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Abstract: Insurance safeguards property and health while mitigating economic risks, driving 

research to optimize mechanisms through mathematical tools. This paper examines the 

Central Limit Theorem (CLT) and Law of Large Numbers (LLN) in insurance, highlighting 

their complementary roles: CLT models loss distributions (e.g., approximating total risks as 

normal for capital reserve estimation) and LLN stabilizes long-term claims (e.g., balancing 

premium affordability and profitability through risk pooling). Empirical analyses across auto, 

health, and life insurance demonstrate CLT quantifying extreme payout probabilities (95% 

confidence intervals for catastrophic losses) and LLN optimizing premium structures via 

historical claims convergence. Copula theory extends traditional independence assumptions 

for correlated risks (e.g., regional disaster impacts on crop insurance), while machine learning 

(e.g., random forests) enhances personalized risk predictions through training on multi-source 

data (demographics, telematics). The synergy of CLT and LLN strengthens capital allocation 

and solvency frameworks, offering a robust mathematical foundation for sustainable, data-

driven risk governance. By integrating classical theory with modern techniques like high-

dimensional Copula models and reinforcement learning, this study advances dynamic 

premium adjustments, real-time capital optimization, and compliance strategies. These 

innovations address emerging challenges in InsurTech, such as managing climate-induced 

risks (e.g., flood insurance) and ensuring transparency in AI-driven underwriting systems. 

Keywords: Central limit theorem, Law of large numbers, Insurance actuarial, Risk assessment, 

Normal approximation 

1. Introduction 

The core of the insurance industry lies in risk transfer and allocation, and its mathematical foundation 

relies on the two pillars of probability theory: the Law of Large Numbers (LLN) and the Central Limit 

Theorem (CLT). LLN guarantees the stability of long-term expected losses through convergence, 

while CLT provides a quantitative tool for short-term fluctuations through a normal distribution. 

Traditional insurance models are mostly based on independent and equally distributed assumptions, 

while actual risks are often correlated (for example, natural disasters lead to simultaneous claims in 

multiple regions). This paper explores the adaptability of classical theories in modern insurance 

scenarios by extending independent risk models and machine learning techniques. 

Wang showed that the maximum amount of third-party liability insurance in auto insurance is set 

at 200,000 yuan, which is behind the joint effect of CLT and LLN [1]. When the number of insured 

subjects is large enough, the insurance company calculates the extreme probability of payment 
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through CLT, and combines the convergence of LLN to ensure long-term profit stability. This 

conclusion provides a theoretical basis for the insurance industry's premium limitation. In addition, 

Tang verified the universality of the law of large numbers through lottery examples, revealing the 

regularity of random events under large samples, and further supporting the feasibility of insurance 

risk pooling [2]. 

 The rest of this paper is organized as following. In section 2, the author will introduce the method 

and theory. Next, section 3 is devoted to results and applications. Finally, the last section gives a 

conclusion. 

2. Method and Theory 

2.1. Law of Large Numbers and Central Limit Theorem 

By setting independent identically distributed (i.i.d.) random variable sequence X1, X2 ,..., Xn , whose 

expectation is μ, then the sample mean converges to the expectation with probability: 

lim
n→∞

𝑃 ( | 
1

n
∑ Xi

n

i=1

− μ| < ε) = 1. (1) 

This is the weak law of large numbers. Sinchin's Law of large numbers further relaxes the 

conditions, only the expectation exists, and is applicable to the thick tail distribution scenario. 

For insurance applications, the first is about premium pricing, estimating expected losses from 

historical claims data E[X], to ensure that premiums cover long-term costs. For example, in the case 

of auto insurance, Wang predicted the average payout amount through LLN and designed the 

premium structure combined with the safety additional amount [3]. Second is about risk pooling, the 

number of subjects when insured n is large enough, the actual loss rate approaches the theoretical 

probability (such as mortality). 

Sequence of random variables for i.i.d. X1, X2 ,..., Xn , whose mean is μ, the variance is σ2, Then 

the standardized sample mean converges to the standard normal distribution according to the 

distribution: 

X − μ

𝜎/√n
→
d

𝑁(0,1) (2) 

The Lindeberg-Levy CLT is its classical form, which requires finite variance. For insurance 

applications, the first is about reserve calculation, total claims paid S = ∑Xi, approximate obedience 

N(nμ, nσ2), to estimate the probability of extreme losses. Wang proposed that CLT was used to 

calculate the additional safety factor λ, which ensures that insurance companies avoid losses with a 

95% probability [4]. The second is about confidence interval construction, calculating the margin of 

safety for premium adjustment based on normal distribution. 

