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Abstract: Signal denoising is an important research direction in the field of signal processing, 

with widespread applications in communication, audio processing, medical signal analysis, 

and other areas. With the development of technology, traditional noise reduction methods are 

gradually facing bottlenecks in efficiency and accuracy, especially in dynamically changing 

noise environments. Adaptive filtering algorithms have become effective tools for solving 

noise elimination problems due to their ability to adjust filter parameters in real time based 

on the characteristics of the input signal. However, classical adaptive algorithms, such as 

Least Mean Square (LMS) and Normalized Least Mean Square (NLMS) algorithms, despite 

their success in many applications, still face issues such as slow convergence and insufficient 

performance when handling different types of noise. This study aims to explore the 

application of adaptive filtering algorithms in signal denoising, particularly those based on 

second-order statistics, evaluate their performance in different noise environments, and 

optimize their enhancement. Initially, simulations were undertaken to implement the LMS, 

NLMS, and second-order statistics-based adaptive filtering algorithms for noise removal 

experiments. These experiments employed various noise power levels and signal types to 

assess the performance of each algorithm, focusing on metrics such as Signal-to-Noise Ratio 

(SNR), Mean Squared Error (MSE), and the convergence speed of filter parameters. The 

research results show that the adaptive filtering algorithm based on second-order statistics 

has significant advantages over LMS and NLMS algorithms in various noise environments, 

especially in cases of higher noise power, where its denoising effect is more significant, and 

the convergence speed is also faster. Additionally, to address the computational complexity 

of the algorithm, this study proposes a simplification strategy to optimize the practical 

application performance of the algorithm. 

Keywords: Signal Denoising, Adaptive Filtering Algorithms, Second-order Statistics, Least 

Mean Square Algorithm, Simulation Evaluation 

1. Introduction 

In the field of modern signal processing, the issue of signal denoising has always been an important 

research topic. With the continuous development of information technology and communication 

systems, the impact of noise pollution on signal quality has become more severe, particularly in fields 

such as wireless communication, audio processing, and medical imaging. The challenge of efficiently 
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removing noise and improving signal quality has become urgent. Especially in complex and 

dynamically changing noisy environments, traditional denoising methods are often constrained by 

various factors, resulting in unsatisfactory denoising performance. Therefore, designing an efficient 

denoising algorithm capable of adapting to different noise characteristics has become a hot topic in 

signal processing. 

Adaptive filtering algorithms [1-3] have demonstrated substantial efficacy in signal denoising, 

attributable to their capability to dynamically adjust filter parameters in real time and accommodate 

environmental variations. The Least Mean Squares (LMS) [4] and Normalized Least Mean Squares 

(NLMS) [2,5] algorithms, as classic adaptive algorithms, have performed excellently in many 

applications. Due to its simplicity and real-time capability, the LMS algorithm is widely used in noise 

removal. However, the LMS algorithm has limitations in convergence speed and performance, 

especially in cases where the noise is complex and unstable. The algorithm exhibits a gradual 

convergence rate, resulting in a constrained denoising efficacy. To mitigate this issue, researchers 

have proposed enhanced algorithms, including NLMS and Recursive Least Squares (RLS), which 

optimize the performance of the LMS algorithm through the incorporation of alternative updating 

mechanisms and parameter adjustment methodologies. However, these algorithms still face 

challenges when dealing with complex signals such as non-Gaussian noise and long-tailed noise. 

Currently, adaptive filtering algorithms based on statistical methods, especially those that use 

second-order statistics (SOS) [6,7] to estimate signal characteristics, have become a hot research topic. 

Compared to traditional methods, the SOS method can more effectively capture the noise features in 

the signal, thereby improving the denoising performance. However, despite extensive research in this 

direction, how to fully leverage the advantages of SOS in various noisy environments remains an 

open issue. Additionally, although existing adaptive algorithms have shown good results in 

theoretical analyses, problems such as computational complexity, real-time performance, and 

stability have not been adequately addressed in practical applications. 

