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Abstract: This paper presents an in-depth exploration of Maximum Likelihood Estimation 

(MLE), a paramount method in the domains of statistics and machine learning for parameter 

estimation. MLE's theoretical underpinnings are discussed, detailing both likelihood and log-

likelihood functions and their integral mathematical properties. The estimation process is 

outlined, emphasizing MLE's applications across various fields such as biostatistics and 

machine learning through concrete examples. Noteworthy is MLE's dual role in both 

parameter estimation and model validation, supported by its consistency and asymptotic 

normality which enhances its applicability in analytical scenarios. However, the study also 

addresses MLE's limitations, particularly the challenges posed by computational complexity 

and small sample sizes. Solutions to mitigate these issues are proposed, enhancing MLE's 

robustness and utility in practical applications. This comprehensive analysis not only clarifies 

MLE's operational mechanics but also underscores its versatility and pivotal role in advancing 

empirical research across multiple scientific disciplines. 

Keywords: Maximum likelihood estimation, Parameter estimation, Machine learning, 

Biostatistics 

1. Introduction 

Maximum likelihood Estimation (MLE) is a method of parameter estimation based on probabilistic 

model [1]. Through maximizing likelihood function to get the model parameter, the observed data 

can be maximized under the given parameter. MLE has a solid theoretical foundation and excellent 

statistical properties, such as consistency and asymptotic normality, and is widely applied in fields 

such as statistics, machine learning, and biostatistics [2-3]. 

There are two general methods for parameter estimation. They are Least Squares Estimation (LSE) 

and Maximum Likelihood Estimation (MLE). Unlike MLE, LSE does not require or requires only 

minimal distribution assumptions, which can be used to obtain descriptive measures to summarize 

the observed data [4]. At the same time, MLE is still not fully accepted or recognized, that is, there is 

a lack of a complete and clear understanding of the application and analysis of maximum likelihood 

estimation in the academic community, which will be answered in this article. By deepening the 

understanding of the application of MLE, it can be better utilized in various fields, including statistics, 

machine learning, biostatistics, economics, and engineering. Whether in parameter estimation, model 

selection, or hypothesis testing, MLE is a commonly used and effective method. MLE has several 

advantages: first, its computational feasibility; although the computation of MLE may be complex, 
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the development of modern computational techniques and optimization algorithms (such as gradient 

descent, EM algorithm, etc.) has made MLE feasible in practical applications [5].  

Additionally, the use of the log-likelihood function simplifies the computation process [6]. Second, 

it possesses excellent statistical properties; under certain conditions, MLE estimators have 

consistency, asymptotic normality, and efficiency. This means that as the sample size increases, MLE 

estimators will converge to the true parameter value and have the smallest variance. Finally, MLE 

has achieved significant success in many practical applications [7-8]. For example, in machine 

learning, MLE is used to train logistic regression, Gaussian mixture models, etc.; in biostatistics, 

MLE is used for gene expression data analysis, epidemiological models, etc. This further 

demonstrates the feasibility of MLE.  

The article first introduces the theoretical foundation of maximum likelihood estimation, including 

the definitions of the likelihood function and the log-likelihood function, as well as their mathematical 

properties. It then elaborates on the estimation process of maximum likelihood estimation in detail 

and demonstrates its applications in statistics, machine learning, and biostatistics through specific 

examples. Finally, the article discusses the limitations of maximum likelihood estimation, particularly 

regarding computational complexity and small sample issues, and proposes possible solutions. 

2. Theoretical Foundation 

In this section, the Maximum likelihood estimation and the basics of mathematics (likelihood 

functions, log-likelihood functions, estimation processes) will be introduced. 

2.1. Principle of Maximum Likelihood Estimation 

The maximum likelihood estimation is a probability-based statistical method used to estimate model 

parameters from observed data. The core idea is to find a set of parameter values that maximizes the 

probability of the observed data occurring under those parameters. Assume that there exists a 

probability model whose distribution is determined by the parameter θ (θ can be a scalar or a vector). 

Given a set of observed data X=(𝑥1, 𝑥2 ,…, 𝑥𝑛) and a parameterized probability model P(X|θ), the 

objective of MLE is to find a value of the parameter θ that maximizes the probability of this data 

occurring under that parameter. 

2.2. Mathematical Foundation 

2.2.1. Likelihood function 

The likelihood function L(θ,X) represents the probability of observing the data X given the parameter 

θ. Let X = [𝑋1, . . . , 𝑋n]𝑇 be a random vector drawn from a joint PDF𝑓𝑋(𝑋, θ), and let x =  [𝑥1, . . . , 𝑥n]𝑇 

be the realizations. The likelihood function is a function of the parameter θ given the realizations x: 

 L(θ, X) = 𝑓𝑋(𝑋, θ) (1) 

L(θ, X) can be viewed as a function of θ. This function changes its shape according to the observed 

data x. 

