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Abstract: This study explores the use of Maximum Likelihood Estimation (MLE) to infer the 

edge probability parameter, p, in Erdős–Rényi (ER) graphs, which are foundational in the 

analysis of social networks. MLE is meticulously applied to derive p, with its accuracy 

validated through a series of simulations that demonstrate the method’s efficacy in both 

synthetic and real-world settings. The research highlights that MLE achieves lower 

percentage errors as the network size increases, confirming its scalability. A case study 

focusing on a high school friendship network further underscores the practicality of MLE in 

operational settings such as friend recommendation systems, enhancing its relevance to 

everyday applications. However, the study also points out the limitations due to the 

assumption of uniform edge probability within the ER model, which may not hold in more 

complex, heterogeneous network structures often observed in real-world social systems. 

These findings prompt a call for the development of more robust models that can handle 

diverse network scenarios, suggesting a potential direction for future research to expand the 

applicability of MLE in network analysis. 

Keywords: Erdős–Rényi model, Maximum likelihood estimation, Edge probability, Missing 

link prediction  

1. Introduction 

Social networks, such as those on Facebook and Twitter, model complex relationships through graph 

structures. The Erdős–Rényi graph 𝐺(𝑛, 𝑝), where 𝑛  is the number of nodes and 𝑝 is the uniform 

edge probability, provides a simplified yet powerful framework for studying these systems [1,2]. 

Existing studies have explored the theoretical properties of the ER model in depth,but overlooked a 

key issue: In real social networks, traditional parameter estimation methods (such as MLE) are prone 

to significant bias due to the absence of observations on the dynamic expansion of network size and 

interference from heterogeneous structures [3]. This defect directly weakens the practicability of ER 

model in social network analysis, and it is urgent to establish an estimation framework that balances 

statistical rigor and reality [4,5]. 

This study aims to solve this problem systematically. Firstly, the closed MLE solution of 𝑝  in ER 

graph is derived mathematically to verify its estimation performance under different network 

densities [6]. Secondly, the practicability of MLE is evaluated through simulation experiments and 

real cases (such as high school friendship network) [7,8]. Finally, combined with the empirical results, 
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the author critically analyzes the limitations and improvement directions of the model, providing a 

methodological basis for social network analysis with both theoretical rigor and practical adaptability. 

2. Theoretical Foundations 

2.1. The Erdős–Rényi Model 

The Erdős–Rényi (ER) graph model 𝐺(𝑛, 𝑝) is a random graph model defined by two parameters 𝑛 

and 𝑝 [9]. 𝑛 represents the number of vertices in the graph, 𝑝 represents the independent probability 

of an edge existing between any pair of distinct vertices. In this model, each possible edge is generated 

independently with probability  𝑝 , resulting in a stochastic adjacency structure. The ER graph 

𝐺(𝑛, 𝑝) assumes that each of the (𝑛
2
) possible edges exist independently with probability  𝑝 : 

 𝑓𝑋(𝑥; 𝑝) = ∏ ∏ 𝑝𝑥𝑖𝑗(1 − 𝑝)
1−𝑥𝑖𝑗𝑛

𝑗=1

𝑛
𝑖=1

 (1) 

Table 1: Three estimation methods. 

Criterion MLE Moment estimation Bayesian Inference 

Statistical Efficiency Asymptotically 

efficient (Cramér-Rao 

bound) 

Often inefficient, 

especially in sparse 

networks 

Efficiency depends on 

prior specification 

Computational 

Complexity 

High (requires 

iterative optimization) 

Low (closed-form 

solutions)    

Very high (MCMC 

sampling) 

Uncertainty 

Quantification 

Relies on asymptotic 

approximations 

Limited error 

characterization 

Natural uncertainty via 

posteriors 

Model 

Misspecification 

Sensitive to structural 

assumptions 

Robust to some 

misspecifications 

Partial robustness 

through hierarchical 

priors 

Data Requirements Requires complete 

network data 

Works with 

aggregated statistics 

Handles missing data 

via data augmentation 

 

The likelihood of observing an adjacency matrix denoted by 𝑋 , and i and j are two nodes. The 

element X is either 1 or 0, since they can only be connected or not connected [2]. Element 𝑋𝑖𝑗 follows 