2.2. Contrast of similarities and differences 

The Comparison of theorem of large numbers and central limit theorem is shown in Table 1. As two 

cornerstones of probability theory, Central Limit theorem (CLT) and Law of large Numbers (LLN) 

show remarkable commonality in both theory and application. First, both require that the sequence 

of random variables satisfy the basic assumption of an independent identical distribution (i.i.d.), a 

condition that provides mathematical rigor for statistical inference. Second, they are both suitable for 

analyzing the collective behavior of a large number of random variables: LLN characterizes long-

term stability through the convergence of the sample mean, while CLT quantifies short-term volatility 
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through a normal approximation. In practice, they have irreplaceable value in risk modeling and data 

analysis in insurance, finance, medicine and other fields. For example, insurance companies use LLN 

to predict the long-term average loss ratio to set premiums, while CLT to estimate the extreme loss 

probability to determine the size of reserves. The synergistic effect of the two forms the theoretical 

basis of modern actuarial science [3, 5]. 

Table 1: Comparison of theorem of large numbers and central limit theorem 

Peculiarity Theorem of Large Numbers (LLN) Central Limit Theorem (CLT) 

Core content 

The mean of the random variable 

approaches the mathematical 

expectation. 

The distribution of the mean (or 

sum) of random variables tends 

to be normal. 

Focus 
Convergence (approximate to 

expected value). 

Distribution pattern (normal 

distribution). 

Mathematical 

expression 

lim
n→∞

P ( | 
1

n
∑ Xi

n

i=1

− μ| < ε) = 1 

(Converges almost everywhere or 

with probability) 

X − μ

σ/√n
→
d

N(0,1). 

Convergent type 
Converges almost everywhere or with 

probability. 

Distributional convergence 

(weak convergence). 

Application scenario 

Probability estimation, expected 

value calculation, Monte Carlo 

simulation. 

Statistical inference, risk 

assessment, distribution 

approximation. 

The requirement for 

random variables 

Independent identically distributed, 

expectation exists. 

Independent identically 

distributed, with limited 

variance. 

 

Although both CLT and LLN are based on the assumption of independent co-distribution, their 

core concerns and application scenarios are fundamentally different. From the perspective of 

mathematical connotation, LLN emphasizes that the sample mean converges to the expected value 

according to probability X̅n→

p
μ, while CLT reveals that the distribution of the standardized sample 

mean converges to the normal distribution Z̅n→

d
N(1,0) . This difference leads directly to the 

divergence of its application goals: LLN is used primarily to verify theoretical expected values (e.g., 

mortality, frequency of claims), while CLT is used to construct confidence intervals or calculate the 

probability of extreme events (e.g., bankruptcy risk). Moreover, the mathematical requirements for 

the two are different - CLT requires a finite variance to guarantee the validity of a normal 

approximation, whereas LLN requires only the expected existence (as in Sinchin's Law of large 

numbers). Taking insurance solvency analysis as an example, LLN can predict the average number 

of deaths, while CLT further calculates the probability that the number of deaths exceeds the threshold, 

thus providing a quantitative basis for capital adequacy regulation [4, 6]. 

Combining the advantages of CLT and LLN, the multi-dimensional analysis of random 

phenomena can be realized. In the insurance industry, LLN provides a long-term equilibrium 

benchmark for premium pricing, while CLT quantifies risk exposure through a normal distribution, 

and the combination of the two can optimize risk management strategies (such as safety add-on factor 

design). Further, modern risk theories have broken through the traditional assumption of independent 

and same distribution. For example, Copula model extends the application boundary of CLT by 

describing the correlation between variables [7], while machine learning techniques (such as random 
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forest) integrate the convergence idea of LLN to improve the accuracy of individual risk assessment. 

Future research could explore the adaptability of non-parametric CLT in high-dimensional data, or 

combine deep learning models to enhance the robustness of LLN in non-stationary environments. 

These advances will promote the application of probability theory in complex systems such as 

artificial intelligence and climate prediction, demonstrating its interdisciplinary value. 

2.3. Extension of independent risk model (Copula theory) 

The traditional CLT assumes that risks are independent, but in practice (such as regional disasters) 

risks are often correlated. Copula model provides a flexible risk modeling tool by separating the 

correlation structure and edge distribution between variables [8]. 

Let the marginal distributions of two risk variables X and Y be FX(x) and FY(y), respectively, and 

their joint distributions can be expressed as: 

FX,Y(x, y) = 𝐶(FX(x), FY(y)) (3) 

where 𝐶(𝑢, 𝑣) is the Copula function. For a Gaussian Copula, the form is: 

Cρ(u, v) = Φρ(Φ−1(u), Φ−1(v)) (4) 

where ρ is the correlation coefficient and Φρ  is the bivariate normal distribution function. For 

application significance, Copula was used to generate relevant risk samples and analyze the 

distribution of total loss S=X+Y. And the value at risk (VaR) under independent and non-independent 

hypotheses is compared to reveal the amplification effect of correlation on extreme events. 