Therefore, this study aims to fill this gap by proposing an improved adaptive filtering algorithm 

based on second-order statistics. The performance of the algorithm will be evaluated in various noisy 

environments, and its advantages and practical feasibility will be verified through simulation analysis. 

Through systematic comparison and optimization, this study aims to develop a more efficient and 

adaptable algorithm for signal denoising, thereby advancing the application of adaptive filtering 

technology in complex signal processing scenarios. 

2. Design and Optimization of Adaptive Filtering Algorithms 

2.1. Principle of Adaptive Filtering 

Adaptive filtering is a technique that dynamically adjusts filter coefficients to accommodate changes 

in signal characteristics. It is widely used in areas such as speech denoising, echo cancellation, and 

channel equalization. In speech denoising, adaptive filtering leverages the statistical properties of 

both noise and speech signals to adjust the filter parameters in real time, effectively suppressing 

background noise while preserving the clarity of the speech signal. 

The block diagram of the principle of an adaptive filter is shown in Figure 1. The input signal x(n) 

is passed through a parameter-adjustable digital filter to produce the output signal y(n), which is then 

compared with the desired signal d(n) to generate the error signal e(n) The filter parameters are 

adjusted through the adaptive algorithm to minimize the mean square value of e(n).Adaptive filtering 

can utilize the results of previously obtained filter parameters to automatically adjust the filter 

parameters at the current time, adapting to unknown or time-varying statistical properties of the signal 

and noise, thus achieving optimal filtering. An adaptive filter is essentially a Wiener filter that adjusts 

its own transmission characteristics to achieve optimal performance. It does not require prior 
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knowledge of the input signal, has low computational complexity, and is particularly suitable for real-

time processing. Wiener filter parameters are fixed and suitable for stationary random signals, while 

Kalman filter parameters are time-varying and suitable for non-stationary random signals. However, 

these two filtering techniques can only achieve optimal filtering when the statistical properties of the 

signal and noise are known in advance. In practical scenarios, acquiring prior knowledge of the 

statistical properties of both the signal and noise is frequently infeasible. Under these circumstances, 

adaptive filtering techniques can deliver superior filtering performance, thereby rendering them 

exceptionally valuable in real-world applications. 

 

Figure 1: Block diagram of adaptive filter 

The input signal vector:  

𝑥(𝑛) = [𝑥(𝑛)𝑥(𝑛 − 1) … 𝑥(𝑛 − 𝐿)]
𝑇

(1) 

The output y(n)is: 

𝑦(𝑛) = ∑ 𝑤𝑘(𝑛)𝑥(𝑛 − 𝑘)

𝐿

𝑘=0

(2) 

The L + 1weight coefficients of the adaptive linear combiner form a weight coefficient vector, 

referred to as the weight vector, denoted as w(n), i.e., 

𝑤(𝑛) = [𝑤0(𝑛)𝑤1(𝑛) … 𝑤𝐿(𝑛)]
𝑇

(3) 

Therefore, y(n)can be expressed as: 

𝑦(𝑛) = 𝑥𝑇(𝑛)𝑤(𝑛) = 𝑤𝑇(𝑛)𝑥(𝑛) (4) 

The error signal is: 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) = 𝑑(𝑛) − 𝑥𝑇(𝑛)𝑤(𝑛) = 𝑑(𝑛) − 𝑤𝑇(𝑛)𝑥(𝑛) (5) 

The adaptive linear combiner follows the criterion of minimizing the mean square value of the 

error signal, i.e., 

𝜉(𝑛) = 𝐸 [𝑒2(𝑛)] = 𝐸 [𝑑2(𝑛)] + 𝑤𝑇(𝑛)𝐸[𝑥(𝑛)𝑥𝑇(𝑛)]𝑤(𝑛) − 2𝐸[𝑑(𝑛)𝑥𝑇(𝑛)]𝑤(𝑛) (6) 

The autocorrelation matrix of the input signal is: 
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𝑅 = 𝐸[𝑥(𝑛)𝑥𝑇(𝑛)]

