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Abstract: This study explores the use of Maximum Likelihood Estimation (MLE) to infer the
edge probability parameter, p, in Erdés—Rényi (ER) graphs, which are foundational in the
analysis of social networks. MLE is meticulously applied to derive p, with its accuracy
validated through a series of simulations that demonstrate the method’s efficacy in both
synthetic and real-world settings. The research highlights that MLE achieves lower
percentage errors as the network size increases, confirming its scalability. A case study
focusing on a high school friendship network further underscores the practicality of MLE in
operational settings such as friend recommendation systems, enhancing its relevance to
everyday applications. However, the study also points out the limitations due to the
assumption of uniform edge probability within the ER model, which may not hold in more
complex, heterogeneous network structures often observed in real-world social systems.
These findings prompt a call for the development of more robust models that can handle
diverse network scenarios, suggesting a potential direction for future research to expand the
applicability of MLE in network analysis.
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1. Introduction

Social networks, such as those on Facebook and Twitter, model complex relationships through graph

structures. The Erdés—Rényi graph G(n,p), where n is the number of nodes and p is the uniform
edge probability, provides a simplified yet powerful framework for studying these systems [1,2].
Existing studies have explored the theoretical properties of the ER model in depth,but overlooked a
key issue: In real social networks, traditional parameter estimation methods (such as MLE) are prone
to significant bias due to the absence of observations on the dynamic expansion of network size and
interference from heterogeneous structures [3]. This defect directly weakens the practicability of ER
model in social network analysis, and it is urgent to establish an estimation framework that balances
statistical rigor and reality [4,5].

This study aims to solve this problem systematically. Firstly, the closed MLE solution of p in ER
graph is derived mathematically to verify its estimation performance under different network
densities [6]. Secondly, the practicability of MLE is evaluated through simulation experiments and
real cases (such as high school friendship network) [7,8]. Finally, combined with the empirical results,
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the author critically analyzes the limitations and improvement directions of the model, providing a
methodological basis for social network analysis with both theoretical rigor and practical adaptability.

2. Theoretical Foundations
2.1. The Erdés—Rényi Model

The Erdés—Rényi (ER) graph model G (n, p) is a random graph model defined by two parameters n
and p [9]. n represents the number of vertices in the graph, p represents the independent probability
of an edge existing between any pair of distinct vertices. In this model, each possible edge is generated
independently with probability p , resulting in a stochastic adjacency structure. The ER graph
G (n, p) assumes that each of the (’;) possible edges exist independently with probability p :

feCip) = T, T, p (1 =) (1)

Table 1: Three estimation methods.

Criterion MLE Moment estimation Bayesian Inference
Statistical Efficiency Asymptotically Often inefficient, Efficiency depends on
efficient (Cramér-Rao especially in sparse prior specification
bound) networks
Computational High (requires Low (closed-form Very high MCMC
Complexity iterative optimization) solutions) sampling)
Uncertainty Relies on asymptotic Limited error Natural uncertainty via
Quantification approximations characterization posteriors
Model Sensitive to structural Robust to some Partial robustness
Misspecification assumptions misspecifications through hierarchical
priors
Data Requirements Requires complete Works with Handles missing data
network data aggregated statistics | via data augmentation

The likelihood of observing an adjacency matrix denoted by X , and i and j are two nodes. The
element X is either 1 or 0, since they can only be connected or not connected [2]. Element X;; follows
Bernoulli distribution and the adjacency matrix obeys following rules:

P(x;=1)=p Q)
P(X;=0)=1-p (3)
2.2. MLE in Network Analysis

MLE has many optimal properties in estimation: sufficiency (complete information about the
parameter of interest contained in its MLE estimator); consistency (true parameter value that
generated the data recovered asymptotically [10]. Meanwhile, it has become a cornerstone method
for parameter inference in social network analysis through ERGMs, which uses sufficient statistics
(e.g. ternal closures of degree distributions) to characterize network connection properties [11].
Pioneered by Wasserman and Pattison (1996), MLE enables parameter estimation by maximizing the
likelihood of observing the network's structural features. Challenges such as computational
intractability in large networks led to advancements like Markov Chain Monte Carlo Maximum
Likelihood Estimation (MCMC-MLE). In addition, the most natural function for the transmission
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process on the network can jointly estimate the transmission rate beta and recovery rate, which
Thomas et al. applied to the hospital contact network. Precise quantification of super-spreader
potential through node-specific parameters. There are other estimation methods besides MLE, and
the table 1 shows the difference between MLE, Moment estimation and Bayesian inference:
Compared with the Methods of Moments, MLE has better estimation accuracy but less computational
advantages. For Bayesian Inference, MLE does not need to subjectively select prior distributions, but
lacks regularization mechanisms [12,13].

