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Abstract: This paper proposes a multi-frame dual-stream 2DCNN-LSTM model 

(MF-DS-2DCNN-LSTM) for automatic modulation recognition. The model discretizes long 

sequences into two-dimensional frame structures and uses 2D CNN and LSTM together to 

model the spatiotemporal features of multi-channel IQ/AP signals. By employing a 

frame-based strategy, the original signal is reshaped into” small images,” with the 2D CNN 

extracting intra-frame spatial structures and inter-channel interaction features, while the 

LSTM captures the temporal evolution between frames. This approach integrates hierarchical 

modeling concepts from image processing and video analysis, and utilizes the Crested 

Porcupine Optimizer for hyperparameter tuning. Simulations show that, when recognizing 

nine modulation types, the model significantly outperforms methods such as CLDNN, 

achieving an average accuracy of 91.4% under high-SNR conditions (SNR above 2 dB). 

Moreover, the model maintains an accuracy of over 90% in small-sample training scenarios 

for SNRs above 4 dB. After optimization with the Crested Porcupine Optimizer, the model’s 

performance improved by 2.2%, and a 20.7% reduction in parameters was achieved. 
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1. Introduction 

Automatic modulation recognition (AMR) is a core technology in cognitive radio, enabling 

modulation recognition through signal time-frequency analysis. Its applications span military 

electronic warfare and civilian sectors. However, challenges such as low signal-to-noise ratios (SNR), 

multipath fading, and novel modulation techniques necessitate overcoming the limitations of 

conventional AMR methods. Traditional modulation recognition techniques can be categorized into 

likelihood-based (LB) and feature-based (FB) methods. LB methods, reliant on likelihood function 

modeling, demand detailed prior knowledge and precise model assumptions. They suffer from high 

computational complexity, threshold dependence, and susceptibility to parameter variations, 

compromising their practical robustness [1-4]. Conversely, FB methods involve feature extraction 

and classifier utilization for  modulation type determination. While reducing computational load, 

they require meticulous feature design and deep domain expertise [5-7]. Mismatched feature 

selection and classification models can severely impact recognition performance.  

To overcome these limitations, deep learning-based modulation recognition has emerged as a 

promising solution. In AMR, deep learning models have evolved toward multimodal fusion and 

spatiotemporal feature optimization. O’Shea et al. pioneered the use of convolutional neural networks 

(CNNs) in modulation recognition, demonstrating superior performance over traditional methods [8]. 
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Qi et al. enhanced classification robustness by integrating waveform and spectrum dual-modal 

features within ResNet, employing a cross-modal feature enhancement strategy [9]. Wu’s team 

addressed temporal correlation modeling with a CNN-LSTM cascaded model, enabling serial 

spatiotemporal feature extraction [10]. Liu et al. developed a CNN-GRU architecture with parallel 

processing for low-SNR scenarios, employing dual-path collaborative learning [11]. Chen’s team 

constructed a multi-stream CLDNN model, processing I/Q sequences and amplitude/phase 

information in parallel, achieving a 9% accuracy boost in dynamic channels [12]. To address feature 

weighting and sample efficiency, Wang et al. introduced an attention mechanism [13]. Their 

CNN-LSTM-Attention hybrid model dynamically weights spatiotemporal features, achieving a 

59.8% recognition accuracy in few-sample scenarios, outperforming others by 0.3% to 7%. R. Liang 

et al. introduced a three-stream CNN-LSTM network that leverages interactive learning between 

phase, amplitude, and frequency feature streams, significantly enhancing performance in 

non-stationary channels [14]. 

The main contributions of the model presented in this paper are: By discretizing long sequence 

data into frames and reshaping them into small 2D images, the author employed a 2D CNN to fully 

exploit multi-channel IQ and AP signal features, achieving higher recognition accuracy across all 

SNRs for nine modulation types compared to existing models. Besides, the use of the CPO 

optimization algorithm enabled fine-tuning of model hyperparameters, resulting in a 2.2% accuracy 

improvement and a 20.7% parameter tailoring. 