= [

𝐸[𝑥(𝑛)𝑥(𝑛)]𝐸[𝑥(𝑛)𝑥(𝑛 − 1)] … 𝐸[𝑥(𝑛)𝑥(𝑛 − 𝐿)]

𝐸[𝑥(𝑛 − 1)𝑥(𝑛)]𝐸[𝑥(𝑛 − 1)𝑥(𝑛 − 1)] … 𝐸[𝑥(𝑛 − 1)𝑥(𝑛 − 𝐿)]

𝐸[𝑥(𝑛 − 𝐿)𝑥(𝑛)]𝐸[𝑥(𝑛 − 𝐿)𝑥(𝑛 − 1)] … 𝐸[𝑥(𝑛 − 𝐿)𝑥(𝑛 − 𝐿)]

]
(7) 

The cross-correlation matrix of the desired signal and the input signal is: 

𝑃 = 𝐸[𝑑(𝑛)𝑥(𝑛)]

= 𝐸[𝑑(𝑛)𝑥(𝑛)𝑑(𝑛)𝑥(𝑛 − 1) … 𝑑(𝑛)𝑥(𝑛 − 𝐿)]
(8) 

The simple expression of the mean square error is: 

𝜉(𝑛) = 𝐸 [𝑑2(𝑛)] + 𝑤𝑇𝑅𝑤 − 2𝑃𝑇𝑤 (9) 

From this equation, it can be observed that under the assumption that both the input signal and the 

reference response are stationary random signals, the mean square error is a quadratic function of the 

components of the weight vector. The graph of this function is a hyperparaboloid in an L+2-

dimensional space, with a unique minimum point. This surface is called the mean square error 

performance surface, or simply the performance surface. 

The gradient of the mean square error performance surface: 

𝛻 =
𝜕𝑤

𝜕𝜉
= 2𝑅𝑤 − 2𝑃 (10) 

Setting the gradient to zero yields the optimal weight vector, or Wiener solution, corresponding to 

the minimum mean square error, which is derived as follows: 

w∗ = R−1P (11) 

Although the expression for the Wiener solution is known in this paper, several issues remain: 

a. It is necessary to know R and P, but both of these are unknown in this paper a priori; 

b. The computational cost of the matrix inversion is too high:O(n³); 

c. If the signal is non-stationary, R and P vary each time, requiring repeated computations. 

2.2. Optimization of Adaptive Filtering 

Based on the existing LMS and NLMS algorithms, this paper proposes an adaptive filtering algorithm 

that incorporates second-order statistics (SOS). This algorithm is particularly employed for signal 

denoising in high-noise environments, effectively enhancing both the convergence speed and 

denoising accuracy of the filter. 

a.Signal Model 

Suppose the input signal consists of a useful signal s(n) and noise w(n), i.e., 

𝑥(𝑛) = 𝑠(𝑛) + 𝑤(𝑛) (12) 

Here, x(n) is the noisy signal, s(n) is the true signal, and w(n) is the noise. 

b. Adaptive Filter 

The adaptive filter s(n) is used to process the signal. The output of the filter is an estimate of the 

true signal: 

�̂�(𝑛) = w
𝑇

(𝑛)x(𝑛) (13) 
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Here, w(n) is the weight vector of the filter, and x(n) is the input vector. 

c. Error Signal: The error is defined as the difference between the filter output and the true signal: 

𝑒(𝑛) = 𝑠(𝑛) − �̂�(𝑛) (14) 

d. Second-Order Statistics (SOS): To accelerate the convergence speed and improve denoising 

accuracy, this paper incorporates the second-order statistical properties of the input signal. The 

covariance matrix of the input signal is considered when updating the filter weights: 

𝑅 = 𝐸[𝑥(𝑛)𝑥𝑇(𝑛)] (15) 

This matrix is used to accelerate the update of the filter parameters. 

e. Weight Update Formula: In the traditional LMS algorithm, the weight update formula is: 

𝑤(𝑛) = 𝑤(𝑛 − 1) + 𝜇𝑥(𝑛)𝑒(𝑛) (16) 

In the improved algorithm presented in this paper, second-order statistics are incorporated, 

resulting in the following update formula: 

𝑤(𝑛) = 𝑤(𝑛 − 1) + 𝜇𝑅−1𝑥(𝑛)𝑒(𝑛) (17) 

Here, R−1 is the inverse of the input signal’s covariance matrix, and μ is the step size. 