2.2.2. Log-likelihood Function 

In practical operations, the likelihood function is often processed by taking the logarithm before 

further calculations are performed. Define the resulting function as the Log-likelihood Function [9]. 

 logL(θ, X) = log𝑓𝑋(𝑋, θ) = ∑ 𝑓𝑋𝑛
(𝑥𝑛; 𝜃)𝑁

𝑛=1
 (2) 
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The log-likelihood function, without altering the properties of the function, is superior to the 

likelihood function in terms of computation, mathematical properties, and theoretical analysis. Firstly, 

it simplifies calculations; the likelihood function is often expressed as a product of probabilities, 

which transforms into a summation upon taking the logarithm, thereby reducing computational 

difficulty. The product of probabilities may lead to extremely small values, while the logarithmic 

transformation compresses the range of values, minimizing numerical issues in calculations, resulting 

in more stable values after taking the logarithm. Secondly, its mathematical properties are more 

favorable; the derivative form of the logarithmic function is simple, facilitating differentiation and 

optimization. Thirdly, it aids in theoretical analysis; the log-likelihood function possesses good 

properties under large samples, making it easier to derive the asymptotic distribution of estimators. 

Additionally, its Hessian matrix is related to the information matrix, which can be used to calculate 

standard errors and confidence intervals. Therefore, the logarithmic transformation is necessary. 

2.2.3. Estimation Process 

In order to obtain the parameters that best meet the requirements, the most commonly used method 

is to treat the likelihood function as a function of the parameter θ and to solve for its maximum value 

[10]. The parameter value obtained at this time is the one that maximizes the probability of the 

observed data. The specific steps are as follows: 

First, derive the likelihood function of the random variable X and the parameter θ. 

 L(θ, X) = 𝑓𝑋(𝑋, θ) (3) 

Then take the logarithm on both sides simultaneously and simplify. 

 logL(θ, X) = 𝑙𝑜𝑔𝑓𝑋(𝑋, θ) = ∑ 𝑓𝑋𝑛
(𝑥𝑛; 𝜃)𝑁

𝑛=1
 (4) 

Differentiate with respect to θ and set the derivative to zero, solving for θ. 

 𝜃 = argmaxL(θ, X) (5) 

This calculation method can solve most parameter estimation problems. By substituting the 

obtained parameters into the original probability equation, a better description of the model's 

probability can be made, allowing it to be applied in various fields. 

3. Analysis and Applications 

3.1. Parameter Estimation in Statistics 

The maximum likelihood estimation is one of the most commonly used parameter estimation methods 

in statistics. Its core idea is to find the model parameters that are most likely to generate the observed 

data by maximizing the likelihood function of the observed data. The application of maximum 

likelihood estimation in statistics is very extensive, especially in the fields of parameter estimation, 

hypothesis testing, and model selection. The following will take the normal distribution as an example. 

Assume there exists a set of data X=(𝑥1, 𝑥2 ,…, 𝑥𝑛), and that this data follows a normal distribution 

N(μ,σ2). The purpose is to estimate the mean μ and variance σ2. 

According to the formula of the normal distribution, its likelihood function can be derived. 

 L(μ, σ
2
; X) = ∏ 𝑓(𝑥𝑖

𝑛
𝑖=1

|μ, 𝜎2) =  ∏
1

√2𝜋𝜎2
𝑒

−(𝑥𝑖−𝜇)2

2𝜎2𝑛
𝑖=1

 (6) 

After taking the logarithm, the likelihood function becomes like this: 
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 log L (μ, σ
2
; X) = −

𝑛

2
log(2𝜋) − −

𝑛

2
log (σ

2
) −

1

2σ
2

∑ (𝑥𝑖 − μ)2𝑛
𝑖=1

 (7) 

First, take the partial derivative of μ and set it to zero to solve. 

 
𝜕𝐿

𝜕𝜇

1

σ
2

∑ (𝑥𝑖 − μ)𝑛
𝑖=1

= 0 (8) 

 �̂� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1

 (9) 

Take the partial derivative of σ2 then, set it to zero, and substitute the value of μ. 

 
𝜕𝐿

𝜕σ
2

[−
𝑛

2σ
2

+
1

2𝜎4
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1
] = 0 (10) 

 σ
2̂

=
1

𝑛
∑ (𝑥𝑖 − �̂�)2𝑛

𝑖=1
 (11) 

It can be seen that the value of parameters can be resolved in statistics through likelihood 

estimation. This enables the model to better fit and interpret observational data [11]. These parameter 

values are not only used for model fitting and prediction but also support statistical inference, such 

as hypothesis testing and the construction of confidence intervals. 

Furthermore, MLE estimators possess good statistical properties, such as consistency and 

asymptotic normality, ensuring their reliability in large sample situations. 

3.2. Parameter Estimation in Statistics 

3.2.1. Model Training 

In machine learning, maximum likelihood estimation is commonly used for model training. 