2. Signal Model and Data Preprocessing 

This section delineates the signal model and data preprocessing procedures used in the study of AMR. 

The system under consideration is a single-carrier transmission where the complex-valued 

transmitted signal s(t) propagates through a frequency-selective, time-varying fading channel with a 

delay spread τ . The received signal y(t) can be expressed as: 

 y(t) = exp (j Δf(t)) ∫ s (t − Δc(t) − τ′)
τ

0
 h (t, τ′)  dτ′  +  n(t) (1) 

where j = √−1 is the imaginary unit, Δc(t) denotes the instantaneous carrier frequency offset, 

Δc(t) represents the sampling time offset, h(t, τ′) is the time-varying channel impulse response, and 

n(t) is the additive white Gaussian noise (AWGN) with zero mean and variance σn
2 . After discretizing 

the received signal y(t) at a sampling rate fs = 1/Ts, the discrete-time sequence {y[n]} is obtained: 

 y[n] = yI[n] + j yQ[n],  n = 0,1, … , N − 1, (2) 

where yI[n]and yQ[n] ∈ R  are the in-phase (I)  and quadrature (Q)  components, respectively. 

Within a time window, N discrete samples form a data vector: 

 yj = [ yj[0],  yj[1],  … ,  yj[N − 1] ]
T

∈ ℂN (3) 

For subsequent analysis and processing, real-valued feature representations are often preferred. 

Two common transformations are considered: First, the complex-valued data is decomposed into its 

in-phase and quadrature components, which are then stacked to form a real-valued vector: 
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Alternatively, using the polar coordinate representation of complex numbers, where amplitude and 

phase serve as distinct features: 

 X
j

{
A

P
}

= [
|yj[0]| ⋯ |yj[N − 1]|

arg (yj[0]) ⋯ arg (yj[N − 1])
] ∈ ℝ2N (5) 

Given the in-phase and quadrature components  yj
I[n]and yj

Q[n], the amplitude and phase are 

computed as: 

 |yj[n]| = √(y
j

I
[n])2 + (y

j

Q
[n])2  ,   arg(yj[n])  =  arctan(

y
j

Q
[n]

y
j

I
[n]

) (6) 

To resolve phase ambiguity, the atan2(yj
Q[n], yj

I[n]) function is employed in practice.  

Effective data preprocessing ensures the quality and consistency of the inputs to neural network 

models. Both I/Q and A/P channels are normalized to have zero mean and unit variance, which 

mitigates the effects of varying signal power levels and presents the training process from being 

biased by differing amplitude scales. This normalization is mathematically represented as: 

 Ynorm  =  
Y − μ

σ
 (7) 

where X is the original data vector, µ is the mean of the data, and σ is the standard deviation. The 

I/Q representation preserves the original complex structure, supporting traditional linear filtering and 

estimation. Meanwhile, the A/P representation offers intuitive features for channel characteristic 

analysis and phase-sensitive post-processing. These real-valued, feature-rich representations lay the 

foundation for effective signal processing and deep learning modeling in the AMC framework. 

3. MultiFrame-DualStream-2DCNN-LSTM Model Design 

To capture both the spatiotemporal structure and inter-channel coupling in multi-channel IQ and AP 

signals, this paper segment the long sequential data into frames and reshape each frame into a 

2D ”small image.” This transformation enables a 2D CNN to extract local spatial structures and 

model inter-channel interactions, while a Long Short-Term Memory (LSTM) network captures the 

dynamic evolution of frame-level sequences. Specifically, the original sequential data is split into 

overlapping frames, each assigned repeated labels to enhance sample diversity and provide frequent 

supervision during training. The 2D CNN applies convolution, batch normalization, and 

downsampling to each frame’s ”width × height × channels” tensor, compressing it into a feature 

representation while preserving local receptive field characteristics. These frame-level features, along 

with the repeated labels, are then passed sequentially into the LSTM, which captures long-term 

dependencies and further mines temporal information. 