3. Noise Modeling and Characteristic Analysis 

3.1. Noise Modeling 

Due to the wide variety of noise types and characteristics, it is necessary to establish appropriate noise 

models based on specific application scenarios. This paper will discuss several common types of 

noise and their modeling methods, including Gaussian noise, non-Gaussian noise, and heavy-tailed 

noise, among others [1,2]. 

Gaussian noise is the most common type of noise, and it is typically assumed that the noise 

distribution follows a normal distribution. The characteristics of Gaussian noise include a mean of 

zero and a constant variance, with its probability density function forming a bell-shaped curve. The 

advantage of Gaussian noise lies in its simplicity, as it can be well represented by the mean and 

variance parameters. In many signal processing applications, especially in communication systems 

and image processing, Gaussian noise serves as the standard noise model. To more accurately model 

noise in practical applications, this paper will examine statistical characteristics including the noise’s 

covariance matrix and autocorrelation function, thereby establishing a theoretical foundation for 

subsequent denoising algorithms. 

Non-Gaussian noise refers to noise types that do not follow a normal distribution, such as impulse 

noise, speckle noise, etc. The statistical characteristics of non-Gaussian noise are often more complex 

and may exhibit asymmetry, spikes, or heavy-tailed distributions. Given that the distribution of these 

noises deviates from Gaussian noise, traditional denoising methods reliant on Gaussian assumptions 

frequently fail to effectively eliminate such noise. To accurately model non-Gaussian noise, this paper 

incorporates higher-order statistics or employs mixture distribution models, thereby more precisely 

capturing the actual behavior of the noise. 

Heavy-tailed noise refers to noise whose probability distribution has a thicker tail, meaning that 

the probability near extreme values is higher. It is commonly seen in fields such as financial data and 

interference in communication signals. Heavy-tailed noise often exhibits self-similarity and heavy-

tail characteristics, making it difficult for traditional Gaussian noise models to capture its features. 

When modeling heavy-tailed noise, stable distributions, Cauchy distributions, and other probability 

distributions characterized by heavy tails are typically utilized to describe its statistical properties. 
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Modeling heavy-tailed noise is crucial for the design of denoising algorithms, as it helps the algorithm 

more effectively handle extreme values in the noise. 

3.2. Noise Characteristic Analysis 

The second-order moment characteristics of noise (such as mean, variance, and autocorrelation 

function) play an important role in noise identification and removal. This paper will focus on 

analyzing the second-order moment characteristics of noise and explore the application of second-

order statistics in noise identification and removal. 

The second-order moment characteristics of noise mainly include the mean, variance, and 

autocorrelation function. The mean reflects the average level of the noise, the variance describes the 

fluctuation degree of the noise, and the autocorrelation function reveals the correlation of the noise at 

different time or spatial locations. For Gaussian noise, the second-order moment characteristics are 

relatively simple and can usually be fully described by the mean and variance. However, for non-

Gaussian and heavy-tailed noises, second-order moment characteristics are often insufficient to fully 

describe their features. In such cases, higher-order statistics or more complex noise models need to 

be introduced for accurate modeling. 

Second-order statistics (such as the noise's autocorrelation function and covariance matrix) play 

an important role in noise identification. By calculating these statistics, this paper can identify the 

type, strength, and time-domain and frequency-domain characteristics of the noise. For instance, in 

certain applications, the noise may manifest periodic or abrupt jump characteristics, which can be 

effectively discerned through the autocorrelation function, thereby providing valuable insights for 

noise removal. The results of noise identification can further guide the design of denoising algorithms, 

helping to choose the appropriate filter or denoising method. 

