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Abstract: A quantum cellular automaton (QCA) is a unitary discrete-time evolution of a 

quantum many-body system, which can be described as a dynamics system 𝛼(𝐴) = 𝑈∗𝐴𝑈, 

where A is any 𝑛 × 𝑛 matrix and 𝑈 is a unitary operator representing the global evolution of 

QCA. And QCAs are characterized by locality (or causality). Among them, quantum circuits 

are the special classes of QCAs, which use unitary operators to control and transform the 

initial quantum state of qubit into a final quantum state, quantum circuits are special and 

widely studied in quantum information. A group is a set of elements combined with an 

operation, which satisfies associativity, identity and invertibility. This article shows that 

group theory provides the right language for studying the relation between QCAs and 

quantum circuits among them.  
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1. Introduction 

Quantum information has garnered tremendous interest from physics and mathematics community 

[1,2]. Evolution of a quantum lattice system is key to understanding nature. Cellular automaton (CA) 

has long been studied as mathematical model of computation, where a grid of cells evolves according 

to local rules over discrete time steps [3]. However, classical CA follows local rules that do not 

incorporate quantum mechanical principles such as superposition, entanglement, and unitary 

evolution. Quantum cellular automaton (QCA) extends the classical CA framework into the quantum 

domain, preserving key features like discrete time steps and locality while introducing quantum 

properties. Quantum cellular automaton (QCA) provides a mathematical framework [4]. The 

classification of QCAs is a well-posed and exciting question [5]. QCA generalizes classical cellular 

automata to quantum mechanics, allowing superposition and entanglement while preserving locality 

and reversibility [6.7]. The concept of QCA is abstract, and using group theory is a good way to 

understand it [8]. Group theory is the study of algebraic structures called groups, which is used to 

analyze symmetries in mathematics and physics, and classify structures in algebra [9,10]. 

Section 2 provides a brief introduction to quantum information and some basic concepts that are 

important in quantum information, and starts relating QCA. Section 3 introduces the cellular 

automaton (CA), quantum cellular automaton (QCA), the property of QCA dynamics and Clifford 

QCA. Section 4 discusses the relation between QCA and group, showing that using group theory to 

think about QCA is advantageous. Section 5 discusses the applications of QCA in the future. 

2. Brief Note on Quantum Information 

In quantum information, the trade-off between acquiring information and creating a disturbance 
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is related to quantum randomness. It is because the outcome of a measurement has a random element 

that we are unable to infer the initial state of the system from the measurement outcome. Quantum 

information differs from classical information due to quantum information cannot be copied with 

perfect fidelity. If we could make a perfect copy of a quantum state, we could measure an observable 

of the copy without disturbing the original and we could defeat the principle of disturbance. On the 

other hand, nothing prevents us from copying classical information perfectly. John Bell showed that 

the predictions of quantum mechanics cannot be reproduced by any local hidden variable theory, and 

quantum information can be (in fact, typically is) encoded in nonlocal correlations between the 

different parts of a physical system, correlations with no classical counterpart. 

2.1. Hilbert Space (Hermitian Inner Product) Matrix Algebra 

In this section, we talk about the inner product and matrix algebra in Hilbert space. Hilbert space 

connects with many concepts that we would mention later, qubits are represented as vectors in the 

Hilbert space, quantum gates are unitary operators that act on the state of a qubit in a Hilbert space. 

Definition 1. A Hilbert space ℍ is a complete complex vector space, that is, 𝜓,  𝜑 ∈ ℍ and 𝑎,  𝑏 ∈ ℂ, 

then 𝑎𝜓 + 𝑏𝜑 ∈ ℍ. 