This approach combines spatial feature extraction via 2D CNNs (commonly used in image 

processing) and the” CNN + LSTM” hierarchical modeling used in video analysis and action 

recognition. By processing frames, the model strengthens local structure recognition within each 

frame while effectively modeling temporal dependencies across frames. This model is referred to as 

MultiFrame-DualStream-2DCNN-LSTM (MF-DS-2DCNN-LSTM), as shown in Figure 1. 
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Figure 1: DualSteam-2DCNN-LSTM Model Diagrams 

4. Crowded Porcupine Optimization Algorithm in Model Optimization 

This study employs Crested Porcupine Optimizer (CPO) for hyperparameter optimization, a novel 

nature-inspired metaheuristic algorithm [15]. CPO is based on the defensive mechanisms of crested 

porcupines, effectively balancing global exploration and local exploitation in complex optimization 

landscapes. 

CPO mimics the defensive strategies of crested porcupines, incorporating sight, sound, odor, and 

physical attack mechanisms into a mathematical framework to enhance the optimization process. 

These mechanisms are designed to facilitate transitions between exploration and exploitation phases. 

The search begins by initializing a population X of candidate solutions: 

 Xi = L + r ⋅ (U − L), i = 1,2, … , N (8) 

where L  and  U  represent the lower and upper bounds of the search space, r  is a uniformly 

distributed random number in [0, 1], and N is the population size. To simulate the natural behavior 

of crested porcupines, CPO integrates a Cyclic Population Reduction (CPR) strategy to dynamically 

adjusts the population size Nt during optimization: 

 Nt = Nmin + (N′ − Nmin) ⋅ (1 −
t\%T

max

T
) (9) 

Here, Nmin and N′are the minimum and maximum population sizes, t is the current iteration, T 

is the reduction cycle, and Tmax is the total number of iterations. The algorithm alternates between 

exploration and exploitation phases. In the exploration phase, sight and sound strategies are employed. 

For instance, the sight mechanism updates a candidate solution as follows: 

 X
i

t+1
= X

best

t
+ δ ⋅ r ⋅ (X

rand

t
− X

i

t
) (10) 

where Xbest
t  is the best solution so far, Xrand

t  is a randomly chosen solution, δ is an exploration factor, 

and r is a random number. In the exploitation phase, odor and physical attack mechanisms refine the 

search. The physical attack mechanism, for example, is defined as: 

   X
i

t+1
= X

best

t
+ α ⋅ r ⋅ (X

best

t
− X

worst

t
)  (11) 
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where alpha is the attack intensity factor, Xworst
t is the worst solution, and r is a random number. The 

solutions are iteratively evaluated using a fitness function f(X), and the best solution Xbest is returned 

as the optimal result after termination. The algorithm process is shown in the appendix. 

5. Simulation Experiments and Results  

5.1. Dataset and Simulation Parameter Settings 

The RadioML 2018.01A dataset, provided by DeepSig, consists of 24 modulation types, including 

both analog and digital modulation schemes. Each signal sample contains 1024 IQ data points, with 

Signal-to-Noise Ratio (SNR) ranging from -20 dB to 30 dB in 2 dB increments, covering 26 distinct 

SNR levels. The dataset contains 210,000 samples, making it suitable for wireless signal modulation 

classification tasks and ideal for training and evaluating machine learning and deep learning models. 

For this study, representative modulation schemes were selected from this dataset for classifcation, 

including amplitude modulation (OOK, 4ASK, AM-DSB-SC), phase modulation (BPSK, QPSK, 

8PSK), combined amplitude and phase modulation (32QAM, 64QAM), and frequency modulation 

(FM). These modulation types cover the primary signal categories in wireless communication 

systems. 

During training, samples with SNR values ranging from -10 dB to 20 dB (in 2 dB increments) 

were selected. The dataset was split into training and testing sets in an 80:20 ratio, with 1024 frames 

per modulation type allocated for training. The experimental platform used was Matlab R2023b, 

running on a hardware environment consisting of an RTX 2050 GPU and 16 GB of memory. 

