which are denoted by z1, z2, ⋯ , zN. Then, a new sample matrix and a new 

design matrix of can be obtained from:  
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𝑋𝑃𝐶𝐴 = (
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) ,𝑋𝑑𝑒𝑠𝑖𝑔𝑛−𝑃𝐶𝐴 =

(

 
 

1 𝑧11

1 𝑧21

𝑧12 ⋯ 𝑧1𝑁

𝑧22 ⋯ 𝑧2𝑁

⋮ ⋮

1 𝑧𝑚1
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. 

The standardisation is applied to the sample matrices in order to eliminate quantitative differences 

and order-of-magnitude inconsistencies between the features. For the sake of simplicity and 

convenience, the standardised matrices are labelled with the same notations. 

For each sample i (i = 1,2,3,⋯ ,m), the observed Median House Value as the variable of interest 

is denoted as 𝑝𝑖. Technically, the assumption above enables the regression coefficients to be utilised 

to create a linear combination of each original attribute or principal component element and the 

intercept term. Thus, for the target variable, the regression coefficients and feature coefficients, they 

can be tabulated respectively as 

P =

(

 
 

p
1

p
2

⋮

p
m)

 
 
, β =

(

 
 
 
 

β
0

β
1

β
2

⋮

β
N)

 
 
 
 

, β
feat
=

(

 
 

β
1

β
2

⋮

β
N)

 
 
. 

2.2. Extraction and Interpretation of Principal Components 

In property market analysis, house price prediction is challenged by complex interrelated factors, 

necessitating dimensionality reduction to mitigate modeling complexity. This study employs 

Principal Component Analysis (PCA) to extract uncorrelated composite indicators while preserving 

data integrity. Plus, the joint utilisation of KMO and Bartlett's test before PCA is imperative and valid 

[10]. 

2.3. Construction of Regression Models 

This study constructs four distinct regression analysis model frameworks. During the data 

preprocessing phase, missing value imputation and one-hot encoding methods are employed to ensure 

data quality, followed by partitioning the dataset into training and test sets to enhance model 

robustness. Parameters of models (ridge regression, LASSO regression, PLSR) are manually preset 

and subsequently trained on the training set. Finally, the performance of the models was 

systematically validated using multi-dimensional evaluation metrics on the test set. 

2.3.1. Multiple Linear Regression (MLR) 

MLR models the relationship between the target variable and features by minimizing the residual sum 

of squares. For the original features (PCA-unprocessed), the model assumes  

P = X
design

β+ ε, 

and the closed-form solution is 

β
OLS

= (X
design

T
X

design
)
−1

X
design

T
P. 
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After PCA, the solution adapts to  

β
OLS

= (X
design−PCA

T
X

design−PCA
)
−1

X
design−PCA

T
P. 

2.3.2. LASSO Regression 

LASSO regression introduces 𝐿1-regularization to promote sparsity in feature coefficients. For the 

original features, the objective is  

min
β
‖P− X

design
β‖

2

2

+ α‖β
feat
‖

1
. 

After PCA, the regularization applies to principal components: 

min
β
‖P− X

design−PCA
β‖

2

2

+ α‖β
feat
‖

1
. 

The solution remains numerical (e.g., coordinate descent) where α = 0.1 in the study case. 

2.3.3. Ridge Regression 

Ridge regression employs 𝐿2-regularization to shrink coefficients and handle multicollinearity. Using 

original features, the objective is  

min
β
‖P− X

design
β‖

2

2

+ λ‖β
feat
‖

2

2

, 

with closed-form solution 

β
ridge

= (X
design

T
X

design
+ λI)

−1

X
design

T
P. 

After PCA, the regularization operates on principal components:  

β
ridge

= (X
design−PCA

T
X

design−PCA
+ λI)

−1

X
design−PCA

T
P. 

And λ = 1 as the preset parameter. 

3. Results 

3.1. Results of Principal Components Extraction 

The KMO test results reveal critical limitations in the suitability of the variable Ocean Proximity for 

principal component analysis. With an overall KMO value below the recommended threshold of 0.5, 

this variable demonstrates inadequate sampling adequacy for factor extraction. Notably, only the 

“NEAR BAY” subcategory marginally exceeds this criterion (KMO > 0.6) [11], while all other 

subcategories fall below 0.5. This statistical evidence indicates weak partial correlations between 

Ocean Proximity and other variables in the dataset, compromising its analytical value in multivariate 

dimensionality reduction. However, a substantive decision was made to exclude this variable from 

subsequent PCA procedures based on geographical rationality. 
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Table 1:KMO Values for Different Ocean Proximity Categories 

Ocean Proximity KMO Value 

INLAND 0.421 

<1H OCEAN 0.350 

ISLAND 0.272 

NEAR BAY 0.770 

NEAR OCEAN 0.452 

Table 2: Final Results of KMO Test and Bartlett's Test. 