3.  Methodology and Experiments
3.1. Model construction

We simulated ER graphs using Python program. For n = 40 and p = 0.3, which means the
probability of everyone in a network of 40 people connected to each other is 30%. The adjacency
matrix X was generated, and edges were counted to compute Py . The following three graphs
respectively are n = 40 and p = 0.1,0.3 and 0.5. Blue nodes represent 40 individuals and lines
represent the number of connections between them:

Figure 1: Sparse Erd6s—Rényi Graph (n=40, p=0.1). (Picture credit : Original)

This figure 1 illustrates a sparse Erdés—Rényi (ER) graph with n = 40 nodes and edge
probability p = 0.1. The observed number of edges is m = 78, out of N = 780 total possible edges.
The MLE of the edge probability is py g = 0.100, with a percentage error of 5.13%.

Figure 2: Moderate-Density Erdds—Rényi Graph (n=40, p=0.3). (Picture credit : Original)
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This figure 2 depicts a moderate-density ER graph with n = 40 nodes and p = 0.3. The observed
edges m = 234 yield an MLE estimate py g = 0.300, with a minimal percentage error of 1.72%.

Figure 3: Dense Erd6s—Rényi Graph (n=40, p=0.5). (Picture credit : Original)

This figure 3 presents a dense ER graph with n = 40 nodes and p = 0.5. The observed edges m =
390 result in pyg g = 0.500, with an exceptionally low percentage error of 0.26%.

Overall, the density of connections increases with the increase of p from 0.1 to 0.5,while reducing
estimation errors and demonstrating accuracy of MLE.

3.2. Log-Likelihood Maximization and Algorithm Implementation

To derive the maximum likelihood estimate (MLE) for the parameter p in a Bernoulli model, given
observed binary data {x;;} for i,j = 1,...,N. The likelihood function L(p | X) represents the

probability of observing data under parameter p. To facilitate the calculation of the probability mass
function, taking the logarithm simplifies computations:

logL(p|X) =X, %Y {x;logp+ (I —x;)log(l—p)} 4)

The first step of maximizing the log-likelihood is seeking out the best parameter estimate, and then
taking the derivative with respect to p , which can be expressed as:

d d
o o8l (plx) = %{ Y, Ziy:;[xij logp + (1 — x;;) log(1 — P)]} (5)
Then setting the derivate equal to zero:
N N (%) 17X\ _
i=1 &)= ( » 1_p> =0 (6)

Let S = Z%\L J Z?’: ;Xij, which counts the total number of success (i.e., x;; = I) in the data.
Substitute S into the derivate equation:

S N’-s

S NSy (7)

14 I-p

Here, N represent the total number of observations. Thus, cross-multiplying and solving for p ,
so the MLE is:

_ s
Pur =2 (8)
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Ultimately, referring S back into the equation, which shows that the MLE of p is simply the
empirical proportion of success in the observed data matrix.

3.3. Simulation Study

To validate the performance of the MLE for the Erdés—Rényi model, conducting a simulation study
comparing the estimated edge probability p,,  against the ground truth p = 0.3. Networks of

varying sizes n = {5, 10,30} were generated, and the estimation error was quantified using the
percentage error:

Percentage Error = |m%_p| X 100 9)

For each n, we simulated 1,000 independent ER graphs and computed the mean percentage error.
The differences in the error are attributed to the different n. Python program can help to calculate
percentage error and the output is below:

n=>35:
Mean Percentage Error = 36.87%
Standard Deviation = 30.16%
n=10:
Mean Percentage Error = 18.42%
Standard Deviation = 13.42%
n = 30:
Mean Percentage Error = 5.96%
Standard Deviation = 4.42%

The code confirms the theoretical expectation that the percentage error of MLE estimates decreases
significantly as the network size n increases. For example, when n increases from 5 to 30, the mean
average error drops from about 36.87% to 5.96%. Moreover, the standard deviation decreases from
30.16% to 4.42%. This result is consistent with the law of large numbers, indicating that MLE has
higher statistical reliability in large-scale networks [8,14].