Specifically, given a probabilistic model P(X|θ), maximum likelihood estimation estimates the model 

parameters θ by maximizing the likelihood function of the observed data. For instance, in supervised 

learning, given input data X and labels Y, maximum likelihood estimation can be used to estimate 

the conditional probability P(Y|X, θ). 

3.2.2. Maximum a posteriori estimation 

In machine learning, the combination of Bayesian estimation and maximum likelihood estimation 

provides a powerful framework for better addressing issues such as parameter estimation, model 

selection, and uncertainty quantification. Maximum a posteriori estimation is the most direct form of 

the combination of Bayesian estimation and MLE. It introduces prior distributions based on MLE, 

thereby integrating prior knowledge and observational data in parameter estimation. It is used in 

machine learning to introduce regularization, preventing overfitting, and performs exceptionally well, 

especially in small sample situations. MAP also offers a natural framework for combining prior 

knowledge with observational data, enhancing model robustness, and is widely applied in tasks such 

as regression, classification, and Bayesian neural networks [12]. 

3.3. Application in Biostatistics 

Maximum likelihood estimation (MLE) is widely used in biostatistics for parameter estimation and 

model fitting, which maximizes the likelihood function to determine model parameters so that the 

model can best interpret experimental data. For example, in the HIV-1 viral dynamics model, MLE 

is used to estimate parameters such as infection rate, clearance, etc., to help understand the dynamics 
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of viral load. In addition, MLE is used to guide experimental design by quantifying the impact of 

experimental data on parameter estimation and identifying which experimental measurements are 

most useful for determining the best fit parameters, thereby reducing parameter uncertainty. In 

dynamic biological systems, MLE is able to process experimental data over time and update model 

parameters in real time, such as during the COVID-19 pandemic, to recalibrate models to predict 

trends. MLE also combines sensitivity analysis and contour likelihood function to evaluate the 

sensitivity of model parameters to the data, and solve the problem of parameter uncertainty and non-

identifiability. These applications make MLE an important tool in biostatistics and mathematical 

modeling [13]. 

4. Disadvantages 

4.1. Computational Complexity 

In the high-dimensional parameter space, the optimization problem of likelihood functions can 

become very complex and usually requires more computational resources and time. For some 

complex models, the likelihood function may be non-convex, meaning that there may be multiple 

local maxima. In this case, it can be very difficult to find the global maximum, and the optimization 

algorithm may get stuck in the local optimal solution. In real-world calculations, likelihood functions 

can involve a large number of products or exponential operations, which can lead to numerical 

instability or computational overflow problems. For example, when calculating the likelihood 

function of a high-dimensional Gaussian distribution, the inverse matrix calculation of the covariance 

matrix can be time-consuming. 

4.2. Issues with Small Sample Sizes 

When the sample size is small, the maximum likelihood estimates may deviate from the true 

parameter values, leading to estimation bias. In small sample situations, the model may overfit the 

training data, resulting in decreased generalization performance. Maximum likelihood estimation 

tends to select parameter values that best fit the training data, but this may lead to poor performance 

of the model on unseen data. In small sample cases, the variance of the estimates may increase, 

resulting in unstable estimation results. This means that the maximum likelihood estimates may 

exhibit significant fluctuations across different sample sets. 

5. Conclusion 

The maximum likelihood estimation, as a classic parameter estimation method, has a wide range of 

applications in fields such as statistics, machine learning, and biostatistics. By analyzing sample data, 

MLE can effectively estimate model parameters, thereby providing a solid foundation for subsequent 

data analysis and model construction. This article summarizes its importance in modern data analysis 

through a discussion of the theoretical basis, application scenarios, and its advantages and 

disadvantages of MLE. 

First, the core idea of MLE is to estimate parameters by maximizing the likelihood function, which 

has a solid mathematical foundation and can provide consistent and efficient estimates in large sample 

situations. In statistics, MLE is widely used in fields such as regression analysis and time series 

analysis; in machine learning, MLE provides theoretical support for parameter estimation in many 

models (such as logistic regression, Gaussian mixture models, etc.); in biostatistics, MLE helps 

researchers extract useful information from complex biological data. 

MLE also has some limitations. First, its computational complexity is relatively high, especially 

in high-dimensional data or complex models, where the computation process can be very time-
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consuming. Second, MLE performs poorly in small sample situations, making it prone to overfitting 

issues. Therefore, in practical applications, researchers need to choose appropriate estimation 

methods based on specific problems or combine other techniques (such as regularization) to enhance 

estimation effectiveness. 

With the rapid development of data science and artificial intelligence, Maximum Likelihood 

Estimation (MLE) will continue to play an important role in the field of parameter estimation. Future 

research can further explore the combination of MLE with other optimization techniques to enhance 

its computational efficiency in large-scale and high-dimensional data. Additionally, regarding small 

sample issues, research can investigate how to improve the robustness of MLE by introducing prior 

knowledge or refining estimation methods. In summary, as a classic estimation method, MLE still 

has vast potential for theoretical research and practical application. 
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