If 𝑎,  𝑏 ∈ ℂ , 𝑎 = [

𝑎1
⋮
𝑎𝑛
]  and 𝑏 = [

𝑏1
⋮
𝑏𝑛

]  and 𝑣,  𝑣1,  𝑣2,  𝑤,  𝑤1,  𝑤2 ∈ ℍ . Then, we have totally 4 

properties: 

Property 1. ⟨𝑎𝑣|𝑏𝑤⟩ = 𝑎‾⟨𝑣|𝑏𝑤⟩ = 𝑏⟨𝑎𝑣|𝑤⟩ = 𝑎‾𝑏⟨𝑣|𝑤⟩ 

Property 2. ⟨𝑎|𝑏⟩ = 𝑎‾𝑇𝑏 = ∑ 𝑎‾𝑖
𝑛
𝑖=1 𝑏𝑖 = [𝑎‾1 ⋯ 𝑎‾𝑛] [

𝑏1
⋮
𝑏𝑛

] 

Property 3. ⟨𝑣1 + 𝑣2|𝑤⟩ = ⟨𝑣1|𝑤⟩ + ⟨𝑣2|𝑤⟩ 
Property 4. ⟨𝑣|𝑤1 + 𝑤2⟩ = ⟨𝑣|𝑤1⟩ + ⟨𝑣|𝑤2⟩ 
Lemma 2. We define the adjoint of a matrix 𝐴 to be 𝐴∗ = 𝐴‾𝑇. It can be verified that for any 𝑣,𝑤 

in the Hilbert space, we have 

⟨𝑣|𝐴𝑤⟩ = ⟨𝐴∗𝑣|𝑤⟩. 

In fact, this property uniquely determines the adjoint of 𝐴. 

Proof. Let [

𝑣1
⋮
𝑣𝑛
], 𝐴 = [

𝐴11 ⋯ 𝐴1𝑛
⋮ ⋱ ⋮
𝐴𝑛1 ⋯ 𝐴𝑛𝑛

] and 𝑤 = [

𝑤1
⋮
𝑤𝑛
]. Then, 

⟨𝑣|𝐴𝑤⟩ = [𝑣‾1 ⋯ 𝑣‾𝑛] [

𝐴11 ⋯ 𝐴1𝑛

⋮ ⋱ ⋮
𝐴𝑛1 ⋯ 𝐴𝑛𝑛

] [

𝑤1

⋮
𝑤𝑛

]

= [𝐴𝑇 [

𝑣‾1
⋮
𝑣‾𝑛

]]

𝑇

[

𝑤1

⋮
𝑤𝑛

]

= [𝐴‾𝑇 [

𝑣1

⋮
𝑣𝑛

]]

𝑇

[

𝑤1

⋮
𝑤𝑛

]

= ⟨𝐴∗𝑣|𝑤⟩
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Lemma 3. In a simiar way as Lemma 2, we define a unitary matrix 𝑈, then 𝑈∗ = 𝑈−1, we have 

⟨𝑣|𝑈𝑤⟩ = ⟨𝑈∗𝑣|𝑤⟩, 

because 𝑈∗ = 𝑈−1, we have 

⟨𝑣 |𝑈𝑤⟩ = ⟨𝑈−1𝑣|𝑤⟩. 

2.1.1. Self-Adjoint 

Definition 4.  The matrix 𝐴 is called self-adjoint if 𝐴∗ = 𝐴, 𝐴∗ = (𝐴‾)𝑇 is called its adjoint. 

For example, matrix 𝐴 = [
1 𝑖
−𝑖 −1

] is self-adjoint, because 𝐴∗ = [
1 −𝑖
𝑖 −1

]
𝑇

= [
1 𝑖
−𝑖 −1

] = 𝐴. 

2.1.2. Unitary Matrix 

Definition 5.  The matrix 𝑈 is unitary if 𝑈∗ = 𝑈−1 or 𝑈𝑈∗ = 𝑈∗𝑈 = 𝐼. 

For example, matrix 𝑈 = [
1 0
0 𝑖

]  is a unitary matrix, because 𝑈∗ = [
1 0
0 −𝑖

] , then 𝑈𝑈∗ =

[
1 0
0 𝑖

] [
1 0
0 −𝑖

] = [
1 0
0 1

] = 𝐼. 

2.1.3. Pauli Matrices 

Definition 6. The matrices 𝜎𝑗  indexed by either 𝑗 ∈ 1,2,3 or 𝑗 ∈ 𝑥, 𝑦, 𝑧 and defined as 

𝑋 := 𝜎𝑥 : = 𝜎1 : = [
0 1

1 0
] , 𝑌 := 𝜎𝑦 : = 𝜎2 : = [

0 −𝑖

𝑖 0
] , 𝑍 := 𝜎𝑧 : = 𝜎3 : = [

1 0

0 −1
]. 

are called Pauli matrices. These three Pauli matrices are self-adjoint, and they are unitary matrices. 