For the MF-DS-2DCNN-LSTM model, the parameter settings are provided in Table 1. Under 

these conditions, the accuracy training curve of the MF-DS-2DCNN-LSTM model was obtained, as 

depicted in Figure 2. 

Table 1: Model Parameters (MF-DS-2DCNN-LSTM) 

Component Parameters and Configuration 

Data Preparation 

(CNN) 
Time frames: T=8; Input shape: 5D array [2, 64, 2(IQ/AP), T, samples] 

CNN Architecture 

Convolutional layers: conv1/4: 16 filters (3×3 kernel); conv2/5: 32 flters 

(3×3 kernel); conv3/6: 64 filters (3×3 kernel) 

Feature fusion: 3D concatenation layer 

CNN Training 
Max epochs: 20; Initial learning rate: 1e-3; L2 regularization: 1e-5 

Learning schedule: Drop factor 0.5 every 5 epochs; Batch size: 128 

Data Preparation 

(LSTM) 

Time frames: T=8 

Input format: [2×64, T] cell array from CNN fatten layer 

LSTM Architecture 
Stacked LSTM layers: First layer: 64 hidden units; Second layer: 64 hidden 

units 

LSTM Training 
Max epochs: 30; Initial learning rate: 2e-3; L2 regularization: 2e-5 

Learning schedule: Drop factor 0.5 every 5 epochs; Batch size: 128 
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Figure 2: Training Curve 

5.2. Results 

 

Figure 3: Comparison of MF-DS-2DCNN-LSTM model with other models at different SNRs 

Figure 3 compares five CNN and LSTM variant models with the MF-DS-2DCNN-LSTM model at 

different SNR levels, including CNN-BiGRU, two CNNs (2CNN), CLDNN, Dual-Stream 

CNN-LSTM (DS-CNN-LSTM), and CNN-LSTM. The results indicate that at low SNRs (-10 dB to 0 

dB), the MF-DS-2DCNN-LSTM model significantly outperforms all other models. At higher SNRs 

(above 2 dB), the model achieves an average accuracy of 94.0%. Overall,the MF-DS-2DCNN-LSTM 

model demonstrates a clear performance improvement compared to other models. 

Figure 4 displays the confusion matrix showing the recognition accuracy of nine modulation 

schemes by the MF-DS-2DCNN-LSTM model at an SNR of 2 dB. Most schemes achieving 

recognition rates above 90%. However, for 32QAM and 64QAM, despite reduced noise under high 

SNR conditions, the subtle differences between symbol points remained difficult to capture, 

preventing complete recognition. 
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Figure 4: Confusion matrix for nine modulation schemes at 2 dB SNR 

To assess the MF-DS-2DCNN-LSTM model’s performance with small sample sizes, a 

small-sample training experiment was conducted. In this experiment, only 128 training samples were 

used (compared to 1024 in previous simulations). Accuracy curves for each model were analyzed 

across an SNR range from -20 to 20 dB. As shown in Figure 5, the MF-DS-2DCNN-LSTM model 

continues to outperform other models, maintaining accuracy above 90% at SNRs above 4 dB. 

 

Figure 5: Accuracy curves for various models with 128 samples across SNR range of -20 to 20 dB 

This study also uses the CPO algorithm to optimize hyperparameters of a deep learning model, 

specifically targeting the learning rate of the LSTM component, the node numbers in two hidden 

layers, and the L2 regularization coefficient. The algorithm is initialized with six search agents to 

explore the hyperparameter space in parallel. Each agent represents a unique combination of 

hyperparameters evaluated through a predefined objective function. With a maximum of six cycles, 

the agents iteratively refine their hyperparameter values based on real-time performance feedback. 