 Test Statistic Value 

KMO Test KMO Value 0.662 

Bartlett's Test of Sphericity 

Approx. Chi-Square 200,378.953 

df 28 

P-value 0.000*** 
(Note: *** indicates significance at the 1% level.) 

 

Subsequently, the KMO test and Bartlett's test of sphericity are conducted once more on the 

residual numerical variables. This results in the acquisition of novel outcomes, exhibiting elevated 

KMO values (> 0.6). This signifies that the data are more appropriate for PCA analysis than 

previously determined. The decision to perform PCA is further supported by the significant Bartlett 

test result (p < 0.05) [12]. 

 

Figure 1: Scree Plot for Factor Analysis.  

Principal component extraction combined methodological validation: the Elbow Method [13] 

identified three components at the scree plot inflection point, while the Kaiser Criterion [14] 

theoretically supported this selection.  

The principal component interpretation in Table 3 reveals distinct thematic dimensions [15]. In 

Table 3, PC1 exhibits dominant loadings (>0.9) on Total Rooms, Total Bedrooms, Population, and 

Households, thereby operationalizing the latent construct ‘Spatial Distribution & Density’. PC2 

derives from longitudinal and latitudinal coordinates (factor loadings ±0.9), substantiating its 

designation as ‘Geographic Location’ through geospatial data alignment. PC3 demonstrates selective 

sensitivity to Median Income (loading 0.996), establishing its validity as the ‘Economic Status’ 

indicator. This nomenclature system maintains interpretive coherence with both statistical loadings 
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and theoretical expectations, while component loadings exceeding |0.5| threshold across all retained 

factors validate variable-group conceptual integration. 

Table 3: Component Loadings for PCA. 

Variable PC1 PC2 PC3 

Longitude 0.047 0.997 -0.028 

Latitude -0.044 -0.926 -0.053 

Housing Median Age -0.334 -0.046 -0.101 

Total Rooms 0.955 -0.004 0.148 

Total Bedrooms 0.977 0.025 -0.062 

Population 0.904 0.066 -0.047 

Households 0.985 0.019 -0.048 

Median Income 0.056 0.018 0.996 

3.2. Performance Analysis 

The following section presents the findings derived from the application of the regression models to 

the specified dataset, and provides a comprehensive summary of the comparison of these models. 

In the study, all models demonstrated a significant linear trend, irrespective of the implementation 

of PCA treatment. In Table 4, the fitted slopes of linear regression, ridge regression and LASSO based 

on the original data were stable around 0.649, indicating that the original features can effectively 

capture about 65% of the house price fluctuation information. Regression analyses conducted through 

the three principal components after PCA treatment revealed that the slopes of each model produced 

a similar degree of change, with all model slopes uniformly decreasing to the range of 0.4678 — a 

decrease of 28% — and the differences in slopes across models narrowed to the order of 10-5. 

Table 4: Fitting Effect Slopes of Different Regression Methods Before and After PCA. 

Method Before PCA After PCA 

Linear Regression 0.64930559 0.46783803 

Ridge Regression 0.64912240 0.46783020 

LASSO Regression 0.64930512 0.46783800 

 

In Figure 2, the original models obtained prior to PCA demonstrated a superior capacity to capture 

changing trends, with their overall trends exhibiting a closer alignment with the ideal state. 

Furthermore, Figure 2 reveals that the intersection points of the three curves under each model are 

highly proximate, suggesting that each model exhibits a superior predictive accuracy within the 

image’s central region. 
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Figure 2: True vs. Predicted Plot  

The cross-sectional comparison of different models under the same dataset demonstrates that PCA 

has a detrimental effect on model prediction under these conditions. Furthermore, the longitudinal 

comparison of the same model before and after PCA reveals that PCA results in a decline in 

performance.  

 

Figure 3: Performance Comparison. 

In Figure 3, it is evident that, after the incorporation of PCA, the three models demonstrated a 

reduction in their explanatory capacity regarding data variability, concurrently accompanied by 

systematic amplification of prediction errors and diminished robustness. R2 quantifies the proportion 

of dependent variable variance explained by the model, reflecting regression goodness-of-fit. The R2 

values of all models were elevated when the original dataset was employed directly for prediction, 

where linear regression, ridge regression and LASSO regression demonstrating particular efficacy. 