Bernoulli distribution and the adjacency matrix obeys following rules:  

 𝑃(𝑋𝑖𝑗 = 1) = 𝑝 (2) 

 𝑃(𝑋𝑖𝑗 = 0) = 1 − 𝑝 (3) 

2.2. MLE in Network Analysis 

MLE has many optimal properties in estimation: sufficiency (complete information about the 

parameter of interest contained in its MLE estimator); consistency (true parameter value that 

generated the data recovered asymptotically [10]. Meanwhile, it has become a cornerstone method 

for parameter inference in social network analysis through ERGMs, which uses sufficient statistics 

(e.g. ternal closures of degree distributions) to characterize network connection properties [11]. 

Pioneered by Wasserman and Pattison (1996), MLE enables parameter estimation by maximizing the 

likelihood of observing the network's structural features. Challenges such as computational 

intractability in large networks led to advancements like Markov Chain Monte Carlo Maximum 

Likelihood Estimation (MCMC-MLE). In addition, the most natural function for the transmission 
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process on the network can jointly estimate the transmission rate beta and recovery rate, which 

Thomas et al. applied to the hospital contact network. Precise quantification of super-spreader 

potential through node-specific parameters. There are other estimation methods besides MLE, and 

the table 1 shows the difference between MLE, Moment estimation and Bayesian inference: 

Compared with the Methods of Moments, MLE has better estimation accuracy but less computational 

advantages. For Bayesian Inference, MLE does not need to subjectively select prior distributions, but 

lacks regularization mechanisms [12,13]. 

3. Methodology and Experiments 

3.1. Model construction 

We simulated ER graphs using Python program. For  𝑛 = 40  and  𝑝 =  0.3 , which means the 

probability of everyone in a network of 40 people connected to each other is 30%. The adjacency 

matrix Χ was generated, and edges were counted to compute 𝑝MLÊ . The following three graphs 

respectively are 𝑛 = 40  and  𝑝 = 0.1, 0.3  and 0.5 . Blue nodes represent 40 individuals and lines 

represent the number of connections between them: 

 

Figure 1: Sparse Erdős–Rényi Graph (n=40, p=0.1). (Picture credit : Original) 

This figure 1 illustrates a sparse Erdős–Rényi (ER) graph with 𝑛 = 40  nodes and edge 

probability 𝑝 = 0.1. The observed number of edges is 𝑚 = 78, out of 𝑁 = 780 total possible edges. 

The MLE of the edge probability is 𝑝MLÊ = 0.100, with a percentage error of 5.13%. 

 

Figure 2: Moderate-Density Erdős–Rényi Graph (n=40, p=0.3). (Picture credit : Original) 
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This figure 2 depicts a moderate-density ER graph with 𝑛 = 40 nodes and 𝑝 = 0.3. The observed 

edges 𝑚 = 234 yield an MLE estimate 𝑝MLÊ = 0.300, with a minimal percentage error of 1.72%. 

 

Figure 3: Dense Erdős–Rényi Graph (n=40, p=0.5). (Picture credit : Original) 

This figure 3 presents a dense ER graph with 𝑛 = 40 nodes and 𝑝 = 0.5. The observed edges 𝑚 =
390 result in 𝑝MLÊ = 0.500, with an exceptionally low percentage error of 0.26%. 

Overall, the density of connections increases with the increase of 𝑝 from 0.1 to 0.5,while reducing 

estimation errors and demonstrating accuracy of MLE. 

3.2. Log-Likelihood Maximization and Algorithm Implementation 

To derive the maximum likelihood estimate (MLE) for the parameter  𝑝 in a Bernoulli model, given 

observed binary data {𝑥𝑖𝑗}  for  𝑖, 𝑗 =  1, … , 𝑁 . The likelihood function 𝐿( 𝑝 ∣∣ Χ )  represents the 

probability of observing data under parameter 𝑝. To facilitate the calculation of the probability mass 

function, taking the logarithm simplifies computations: 

 log 𝐿 ( 𝑝 ∣∣ Χ ) = ∑ ∑ {𝑥𝚤𝑗 𝑙𝑜𝑔 𝑝 + (1 − 𝑥𝚤𝑗) 𝑙𝑜𝑔(1 − 𝑝)}𝑁
𝑗=1

𝑁
𝚤=1

 (4) 