In noise removal, second-order statistics can help optimize filter design and improve denoising 

performance. For example, in adaptive filtering, the noise's autocorrelation function can be used to 

design more precise filters, making them more effective in removing noise in complex noise 

environments. Furthermore, second-order statistics can be harnessed to dynamically adjust denoising 

strategies, enabling the filter to adapt to varying types of noise and their fluctuations. By leveraging 

the second-order moment characteristics of the noise, denoising algorithms can sustain robust 

performance across diverse noise environments, particularly in scenarios characterized by non-

Gaussian or heavy-tailed noise characteristics. 

4. Simulation Experiments and Performance Analysis 

4.1. Simulation Experiments 

To verify the effectiveness of the proposed second-order statistics-based adaptive filtering algorithm, 

this study will conduct a series of simulation experiments in the MATLAB environment. The main 

objective of the simulation experiments is to evaluate the algorithm's performance in practical 

applications by simulating different types of noise and signal conditions. Various noise types, such 

as Gaussian noise, non-Gaussian noise, and heavy-tailed noise, will be used in the simulation 

experiments. The signal sources will include different types of test signals, such as sine waves, 

random noise signals, and actual data sequences. 

In the experimental design, this study will compare the performance of classical adaptive filtering 

algorithms (such as LMS and NLMS) with the proposed second-order statistics-based adaptive 

filtering algorithm. Each algorithm will be run under the same noise conditions and its performance 

will be comprehensively evaluated using multiple metrics. 

The simulation process will simulate the transmission and filtering of signals under different noise 

conditions, gradually observing the quality of the filtered output signal. Specifically, this study will 
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focus on the differences between algorithms in terms of denoising effectiveness, stability, adaptability, 

and convergence under high-noise environments. 

First, this study will apply the LMS and NLMS algorithms to filter the same PPG signal, yielding 

the original and filtered PPG signals shown in Figures 2 and 3, respectively.  

 

Figure 2: PPG signal filtered by LMS algorithm(20-50seconds) 

 

Figure 3: PPG signal filtered by NLMS algorithm(20-50seconds) 

Next, the proposed algorithm will be used to filter the same PPG signal, resulting in the signal 

shown in the figure below. 

 

Figure 4: PPG signal filtered by SOS algorithm(20-50seconds) 

As illustrated in Figure 4, the salient advantage of this algorithm is its ability to obviate the need 

for stepwise weight adjustment, instead directly computing through covariance and variance, thereby 

offering a solution that is both simple and intuitive. In contrast, the LMS algorithm necessitates 
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iterative weight updates, whereas the second-order statistics method accomplishes the calculation in 

a single step. The LMS algorithm is sensitive to the step size parameter, while the second-order 

statistics method does not have this step size selection issue. For signals with fixed statistical 

properties, the second-order statistics method is more efficient. 

4.2. Performance Evaluation 

After completing the simulation experiments, this study will perform a comprehensive performance 

evaluation of the different algorithms' denoising effects from multiple perspectives. The main 

evaluation metrics include signal-to-noise ratio (SNR) and mean squared error (MSE), which 

effectively reflect the performance of each adaptive filtering algorithm during the denoising process. 

Signal-to-noise ratio (SNR) is an important metric used to quantify the relative magnitude of useful 

information and noise in a signal. It is widely used in signal processing, communication systems, and 

other fields. SNR is typically expressed in decibels (dB), and the formula is as follows: 

SNR (dB) = 10 ⋅ log10 (
𝑃signal

𝑃noise

) (18) 

A higher SNR indicates better signal quality and less interference from noise. 

Mean squared error (MSE) is one of the commonly used metrics for evaluating denoising 

performance. It reflects the difference between the filtered output signal and the true signal. The 

formula is as follows: 

MSE =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

(19) 

By calculating the MSE values for different algorithms, the precision of signal restoration during 

the denoising process can be directly observed. Algorithms with lower MSE values generally indicate 

better denoising performance. Experimental results indicate that the proposed algorithm surpasses 

conventional algorithms in terms of both signal-to-noise ratio (SNR) and mean squared error (MSE), 

thereby exemplifying its distinct superiority. 

