
 

 

A Comparison Between the K-Nearest Neighbors Algorithm 
and Logistic Regression in the Field of Cell Type Annotation 

Lezhou Wen 

College of Life Sciences, Sichuan University, Chengdu, China 

lezhouwen@stu.scu.edu.cn 

Abstract: With the advancement of single-cell sequencing technologies, high-capacity gene 

expression data have made cell type annotation across diverse cell populations feasible. 

However, the high-dimensional and complex nature of these datasets poses challenges for 

algorithm selection, as traditional manual annotation methods have become inadequate. 

Machine learning algorithms offer a robust alternative, yet choosing the optimal algorithm 

remains a critical step. This study provides a detailed analysis of two classical machine 

learning algorithms--k-Nearest Neighbors (KNN) and Logistic Regression and compares 

their strengths and limitations in cell type annotation from the perspective of algorithmic 

principles and data characteristics, aiming to offer practical guidance for selecting machine 

learning approaches. KNN, a distance-based non-parametric method, excels in small-sample 

and nonlinear scenarios but suffers from the "curse of dimensionality" in high-dimensional 

spaces, requiring efficiency optimization via dimensionality reduction or locality-sensitive 

hashing. In contrast, LR, relying on linear assumptions, performs well with large-scale, 

high-dimensional data through regularization to prevent overfitting, yet its performance 

declines with small samples or nonlinear distributions. Each algorithm has its own benefits; 

the choice between algorithms should consider factors such as sample size, feature 

dimensionality, data quality, interpretability, and the alignment between the true data 

distribution and the algorithm’s inherent assumptions. 
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1. Introduction 

With the rapid advancement of single-cell sequencing technologies, feature data for cell type 

annotation has grown exponentially. Unlike traditional morphology-based parameters (e.g., cell size, 

nuclear-to-cytoplasmic ratio) limited to specific cell types, gene expression data from single-cell 

RNA sequencing applies universally across all cell types. These datasets, however, are more 

complex due to their massive scale and technical noise [1]. To address these challenges, analytical 

workflows typically involve four critical phases: data preprocessing, upstream analysis, clustering, 

and ultimately cell type annotation [2]. This study focuses on the final annotation stage, which 

means predicting cellular categories in new datasets using established feature-classification 

references. 

As genomic data surge, conventional marker gene selection methods prove inefficient for 

large-scale analyses. Machine learning offers a viable solution through its computational power for 

processing high-throughput data. There are numerous available algorithms, and selecting optimal 
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methods remains challenging due to their heterogeneous strengths and limitations. Previous studies 

have predominantly focused on algorithm applications and dataset-specific performance 

comparisons, lacking systematic comparisons at the principle level. To address this gap, this paper 

elucidates two classical machine learning algorithms: k-nearest neighbors (KNN) and logistic 

regression, contrasting their strengths and limitations across diverse datasets from theoretical 

perspectives [3, 4]. By analyzing their data type adaptability, computational efficiency and premise 

assumption, this research provides guidance for algorithm selection in cell annotation workflows. 

2. k-Nearest Neighbors (KNN) Method 

2.1. Principles and Algorithm Description of KNN 

When classifying a new sample based on its feature data, it is natural to consider which reference 

sample it is most similar to in terms of features, and thus assume it belongs to the same category. 

Building on this idea, determining the similarity of features using a computer requires manually 

defining methods for calculating distances between features, such as Euclidean distance, Manhattan 

distance, and others. In practice, since different features may have different units, it is necessary to 

perform standardization, such as Z-score normalization, before calculating distances. At this point, 

the basic framework of the KNN algorithm has been successfully established. 

However, in real-world scenarios, training samples may contain noise, and two different classes 

may not be completely separable based on features. Relying solely on the single nearest sample in 

terms of feature distance often results in low prediction accuracy. To address this issue, the 

algorithm selects a hyperparameter “k”, which means the number of nearest samples and assigns the 

new sample to the class that the majority of these k samples belong to. This approach helps reduce 

the impact of noise and improves classification accuracy [5]. 