2.2. Qubit 

In this section, we talk about the difference between classical bit and qubit, the general normalized 

qubit state. The state of a qubit is a vector in the two-dimensional Hilbert space ℍ2. Let we image a 

coin, a calssical bit is like a coin lying flat on the table, the state is either heads (0) or tails (1). And a 

qubit is like spinning that coin in the air, when it’s spinning, the state is not just heads (0) or tails (1), 

it’s a mixture of both until we catch it. This “mixture” is the superposition. 

A qubit is a quantum mechanical system described by a two-dimensional Hilbert space denoted 

by ℍ and called qubit space. A qubit is a fundamental unit of quantum information, analogous to a 

classical bit in classical computing. However, unlike a classical bit that can only be in one of two 

states {0,1}, a qubit can exist in a superposition of states. 

This way each classical bit value is mapped to a qubit state. The smallest nontrivial Hilbert space 

is two-dimensional. We can denote an orthonormal basis for a two-dimensional vector space as 

{|0⟩, |1⟩}. However, not every qubit state can be mapped to a classical bit value. This is because the 

most general normalized qubit state is of the form 

 |𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩ (1) 

with 𝑎, 𝑏 ∈ ℂ and |𝑎|2 + |𝑏|2 = 1. Qubit state |0⟩ corresponds to the classical bit 0, and qubit state 

|1⟩ corresponds to the classical bit 1. The superposition case occurs when a qubit exists in a state that 

is a combination of the basis states |0⟩ and |1⟩, rather than being strictly in one of them, which means 

𝑎𝑏 ≠ 0 and there is no corresponding classical bit value. The probability of measuring the qubit in 
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the state |0⟩  is |𝑎|2 , the probability of measuring the qubit in the state |1⟩  is |𝑏|2 . After the 

measurement, the state of qubit collapses to either |0⟩ or |1⟩. The total probability must always equal 

to 1, so this is also the reason why |𝑎|2 + |𝑏|2 = 1. 

Because |𝑎|2 + |𝑏|2 = 1 we can find 𝛼, 𝛽, 𝜃 ∈ ℝ such that 𝑎 = 𝑒𝑖𝛼cos
𝜃

2
 and 𝑏 = 𝑒𝑖𝛽sin

𝜃

2
. Thus, 

a qubit state has the general form 

 |𝜓⟩ = 𝑒𝑖𝛼cos
𝜃

2
| 0⟩ + 𝑒𝑖𝛽sin

𝜃

2
|1⟩. (2) 

For a 3-dimensional real vector 𝑎 = [

𝑎1
𝑎2
𝑎3
], we can define the 2 × 2 matrix 

 𝑎 ⋅ 𝜎 := ∑ 𝑎𝑗
3

𝑗=1
𝜎𝑗 = 𝑎1𝜎1 + 𝑎2𝜎2 + 𝑎3𝜎3 = [

𝑎3 𝑎1 − 𝑖𝑎2

𝑎1 + 𝑖𝑎2 −𝑎3
]. (3) 

The matrix 𝑎 ⋅ 𝜎 is an operation that transform a 3-dimensional real vector 𝑎 = [

𝑎1
𝑎2
𝑎3
] into a 2 × 2 

Hermitian matrix using the Pauli matrices 𝜎1, 𝜎2 and 𝜎3. 

2.3. Tensor Product (between vectors as well as matrices) 

In this section, we define a new operation that takes two or more Hilbert spaces to produce a new 

Hilbert space as their product. Tensor product is significant in building higher dimensional space and 

representing unitary operators in the following sections. 

Let ℍ𝐴 and ℍ𝐵 be Hilbert spaces, |𝜑⟩ ∈ ℍ𝐴 and |𝜓⟩ ∈ ℍ𝐵, then we define 

 |φ⟩ ⊗|ψ⟩ ∈ ℍA ⊗ℍB (4) 

According to (4), |𝜑⟩ ⊗|𝜓⟩ is a vector in the combined Hilbert space ℍ𝐴⊗ℍ𝐵. If |𝜑⟩ ∈ ℍ𝐴 and 

|𝜓⟩ ∈ ℍ𝐵 and 𝑎, 𝑏 ∈ ℂ. Then, we have the following identities. 