The search space is bounded by lower (lb) and upper (ub) limits: the learning rate spans 1  × 10−5 to 

1  × 10−2, the L2 regularization coefcient ranges from 1  × 10−5 to 1  × 10−3, and both hidden 

layers’ node counts are restricted to [32, 128]. 
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Table 2: Comparison of Model Parameters 

Model Parameter MF-DS-CNN-LSTM MF-DS-CNN-LSTM (CPO) 

Learning Rate 2e-3 0.0018588 

l2 Regularization Factor 1e-4 0.00013821 

LSTM Hidden Layer 1 64 43 

LSTM Hidden Layer 2 64 74 

Model Parameters 87.1k 69k 

Flops 3.682M 2.497M 

 

As shown in Table 2, the CPO algorithm successfully identifies the optimal hyperparameter 

configuration through systematic iteration and evaluation. As illustrated in Figure 6, the 

CPO-optimized MF-DS-CNN-LSTM model achieves an accuracy of 93.1% under high SNR 

conditions, improving overall performance by 2.2% across all SNR levels. In addition, with optimal 

parameters, the model is more lightweight, achieving a 20.7% reduction in the number of parameters. 

 
Figure 6: Comparison of CPO-optimized MF-DS-2DCNN-LSTM model with other models at 

different SNRs 

6. Conclusion 

This paper introduces a novel MultiFrame-DualStream-2DCNN-LSTM (MF-DS-2DCNN-LSTM) 

model for automatic modulation recognition in complex wireless channel environments. The 

proposed model enhances the traditional approach by dividing the original signal sequence into 

two-dimensional frames, which are processed using 2D Convolutional Neural Networks (CNNs) 

with Long Short-Term Memory (LSTM) networks. This hybrid architecture effectively captures both 

spatial and temporal features. Specifically, the model transforms the signal  into small 2D images, 

where CNNs extract spatial information and inter-channel relationships, while LSTMs capture 

temporal dependencies between the frames. Inspired by hierarchical modeling techniques used in 

image and video analysis, this method significantly enhances the joint learning of spatiotemporal 

features, offering an advanced solution for automatic modulation recognition. To further optimize 

model performance, the Collaborative Parameter Optimization (CPO) algorithm was employed for 

hyperparameter tuning, The optimized model showed a notable improvement in performance, 

achieving 94.0% accuracy under high Signal-to-Noise Ratio (SNR) conditions, outperforming other 

existing models such as CLDNN. Additionally, the MF-DS-2DCNN-LSTM model demonstrated 

strong robustness and generalization, maintaining over 90% accuracy for SNR levels above 4 dB 

even with limited training data. After applying CPO optimization, the accuracy of the entire model 
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improved by 2.2%, and the number of parameters was reduced by 20.7%, making it more efficient 

and lightweight. 

In conclusion, the MF-DS-2DCNN-LSTM model presents a novel and effective approach to 

automatic modulation recognition across varying SNR conditions. The results not only offer valuable 

insights but also provide a solid foundation for future research and real-world applications in 

automatic modulation classification, particularly in wireless classification systems where 

environmental conditions are often challenging. 
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Appendix 

Algorithm: Crested Porcupine Optimizer (CPO)  

Input: N, Tmax, Nmin, T, α, F, S, δ  

Output: Xbest 

Initialize Xi randomly  

Evaluate f(Xi) and set Xbest 
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t ← 0  

while t < Tmax do:  

Compute Nt = Nmin + (N − Nmin) ⋅ (1 −
t%Tmax

T
) 

for i = 1 to Nt do:  

Generate τ₁, τ₂, τ₃ ∈  [0,1]  

if τ₁ < 0.5:  

if τ₂ <  0.5: Xi
t+1 = Xbest + δ ⋅ rand() ⋅ (Xrand − Xi) 

else: Xi
t+1 = Xi + S ⋅ sign(rand()-rand()) ⋅ (Xmean − Xi) 

else:  

if τ₃ < 0.5: Xi
t+1 = Xbest + F ⋅ (Xmean − Xi) 

else: Xi
t+1 = Xbest + α ⋅ rand() ⋅ (Xbest − Xworst)  

Evaluate f(Xi
t+1)  

if f(Xi
t+1) < f(Xi):Xi = Xi

t+1  

Update Xbest  

t ← t + 1  

return Xbest 
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