5. Conclusion 

This study focuses on adaptive signal denoising algorithms and proposes a novel adaptive filtering 

algorithm based on second-order statistics (SOS), aimed at improving signal denoising performance 

in complex noise environments. In the course of the research, this paper first analyzes the basic 

principles of adaptive filtering algorithms, and then optimizes the traditional LMS and NLMS 

algorithms by introducing second-order statistics, effectively improving denoising performance in 

various noise environments. Through simulation experiments, the proposed algorithm's superiority in 

terms of signal-to-noise ratio (SNR), mean square error (MSE), and convergence speed is validated, 

demonstrating its strong application potential in the field of noise removal. By comparing with 

classical algorithms such as LMS and NLMS, the results show that the proposed algorithm exhibits 

significant advantages in increasing SNR and reducing MSE. The proposed algorithm can effectively 

handle various types of noise, especially in environments with significant changes in noise statistical 

characteristics, demonstrating better stability and robustness. However, although the proposed 

algorithm shows better denoising performance than traditional LMS and NLMS algorithms, its 

computational complexity is slightly higher, which may result in suboptimal performance in real-time 

applications. Therefore, reducing the computational complexity of the algorithm to make it more 

suitable for real-time signal processing is an issue worthy of further research. The algorithm relies 
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heavily on parameter selection, especially on parameters related to the statistical characteristics of the 

noise. Improper parameter selection may affect the algorithm's performance. Therefore, investigating 

how to adaptively adjust parameters or introduce more intelligent parameter optimization methods 

will help improve the algorithm's generality and adaptability. 

While the adaptive filtering algorithms discussed in this study, particularly the second-order 

statistics-based method, have shown considerable enhancements in denoising performance, it is 

crucial to examine the wider ramifications of these findings. Firstly, the influence of diverse noise 

environments on the efficacy of these algorithms warrants further investigation. Although the 

proposed algorithm surpasses the traditional LMS and NLMS methods in various scenarios, its 

dependence on second-order statistics may constrain its adaptability in highly non-stationary or 

rapidly fluctuating noise conditions. This scenario presents a trade-off between the algorithm’s 

accuracy and computational complexity. Future research into hybrid methodologies that merge the 

advantages of different noise cancellation techniques could yield more resilient solutions, adept at 

real-time applications. 

Additionally, the optimization of algorithmic parameters, especially in relation to noise type and 

statistical properties, is essential for improving the algorithm’s general applicability and real-time 

adaptability. The incorporation of machine learning techniques, such as reinforcement learning, also 

merits consideration, as it could enable the adaptive filter to autonomously adapt to varying noise 

patterns and signal environments, thereby eliminating the need for manual parameter adjustments. 

Furthermore, the exploration of advanced hardware acceleration techniques, including GPU or 

FPGA-based solutions, could alleviate the computational load associated with second-order statistics, 

thereby enhancing the algorithm’s practicality for time-sensitive applications. This approach is in line 

with the prevailing trend in signal processing, where hardware-driven optimizations are increasingly 

vital for the realization of real-time, high-performance systems. Future research could delve into these 

hardware-software integrations to expedite and refine signal processing, particularly in critical 

domains such as medical signal analysis, where effective denoising is indispensable for accurate 

diagnostics. 

In the future, the algorithm can be optimized by improving the update rule, using sparse matrices 

or parallel computing methods to reduce computational load. Additionally, implementing hardware 

acceleration (such as GPU or FPGA) may enhance the real-time processing capability of the 

algorithm. Exploring machine learning or reinforcement learning-based methods to automatically 

adjust filter parameters to cope with changes in different noise environments and signal characteristics. 

This not only further enhances the stability of the algorithm but also reduces human intervention and 

improves the algorithm's level of intelligence. 
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