The first step of maximizing the log-likelihood is seeking out the best parameter estimate, and then 

taking the derivative with respect to 𝑝 , which can be expressed as: 

 
𝑑

𝑑𝑝
log 𝐿 (𝑝|𝑥) =

𝑑

𝑑𝑝
{∑ ∑ [𝑥𝑖𝑗 log 𝑝 + (1 − 𝑥𝑖𝑗) log(1 − 𝑝)]𝑁

𝑗=1

𝑁
𝑖=1

} (5) 

Then setting the derivate equal to zero: 

 ∑ ∑ (
𝑥𝑖𝑗

𝑝
−

1−𝑥𝑖𝑗

1−𝑝
)𝑁

𝑗=1

𝑁
𝑖=1

= 0 (6) 

Let 𝑆  =   ∑ ∑ 𝑥𝑖𝑗
𝑁
𝑗=1

N
i=1 , which counts the total number of success (i.e., 𝑥𝑖𝑗 = 1) in the data. 

Substitute S into the derivate equation: 

 
𝑆

𝑝
−

𝑁2−𝑆

1−𝑝
= 0 (7) 

Here, 𝑁2 represent the total number of observations. Thus, cross-multiplying and solving for 𝑝 , 

so the MLE is: 

 𝑝ML̂ =
𝑆

𝑁2
 (8) 
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Ultimately, referring 𝑆 back into the equation, which shows that the MLE of 𝑝 is simply the 

empirical proportion of success in the observed data matrix. 

3.3. Simulation Study 

To validate the performance of the MLE for the Erdős–Rényi model, conducting a simulation study 

comparing the estimated edge probability 𝑝MLÊ  against the ground truth  𝑝 =  0.3 . Networks of 

varying sizes 𝑛 =  {5, 10, 30} were generated, and the estimation error was quantified using the 

percentage error: 

 Percentage Error = |
𝑝MLÊ−𝑝

𝑝
| × 100 (9) 

For each 𝑛, we simulated 1,000 independent ER graphs and computed the mean percentage error. 

The differences in the error are attributed to the different 𝑛. Python program can help to calculate 

percentage error and the output is below: 

n = 5: 

  Mean Percentage Error = 36.87% 

  Standard Deviation = 30.16% 

n = 10: 

  Mean Percentage Error = 18.42% 

  Standard Deviation = 13.42% 

n = 30: 

  Mean Percentage Error = 5.96% 

  Standard Deviation = 4.42% 

The code confirms the theoretical expectation that the percentage error of MLE estimates decreases 

significantly as the network size 𝑛 increases. For example, when 𝑛 increases from 5 to 30, the mean 

average error drops from about 36.87% to 5.96%. Moreover, the standard deviation decreases from 

30.16% to 4.42%. This result is consistent with the law of large numbers, indicating that MLE has 

higher statistical reliability in large-scale networks [8,14]. 

3.4. Real-World Case Analysis 

There is a real-world example use MLE to predict missing friendships in a high school network. 

Consider a partially observed friendship network among  𝑛 =  50 students in a high school [15, 16]. 

The adjacency matrix 𝑋 contains 300 observed edges (confirmed friendships) and 200 unobserved 

pairs (missing or unrecorded relationships). The goal is to estimate the probability of missing 

friendships using MLE under the ER model and predict the most likely connections. Assume 

friendships form independently with a global probability 𝑝 following the ER model 𝐺(𝑛, 𝑝). The 

likelihood of observing the confirmed friendships is: 

 𝐿( 𝑝 ∣∣ Χobs ) = ∏ 𝑝Χ𝑖𝑗(1 − 𝑝)1−Χ𝑖𝑗
(𝑖,𝑗)∈Observed  (10) 

where 𝑋𝑖𝑗 = 1  if students  𝑖  and   𝑗  are friends, and 0 otherwise. Using the 300 observed edges, 

compute the MLE for 𝑝: 