Conversely, the R2 values of the models appeared to decline following PCA. MSE measures the 

average squared deviation between predicted and true values. In this study, the comparison of MSE 

revealed that the errors in the original dataset were generally low, and that there was a significant 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/100/2025.22048 

210 



 

 

increase in errors after PCA. MAD evaluates prediction accuracy via mean absolute deviations. The 

embodied MAD of the regression models were partially increased via PCA, and the improvement 

was not significant. 

To be more precise, the R2 of linear regression, ridge regression, and LASSO regression were all 

approximately 0.626, suggesting comparable performance. Following PCA, the original attributes 

were converted to orthogonal principal components, thereby theoretically eliminating the covariance. 

However, the R2 of all models was 0.459, indicating that the principal components lost some key 

information. The comparison of the regression performance of the same models before and after PCA 

reveals that the principal components failed to fully retain information related to house prices.  

4. Discussions & Conclusions 

The study proposes an initial and elemental ‘spatial-economic-social’ framework when investigating 

house price impacts, with the concern that PCA orthogonalization attenuates regularization efficacy. 

The PCA reveals three primary components that exert significant influence: ‘Spatial Distribution 

& Density’, ‘Geographic Location’ and ‘Economic Status’. These components offer a concise 

summary of the factors influencing house prices in the region, including house type, population, 

geographic location and economic factors. This finding aligns with the observations derived from the 

variable intuition approach. Consequently, this underscores the notion that house prices are not 

determined by a solitary factor but are shaped through multidimensional interactions within the spatial 

economic system. The three principal components obtained in this study facilitate the comprehension 

of the intricate mechanism of urban house price formation as a straightforward ‘spatial-economic-

social’ three-dimensional synergistic influencing framework, where alterations in any of these 

dimensions are transmitted to the housing market through a comparable linear effect within a 

specified time and space horizon. 

Notwithstanding, in the case study, there is seemingly few improvement for performances after 

PCA, even with regularization in LASSO model and Ridge model. It is noteworthy that the PCA 

orthogonalisation satisfies Xorig
T Xorig = I which changes the mechanism of action of regularisation. 

More significantly, the OLS estimation is 

β
OLS

= X
design−PCA

T
P, 

and the ridge regression degenerates to isotropic shrinkage: 

β
ridge

= (X
design−PCA

T
X

design−PCA
+ λI)

−1

X
design−PCA

T
P =

1

1 + λ
β

OLS
, 

In orthogonalized feature spaces, collinear features are decorrelated, causing 𝐿2-regularization to 

lose its directional sensitivity. The penalty term reduces to axis-aligned scaling, forfeiting its capacity 

to differentially shrink coefficients based on data geometry. In actual, when principal components 

with high-variance exhibit weak contributions to Y, while low-variance components demonstrate 

substantial predictive power, uniform shrinkage mechanisms disproportionately suppress critical 

features, thereby amplifying estimation bias and degrading model performance, and all coefficients 

in the study are uniformly scaled by 1 (1+ 𝜆)⁄ , explaining why ridge and OLS metrics are nearly 

identical. Equally critical is that LASSO reduces to soft-thresholded OLS in orthogonal space. The 

LASSO problem decouples into N independent univariate optimizations: 

min
β

j

(β
j
− β

OLS,j
)

2

+ α |β
j
| ,where j ≥ 1. 
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By taking derivative and solving for β
j
, one can obtain 

β
j
= sign (β

OLS,j
) ⋅ (β

OLS,j
−

α

2
)
+

, 

where (x)+ = max(x, 0), shrinking small coefficients to zero. Thus, in this study, α was too small to 

induce sparsity, making the improvement so faint. 

In conclusion, while PCA can simplify the model to a certain extent, in this study, PCA is more 

valuable in highlighting the main factors affecting regional house prices in that spatio-temporal range 

from the dimension of the data. Furthermore, the enhancement of ridge regression and LASSO 

regression for MLR based on linear assumptions is not significant. In the context of the deep 

penetration of intelligent data analytics into the real estate sector, it is suggested that PCA with 

regression analysis alone carries some potential risks, and that PCA may no longer be the default 

preprocessing step. It is recommended that PCA be adopted with caution and with consideration of a 

domain-specific regularisation strategy to balance interpretability and prediction fidelity. 
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