(𝑎|𝜑⟩) ⊗|𝜓⟩ = |𝜑⟩ ⊗ (𝑎|𝜓⟩) = 𝑎(|𝜑⟩ ⊗|𝜓⟩)

𝑎(|𝜑⟩ ⊗|𝜓⟩) + 𝑏(|𝜑⟩ ⊗|𝜓⟩) = (𝑎 + 𝑏)|𝜑⟩ ⊗|𝜓⟩

(|𝜑1⟩ +| 𝜑2⟩) ⊗ |𝜓⟩ = |𝜑1⟩ ⊗|𝜓⟩ + |𝜑2⟩ ⊗|𝜓⟩

|𝜑⟩ ⊗ (|𝜓1⟩ +|𝜓2⟩) = |𝜑⟩ ⊗|𝜓1⟩ + |𝜑⟩ ⊗|𝜓2⟩.

 

In order to simplify the notation, we can also write |𝜑 ⊗ 𝜓⟩ :=|𝜑⟩ ⊗ |𝜓⟩ . For vectors 

|𝜑𝑝⟩ ⊗|𝜓𝑝⟩ ∈ ℍ
𝐴⊗ℍ𝐵 with 𝑝 ∈ {1,2} and |𝜑𝑝⟩ ∈ ℍ

𝐴, |𝜓𝑝⟩ ∈ ℍ
𝐵 we define 

 ⟨𝜑1 ⊗𝜓1 |𝜑2 ⊗𝜓2⟩ : = ⟨𝜑1| 𝜑2⟩
ℍ𝐴⟨𝜓1|𝜓2⟩

ℍ𝐵 . (5) 

Lemma 7. Let {|𝑎𝑖⟩} ⊂ ℍ
𝐴  be an ONB in ℍ𝐴  and {|𝑏𝑗⟩} ⊂ ℍ

𝐵 be an ONB in ℍ𝐵 . The set 

{|𝑎𝑖⊗𝑏𝑗⟩} = {|𝑎𝑖⟩ ⊗ |𝑏𝑗⟩} forms an ONB in ℍ𝐴⊗ℍ𝐵, and for finite-dimensional ℍ𝐴 and ℍ𝐵, we 

have 

 dim(ℍ𝐴⊗ℍ𝐵) = dimℍ𝐴 dimℍ𝐵. (6) 

If dimℍ𝐴 = 𝑚, and dimℍ𝐵 = 𝑛, then let |𝜑⟩ = ∑ 𝑐𝑖
𝑚
𝑖=1 |𝑎𝑖⟩ and |𝜓⟩ = ∑ 𝑑𝑗

𝑛
𝑗=1 |𝑏𝑗⟩, |𝑎𝑖⟩ are ONBs 

in ℍ𝐴  and |𝑏𝑗⟩ are ONBs in ℍ𝐵 , 𝑐𝑖  and 𝑑𝑗  are complex scalars. Thus, the vector in Hilbert space 

ℍ𝐴⊗ℍ𝐵 is in the form 
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|𝜑⟩ ⊗|𝜓⟩ = (∑ 𝑐𝑖

𝑚
𝑖=1

|𝑎𝑖⟩) ⊗ (∑ 𝑑𝑗
𝑛
𝑗=1

|𝑏𝑗⟩)

= ∑ ∑ 𝑐𝑖
𝑛
𝑗=1

𝑚
𝑖=1

𝑑𝑗(|𝑎𝑖⟩ ⊗|𝑏𝑗⟩).
 (7) 

Definition 8. In the Hilbert space ℍ𝐴⊗ℍ𝐵 , the scalar product ⟨𝛼|𝛽⟩ = ∑ 𝛼‾𝑎𝑏𝑎,𝑏 𝛽𝑎𝑏 , 𝛼, 𝛽 ∈

ℍ𝐴⊗ℍ𝐵 is called the tensor product of the Hilbert spaces ℍ𝐴 and ℍ𝐵. 