 𝑝𝑀𝐿𝐸̂ =  
Number of Observed Edges

Total Possible Edges
=

300

(50
2

)
≈ 0.245 (11) 

Rank all 200 unobserved pairs by this probability and predict the top 𝑘  pairs as likely missing 

friendships. For example, selecting the top 58 pairs corresponds to: 
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 𝑘 = 200 × 0.245 = 58 (12) 

Therefore, the total pair of friendship is 300 +  58 = 358 .Using MLE under the ER model 

provides a simple yet interpretable method to predict missing friendships in partially observed 

networks. While it assumes independence between edges—a simplification of real-world social 

dynamics—it offers a foundational approach for initial analysis. Extensions to models like SBMs or 

ERGMs can further refine predictions by incorporating community structure or triadic closure effects. 

4. Challenges and Limitations 

Unrealistic assumptions about the probability of aligning sub-edges in the ER model [12,13]. Modern 

social networks often exhibit complex community-based structures, where the possibility of edges 

within a community is much higher than the possibility between communities [9]. This deviation 

from the uniform edge probability assumption of the ER model may lead to significant errors in the 

edge probability estimation based on MLE. For example, in niche social networks based on specific 

interests, members within the same interest group are much more likely to be connected to each other, 

and the ER model does not adequately capture this. 

Data sparsity is also an obstacle [14]. In many social network datasets, a large percentage of 

potential edges may not be observed for a variety of reasons, such as privacy Settings or limitations 

on data collection. Sparse data may lead to noisy estimates and inaccurate predictions when using 

MLE. For instance, in an enterprise communication network, some internal communication channels 

may be restricted, resulting in missing data in the network diagram, which can distort MLE based 

communication pattern analysis [15]. 

Another obstacle is dealing with the dynamic evolution of social networks [16]. Social networks 

are in a constant state of flux, with user interactions and network topologies changing rapidly. For 

example, on social media, during global public health emergencies, the changes in network structure 

caused by information transmission are extremely complex, requiring in-depth research to accurately 

grasp the rules, while traditional MLE methods are difficult to adapt to these dynamic changes in real 

time, and the analysis based on static MLE may draw misleading conclusions about information 

transmission patterns and user behaviors.  

5. Conclusion 

This study systematically explores the application of Maximum Likelihood Estimation (MLE) to infer 

the edge probability parameter 𝑝 in Erdős–Rényi (ER) graphs, with a focus on validating theoretical 

frameworks, evaluating empirical performance, and addressing practical limitations in social network 

analysis. Through theoretical verification and empirical analysis, its performance characteristics and 

practical limitations under different network densities are revealed. In sparse networks, MLE 

estimation results in high error due to data scarcity, which highlights the challenge of statistical 

fluctuation to inference stability in sparse environments. In medium density and dense networks, 

MLE shows high accuracy and near-perfect accuracy, respectively, which verifies its asymptotic 

consistency under the law of large numbers and its usefulness as a benchmark tool for social network 

analysis. On the theoretical level, the mathematical rigor and computational efficiency of the closed 

solution 𝑝MLÊ =
𝑚

𝑁
 make it an ideal choice for fast parameter estimation, but its core assumption - 

uniform edge probability - ignores the heterogeneity of node attributes (such as age, interest) in real 

social networks. As a result, the model has limitations in describing complex interaction patterns, 

such as estimation bias caused by missing data in high school friendship network cases. 

To improve practical applicability, this study provides a Python-based reproducible toolkit 

(integrating 'networkx' and 'matplotlib') that sets a clear benchmark for MLE performance evaluation 
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by quantifying the percentage error under different 𝑝 values. Future research should be extended to 

heterogeneous models (such as random block models) to capture community structure, combine 

regularization techniques to deal with the variance problem of sparse data, and enhance the robustness 

of missing data through Bayesian methods. In addition, dynamic network analysis and large-scale 

empirical validation will further test the scalability of MLE. Although MLE provides a statistically 

rigorous basic framework for ER graph analysis, its practical significance depends on breaking 

through the constraint of uniformity assumption and developing a hybrid model that balances 

efficiency and authenticity to address the core challenges of modern social networks such as 

information dissemination and influence recognition, and to build a bridge between theory and 

application. 
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