3.4. Real-World Case Analysis

There is a real-world example use MLE to predict missing friendships in a high school network.
Consider a partially observed friendship network among n = 50 students in a high school [15, 16].
The adjacency matrix X contains 300 observed edges (confirmed friendships) and 200 unobserved
pairs (missing or unrecorded relationships). The goal is to estimate the probability of missing
friendships using MLE under the ER model and predict the most likely connections. Assume
friendships form independently with a global probability p following the ER model G (n,p). The
likelihood of observing the confirmed friendships is:

L(p I Xobs) = H(i,j)EObserved pXij(] - p)I_Xij (10)

where X;; = 1 if students { and j are friends, and 0 otherwise. Using the 300 observed edges,
compute the MLE for p:

__—__ Number of Observed Edges __ 300 -
PuLE = - = =n = 0.245 (11)
Total Possible Edges (2 )

Rank all 200 unobserved pairs by this probability and predict the top k pairs as likely missing
friendships. For example, selecting the top 58 pairs corresponds to:
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k=200x0.245 = 58 (12)

Therefore, the total pair of friendship is 300 + 58 = 358.Using MLE under the ER model
provides a simple yet interpretable method to predict missing friendships in partially observed
networks. While it assumes independence between edges—a simplification of real-world social
dynamics—it offers a foundational approach for initial analysis. Extensions to models like SBMs or
ERGMs can further refine predictions by incorporating community structure or triadic closure effects.

4.  Challenges and Limitations

Unrealistic assumptions about the probability of aligning sub-edges in the ER model [12,13]. Modern
social networks often exhibit complex community-based structures, where the possibility of edges
within a community is much higher than the possibility between communities [9]. This deviation
from the uniform edge probability assumption of the ER model may lead to significant errors in the
edge probability estimation based on MLE. For example, in niche social networks based on specific
interests, members within the same interest group are much more likely to be connected to each other,
and the ER model does not adequately capture this.

Data sparsity is also an obstacle [14]. In many social network datasets, a large percentage of
potential edges may not be observed for a variety of reasons, such as privacy Settings or limitations
on data collection. Sparse data may lead to noisy estimates and inaccurate predictions when using
MLE. For instance, in an enterprise communication network, some internal communication channels
may be restricted, resulting in missing data in the network diagram, which can distort MLE based
communication pattern analysis [15].

Another obstacle is dealing with the dynamic evolution of social networks [16]. Social networks
are in a constant state of flux, with user interactions and network topologies changing rapidly. For
example, on social media, during global public health emergencies, the changes in network structure
caused by information transmission are extremely complex, requiring in-depth research to accurately
grasp the rules, while traditional MLE methods are difficult to adapt to these dynamic changes in real
time, and the analysis based on static MLE may draw misleading conclusions about information
transmission patterns and user behaviors.

5. Conclusion

This study systematically explores the application of Maximum Likelihood Estimation (MLE) to infer
the edge probability parameter p in Erdés—Rényi (ER) graphs, with a focus on validating theoretical
frameworks, evaluating empirical performance, and addressing practical limitations in social network
analysis. Through theoretical verification and empirical analysis, its performance characteristics and
practical limitations under different network densities are revealed. In sparse networks, MLE
estimation results in high error due to data scarcity, which highlights the challenge of statistical
fluctuation to inference stability in sparse environments. In medium density and dense networks,
MLE shows high accuracy and near-perfect accuracy, respectively, which verifies its asymptotic
consistency under the law of large numbers and its usefulness as a benchmark tool for social network
analysis. On the theoretical level, the mathematical rigor and computational efficiency of the closed
solution Py g = %make it an ideal choice for fast parameter estimation, but its core assumption -
uniform edge probability - ignores the heterogeneity of node attributes (such as age, interest) in real
social networks. As a result, the model has limitations in describing complex interaction patterns,
such as estimation bias caused by missing data in high school friendship network cases.

To improve practical applicability, this study provides a Python-based reproducible toolkit
(integrating 'networkx' and 'matplotlib') that sets a clear benchmark for MLE performance evaluation
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by quantifying the percentage error under different p values. Future research should be extended to
heterogeneous models (such as random block models) to capture community structure, combine
regularization techniques to deal with the variance problem of sparse data, and enhance the robustness
of missing data through Bayesian methods. In addition, dynamic network analysis and large-scale
empirical validation will further test the scalability of MLE. Although MLE provides a statistically
rigorous basic framework for ER graph analysis, its practical significance depends on breaking
through the constraint of uniformity assumption and developing a hybrid model that balances
efficiency and authenticity to address the core challenges of modern social networks such as
information dissemination and influence recognition, and to build a bridge between theory and
application.
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