If ℍ𝐴 = ℍ𝐵 ≅ ℂ2  with the ONBs {|𝑎𝑖⟩} = {|𝑏𝑗⟩} = {|0⟩, |1⟩} = {[
1
0
] , [
0
1
]} , where the set 

{[
1
0
] , [
0
1
]} denotes the standard basis in ℂ2. For ℍ𝐴⊗ℍ𝐵 ≅ ℂ4 we have the ONBs {|𝑎𝑖⟩ ⊗|𝑏𝑗⟩} =

{|00⟩, |01⟩, |10⟩, |11⟩} = {[

1
0
0
0

] , [

0
1
0
0

] , [

0
0
1
0

] , [

0
0
0
1

]}, where the set {[

1
0
0
0

] , [

0
1
0
0

] , [

0
0
1
0

] , [

0
0
0
1

]} also denotes the 

standard basis in ℂ4. Besides, for 𝑘 ∈ {1,2} let 𝑎𝑘, 𝑏𝑘 ∈ ℂ and qubit states |𝜑1⟩ = 𝑎1|0⟩ + 𝑏1 |1⟩ =

[
𝑎1
𝑏1
] , | 𝜑2⟩ = 𝑎2|0⟩ + 𝑏2|1⟩ = [

𝑎2
𝑏2
]. Then, we have 

 

|𝜑1⟩ ⊗|𝜑2⟩ = (𝑎1 |0⟩ + 𝑏1|1⟩) ⊗ (𝑎2 |0⟩ + 𝑏2| 1⟩)

= 𝑎1𝑎2|0⟩ ⊗|0⟩ + 𝑎1𝑏2|0⟩ ⊗|1⟩ + 𝑏1𝑎2|1⟩ ⊗|0⟩ + 𝑏1𝑏2|1⟩ ⊗|1⟩

= 𝑎1𝑎2 |00⟩ + 𝑎1𝑏2| 01⟩ + 𝑏1𝑎2 |10⟩ + 𝑏1𝑏2| 11⟩

=

[
 
 
 
 
𝑎1𝑎2

𝑎1𝑏2

𝑏1𝑎2

𝑏1𝑏2]
 
 
 
 

,

 (8) 

which represents the state of a two-qubit system. 

In a similar way, if ℍ𝐶 ≅ ℂ2 with the ONB {|0⟩, |1⟩}, then the ONB of ℍ𝐴⊗ℍ𝐵⊗ℍ𝐶 ≅ ℂ2⊗
ℂ2⊗ℂ2 ≅ ℂ8 is {|000⟩, |001⟩, |010⟩, |011⟩, |100⟩, |101⟩, |110⟩, |111⟩} 

=

{
 
 
 
 

 
 
 
 

[
 
 
 
 
 
 
 
 
 1

0

0

0

0

0

0

0]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 0

1

0

0

0

0

0

0]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 0

0

1

0

0

0

0

0]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 0

0

0

1

0

0

0

0]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 0

0

0

0

1

0

0

0]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 0

0

0

0

0

1

0

0]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 0

0

0

0

0

0

1

0]
 
 
 
 
 
 
 
 
 

,

[
 
 
 
 
 
 
 
 
 0

0

0

0

0

0

0

1]
 
 
 
 
 
 
 
 
 

}
 
 
 
 

 
 
 
 

. 

The first notation that includes "|⟩" is simple, and the second notation is more complicated. 

For the tensor product of dual vectors, we have 

 ⟨𝜑 ⊗ 𝜓|= ⟨𝜑|⊗ ⟨𝜓|. (9) 

The dual ONBs for ℂ2 are {⟨0|, ⟨1|} = {[1 0], [0 1]}, this set denotes the standard basis in the 

dual space (ℂ2)∗ ≅ ℂ2 . For ℂ4 , dual ONBs are {⟨00|, ⟨01|, ⟨10|, ⟨11|} =
{[1 0 0 0], [0 1 0 0], [0 0 1 0], [0 0 0 1]}, this set denotes the standard basis 
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in the dual space (ℂ4)∗ ≅ ℂ4 . Besides, for 𝑘 ∈ {1,2}, let 𝑐𝑘,  𝑑𝑘 ∈ ℂ, and ⟨𝜓1|= 𝑐1⟨0| + 𝑑1⟨1| =
[𝑐1 𝑑1], ⟨𝜓2|= 𝑐2⟨0| + 𝑑2⟨1| = [𝑐2 𝑑2]. In the basis {|𝑎𝑖⊗𝑏𝑗⟩}, we have 