2.2. Application of KNN in Single-Cell Type Annotation 

To perform cell type annotation, the first step is to collect feature data of the cells. In addition to the 

data obtained through scRNA-seq, other feature data such as cell morphology can be used to 

enhance the reliability of the algorithm. For instance, when studying white blood cells, data such as 

cell perimeter, nuclear ratio, and roundness can be collected from blood smear images to assist in 

the analysis. This multi-faceted approach allows for a more comprehensive and accurate 

classification of cell types [6].  

In practical applications, using an exhaustive algorithm to calculate the distances between each 

pair of sample points can result in a prohibitively large computational load, especially when dealing 

with massive datasets. To reduce computational complexity, various methods such as Kd-trees, 

dimensionality reduction, and template compression are employed [7, 8]. Among these, the classic 

Kd-tree method, which recursively partitions the space, reduces the time complexity from O(n²) to 

O (n log n). This efficiency enables the handling of high-dimensional space searches across tens of 

thousands of cells in single-cell data, making it a powerful tool for managing large-scale datasets 

[7].  

When selecting the value of the hyperparameter k, cross-validation can identify an appropriate k 

through exhaustive search, but this approach consumes significant computational resources, 

especially with large datasets. aKNNO addresses this issue by dynamically choosing the k value 

through statistical analysis of local distance distributions. This method adaptively selects suitable k 

values for different types of cells, automatically balancing the sensitivity and specificity of rare cell 

detection, thereby optimizing performance without the computational burden of traditional methods 

[9].  
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3. Logistic Regression Method 

3.1. Principles and Model Construction of Logistic Regression  

Regression methods are typically used to predict continuous numerical values, while Logistic 

Regression, despite its name, is actually a classic classification algorithm. Its core idea is based on 

the maximum likelihood method: assuming the data have a linear relationship and is independent, 

then using the Sigmoid function to map the results of linear regression to the interval (0, 1), it 

represents the probability that a sample belongs to a certain category. The category with the highest 

probability is then selected as the predicted class value. Its probability prediction formula (1) and 

loss function formula (2) are as follows [10, 11]:  
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Where:   

X = (x₁, x₂, …, xₙ) is the feature vector, 

β₀ is the intercept term, 

β₁, β₂, …, βₙ are the feature coefficients, 

The output value P(Y=1|X) represents the probability of Y=1 given the feature vector X.   

yᵢ is the true label (0 or 1) of the sample,   

Pᵢ=P(Y=1|X) is the probability predicted by the model. 

The extension of binary classification to multi-class problems can be achieved by employing the 

One-vs-Rest or Softmax regression approaches. The idea of One-vs-Rest is to transform a 

multi-class classification problem into multiple binary classification problems, where each time 

only the probability of a sample belonging to a certain class versus not belonging to that class is 

considered. On the other hand, the idea of Softmax is to convert the linear combination of inputs 

into a probability distribution, ensuring that the predicted probability of each class is between 0 and 

1, and the sum of the probabilities of all classes is 1. Both methods have their own advantages and 

disadvantages. One-vs-Rest ignores the relationships between categories and involves a larger 

computational cost, while Softmax performs poorly when dealing with non-mutually exclusive data. 

If the number of classes is small and the classes are relatively independent, One-vs-Rest can be 

chosen. And if the number of categories is large or there is a strong correlation between categories, 

it is recommended to use Softmax. 

3.2. A Meaningful Application of Logistic Regression 

In a specific cell population, a robust predictive model can be constructed through the utilization of 

substantial high-quality data. By compiling models tailored to diverse cell populations into a 

centralized database, future research efforts can be streamlined, and scientific efficiency 

significantly improved. For instance, in the CellTypist library, researchers have already established 

dozens of logistic regression models for various cell populations. When the research subject aligns 

with these models, scientists can directly retrieve and utilize them to make predictions for new 

studies, thereby streamlining the research process [4]. 
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4. A Comparison of the k-Nearest Neighbors Algorithm and Logistic Regression in Specific 

Contexts 

From the above introduction, it is evident that the KNNs algorithm directly utilizes data for 

predictive analysis without relying on a specific model, while logistic regression is a traditional 

method that constructs a model for prediction [12]. Below, this paper will compare and analyze 

these two methods from the perspective of specific research scenarios to provide better guidance for 

model selection. 