3. Results and Application 

3.1. Auto Insurance Premium Pricing and Risk Reserve 

For the problem setting, an insurance company covers 10,000 vehicles, each vehicle annual loss Xi ∼
Exp(λ), needs to determine the total reserve H so that the probability of underpayment is less than 

5%. For the LLN applications, the expected total loss is E[S] = n/λ. When n is large enough, the 

actual payout S fluctuates around E[S] [9]. For the CLT applications, By CLT, S ≈ N(n/λ, n/λ2). If 

Z =
S−n/λ

√n/λ
, then, 

𝑃(S > H) = 𝑃 (Z >
𝐻 − 𝑛/𝜆

√𝑛/𝜆
) = 0.05 ⇒ 𝐻 =

n

λ
+ 1.645 ⋅ √

n

λ
(5) 

As a calculation example, if n = 10,000, λ = 0.01, then H =  1,000,000 + 1.645 × 316.23 ≈
1,052,000. 

Wang further analyzed the limitation of the amount of third-party liability insurance [6]. Assuming 

that an insurance company underwrites 10,000 policies and the probability of death p = 0.001, the 

CLT calculation shows that when the insured amount exceeds 200,000 yuan, the profit of the 

insurance company decreases rapidly with the increase of the number of deaths. For example, when 

the number of deaths is 13, the profit corresponding to 200,000 yuan of insurance is 7.61 million 

yuan, while the loss of 1 million yuan of insurance is 130,000 yuan. This result explains why 

insurance companies limit the maximum coverage to 200,000 yuan. 

3.2. Prediction of Medical Expenses in Health Insurance 

For problem setting, 100,000 enrollees in certain area Xi~ Γ(𝑘 = 2, 𝜃 = 1000), each annual medical 

cost A, need to assess the probability that the total cost exceeds 210 million yuan. For LLN 
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Perspective, the long-term average total cost is approaching 𝐸[𝑆]  =  𝑛𝑘𝜃 =  2 ×  108 [10]. For the 

CLT calculation, by CLT, total cost 𝑆 ≈  𝑁(2 ×  108, 2 ×  1011), then 

P(S > 2.1 × 108) = 1 − Φ (
2.1 × 108  −  2 ×  108

√2 × 1011
) ≈ 1 − 𝛷(2.236) = 1.27% (6) 

In conclusion, the probability of extreme overspending is low, which verifies the robustness of the 

insurance pool. 

For simulation method, Gaussian Copula is used to generate random variables X and Y with 

correlation coefficient ρ = 0.7, whose edge distribution is exponential. A typical example is shown in 

Figure 1. 

 

Figure 1: Total loss analysis under the independent risk model. 

The results that the right tail of the total loss distribution is thicker than the normal distribution, 

indicating that the correlation exacerbates the extreme risk. Reserve strategies need to be adjusted to 

cope with potentially high payouts. 

4. Conclusion 

The Central Limit Theorem (CLT) and the Law of Large Numbers (LLN) serve as dual pillars in the 

insurance industry, with LLN ensuring long-term stability through expectation convergence and CLT 

quantifying short-term risks via normal distribution approximations. By integrating Copula models 

to address correlated risks and machine learning techniques like random forests for individualized 

claim predictions, this study bridges classical probability theory with modern data-driven approaches. 

For example, random forests refine granular risk assessments, while CLT aggregates total risk 

distributions to calculate extreme payout probabilities, enabling dynamic premium adjustments and 

efficient capital allocation. Wang’s work further validates that CLT-enhanced safety load calculations 

and expanded underwriting scales significantly improve solvency, demonstrating the synergy of 

theoretical rigor and practical adaptability in actuarial science. 

Future research should focus on three frontiers, the first one is leveraging Generative Adversarial 

Networks (GANs) to simulate loss data, enhancing predictive accuracy in low-data scenarios; the 

second is developing high-dimensional Copula models to unravel complex risk interdependencies 

(e.g., climate-economic-health linkages); and the final one is deploying reinforcement learning for 

real-time, adaptive premium strategies. Additionally, as InsurTech advances, ensuring the robustness 
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of CLT and LLN in distributed and heterogeneous data environments will be critical. These 

innovations, coupled with ethical AI frameworks, could redefine risk governance, enabling insurers 

to balance profitability with societal resilience. Ultimately, fusing classical theorems with cutting-

edge technologies promises transformative breakthroughs in sustainable insurance solutions. 
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