 

⟨𝜓1 |⊗ ⟨𝜓2| = (𝑐1⟨0 |+𝑑1⟨1|) (𝑐2⟨0 |+𝑑2⟨1|)

= 𝑐1𝑐2⟨0|⊗ ⟨0| + 𝑐1𝑑2⟨0|⊗ ⟨1| + 𝑑1𝑐2⟨1|⊗ ⟨0| + 𝑑1𝑑2⟨1|⊗ ⟨1|

= 𝑐1𝑐2⟨00 |+𝑐1𝑑2⟨01| + 𝑑1𝑐2⟨10 |+𝑑1𝑑2⟨11|

= [𝑐1𝑐2 𝑐1𝑑2 𝑑1𝑐2 𝑑1𝑑2].

 (10) 

For ℂ8, dual ONBs are {⟨000|, ⟨001|, ⟨010|, ⟨100|, ⟨011|, ⟨101|, ⟨110|, ⟨111|}. We can find the 

pattern, either the 𝑛-dimensional space or its dual space has 𝑛 standard basis. 

2.4. Schmidt Decomposition and Entanglement 

In this section, we define a powerful way to express bipartite states, which is Schmidt decomposition, 

in this way, we can easily determine whether the state is separable or entangled. Also, we use W-state 

to further explain this powerful tool. 

Suppose there are two systems 𝐴 and 𝐵, any bipartite state |𝜓⟩𝐴𝐵 in the Hilbert space ℍ𝐴⊗ℍ𝐵 

can be expressed as the following by Schmidt decomposition: 

 |𝜓⟩𝐴𝐵 = ∑ 𝜆𝑘
𝑟
𝑘=1

| 𝑢𝑘⟩𝐴⊗ |𝑣𝑘⟩𝐵, (11) 

where: 

• {|𝑢𝑘⟩𝐴} and {|𝑣𝑘⟩𝐵} are sets of orthonormal basis vectors in subsystems 𝐴 and 𝐵, respectively. 

• 𝜆𝑘 ≥ 0 are called Schmidt coefficients, satisfying ∑ 𝜆𝑘
2

𝑘 = 1. 

• 𝑟 is the Schmidt rank, which is the total number of nonzero Schmidt coefficients. 

If the Schmidt rank 𝑟 = 1, then the state is separable and can be expressed as |𝜓⟩ = 𝜆1|𝑢1⟩𝐴⊗
|𝑣1⟩𝐵, in this case, subsystem 𝐴 is completely independent of subsystem 𝐵, there is no entanglement. 

If the Schmidt rank 𝑟 > 1, then the state is entangled, the state cannot be written as the tensor product 

of states in ℍ𝐴 and ℍ𝐵. 

The W-state for three qubits is 

 |𝑊⟩ =
1

√3

(|001⟩ +|010⟩ + |100⟩), (12) 

to express this in Schmidt decomposition, we need to divide the system into two subsystems, qubit 1 

is one subsystem 𝐴 and qubits 2 and 3 form another subsystem 𝐵. Firstly, we can write W-state in 

another way: 

 |𝑊⟩ = √
1

3
(|0⟩𝐴⊗|01⟩𝐵 + |0⟩𝐴⊗|10⟩𝐵 + |1⟩𝐴⊗|00⟩𝐵), (13) 

here, the basis for subsystem 𝐴 is {|0⟩, |1⟩}, and the basis for subsystem 𝐵 is {|00⟩, |01⟩}, |10⟩}, |11⟩}. 
Then, we have  
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|𝑊⟩ = √
1

3
(|0⟩𝐴⊗ (|01⟩𝐵 + |10⟩𝐵) +|1⟩𝐴⊗ |00⟩𝐵)

= √
2

3
|0⟩𝐴⊗ (

1

√2

| 01⟩𝐵 +
1

√2

|10⟩𝐵) + √
1

3
| 1⟩𝐴⊗ |00⟩𝐵

= √
2

3
|0⟩𝐴⊗

1

√2

(|01⟩𝐵 + |10⟩𝐵) + √
1

3
|1⟩𝐴⊗ |00⟩𝐵

= √
2

3
|0⟩𝐴⊗

1

√2

(|01⟩ + |10⟩)𝐵 +√
1

3
|1⟩𝐴⊗ |00⟩𝐵.