4.1. Sample Size of Reference Data 

Due to the larger number of parameters in logistic regression and the simpler structure of KNN, 

logistic regression often struggles to find suitable parameters with small sample sizes, leading to 

inferior performance compared to KNN. However, once the sample size reaches a certain threshold, 

logistic regression can identify appropriate parameters. Since logistic regression is computationally 

more efficient than KNN, it is preferred when other aspects of performance are comparable. 

4.2. Number of Features 

KNN relies on distance-based analysis, but in high-dimensional spaces, the concept of distance can 

suffer from the "curse of dimensionality," making it difficult to reflect the true similarity between 

cells. Although dimensionality reduction methods can enable KNN to make predictions, they often 

result in significant information loss. Other ways like Locality-Sensitive Hashing: through hash 

functions, similar data points are mapped to the same hash bucket, enabling the rapid identification 

of potential nearest neighbors. Although it can solve the dimension problem, it requires the 

selection of hash functions and parameter tuning, which diminishes the advantage of the k-nearest 

neighbors algorithm over logistic regression in terms of model complexity [13]. Logistic regression 

can use ways like Ridge and Lasso regularization to solve the dimension problem, but redundancy 

among highly correlated features will degrade its performance [14].  

In low-dimensional spaces, since the KNN algorithm is sensitive to outliers, while logistic 

regression, with fewer parameters, is easier to implement and optimize, logistic regression holds a 

distinct advantage in such scenarios. 

4.3. Linearity of Data Distribution 

Logistic regression assumes that the distribution of samples follows a linear relationship. When the 

actual relationship between samples deviates significantly from linearity, logistic regression may 

fail to classify correctly. In contrast, KNN directly calculates distances between sample points, 

making it a non-parametric method that is not constrained by the underlying data relationships [15]. 

This allows KNN to handle various types of relationships effectively. The linearity of datasets can 

be assessed by constructing logistic regression models and comparing their performance with 

alternative methods, though this approach often demands significant computational resources. It’s 

stricter to use Linear Discriminant Analysis (LDA) to analyze the linearity of data distribution. 

LDA can utilize its inherent mathematical properties to help determine whether there is linear 

separability between different cell categories. But it assumes Gaussian-distributed data with equal 

class covariances, maximizing class separation, and may not work when data is not fit these 

assumptions [16]. If the LDA outcome shows the data distribution is far to linear, it’s better not to 

choose logistic regression unless in other parts, it is really unfit with KNN.  
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5. Conclusion 

This paper examined the application of the k-nearest neighbors algorithm and logistic regression in 

cell type annotation, comparing their strengths and weaknesses in various contexts. The KNN 

algorithm excels in small datasets, low-dimensional spaces, and complex, nonlinear relationships 

due to its non-parametric nature. However, it struggles with high-dimensional data due to the "curse 

of dimensionality" and is sensitive to outliers. Techniques like dimensionality reduction and 

locality-sensitive hashing (LSH) can mitigate these issues but introduce additional complexity. In 

contrast, logistic regression is highly efficient for large-scale, high-dimensional datasets and 

benefits from regularization techniques like L1 and L2 to prevent overfitting. However, its 

assumption of linearity limits its effectiveness for nonlinear relationships, and it may underperform 

with small datasets due to parameter estimation challenges. In low-dimensional spaces, logistic 

regression’s simplicity and robustness to outliers make it preferable, while KNN’s adaptability suits 

complex data distributions. This study focused on two classical algorithms, excluding the 

comparison with advanced approaches such as deep neural networks or ensemble methods. Future 

research can expand the comparison to broader algorithm families and explore multimodal data 

integration or focus on improving logistic regression models for specific datasets, reducing 

overfitting in KNN for large datasets, and addressing scalability and data quality challenges. By 

understanding the strengths and limitations of each method, researchers can optimize cell type 

annotation and advance biological research, with further advancements in machine learning 

techniques enhancing their applicability in single-cell RNA sequencing or other fields. 
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