 (14) 

The Schmidt rank 𝑟 is two, because there are two nonzero Schmidt coefficients. Since the Schmidt 

rank 𝑟 > 1, so the state is entangled between subsystem 𝐴 and subsystem 𝐵. The state of subsystem 

𝐴 is correlated with the state of subsystem 𝐵. If we measure one of subsystems: 

1. If we find that subsystem 𝐴 is in state |0⟩, the state of subsystem 𝐵 collapses to 
1

√2

(|01⟩ +|10⟩). 

2. If we find that subsystem 𝐴 is in state |1⟩, the state of subsystem 𝐵 collapses to |00⟩. 

3. If we find that subsystem 𝐵 is in state 
1

√2

(|01⟩ +|10⟩), the state of subsystem 𝐴 collapses to |0⟩. 

4. If we find that subsystem 𝐵 is in state |00⟩, the state of subsystem 𝐴 collapses to |1⟩. 

This dependence shows the quantum correlation between subsystems 𝐴 and 𝐵, this correlation is 

also what we call entanglement between the two subsystems. Entanglement is a relationship involving 

two or more distinct subsystems. Measurements on subsystem 𝐴  can instantaneously affect the 

outcomes of measurements on subsystem 𝐵, no matter how far apart they are. Without this quantum 

correlation across subsystems, there would be no entanglement. I think writing states in Schmidt 

decomposition can beneficially analyze the correlation between subsystems, for example, we can use 

the qubit in subsystem 𝐴 to check the state of subsystem 𝐵 is in superposition or not. So I think 

Schmidt decomposition is a really powerful and helpful tool. 

2.5. Finite Depth Quantum Circuit 

In this section, we define the quantum gate, the quantum circuit, and the finite depth quantum circuit. 

A finite depth quantum circuit is like making a multi-layered cake. Each layer of the cake represents 

a set of quantum gates applied to the qubits, which are like the ingredients on each layer. The total 

number of layers in the cake corresponds to the finite depth of the circuit, meaning the process stops 

after a specific number of layers. 

In quantum computing, a quantum gate is a fundamental operation that performs a specific 

transformation on one or more qubits. Unlike many classical logic gates, quantum logic gates are 

reversible, quantum circuits can perform all operations performed by classical circuits. Quantum 

gates are unitary operators, and are described as unitary matrices relative to some orthonormal basis. 

A quantum gate is a unitary operator 𝑈 that acts on the state of a qubit or multiple qubits in a Hilbert 

space. This is how a quantum gate works: 

 |𝜓2⟩ = 𝑈|𝜓1⟩, (15) 
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where |𝜓1⟩ is the input quantum state, 𝑈 is the unitary matrix which represents the quantum gate, 

|𝜓2⟩ is the resulting quantum state after applying the gate. 

Definition 9. A quantum n-gate is a unitary operator 𝑈:ℍ⊗𝑛 → ℍ⊗𝑛. For n = 1, a gate 𝑈 is called 

a unary quantum gate and for n = 2, a gate 𝑈 is called a binary quantum gate. 

Unary quantum gates are unitary operators 𝑈:ℍ → ℍ, which can be represented in the standard 

basis {|0⟩, |1⟩} by unitary 2 × 2 matrices. Most common unary quantum gates include Identity, Pauli-

X, Pauli-Y and Pauli-Z. 

Binary quantum gates are unitary operators 𝑈:ℍ⊗2 → ℍ⊗2 , which can be represented in the 

standard basis {|00⟩, |01⟩, |10⟩, |11⟩} by unitary 4 × 4 matrices. 

Definition 10. Controlled NOT gate (CNOT) is a quantum gate, CNOT gate operates on a system 

consisting of 2 qubits. The CNOT gate flips the target qubit if and only if the control qubit is |1⟩. 
 

Control =Qubit 1,Target =Qubit 2  Control=Qubit 2, Target=Qubit 1 

Before After  Before After 

|00⟩ |00⟩  |00⟩ |00⟩ 
|01⟩ |01⟩  |01⟩ |11⟩ 
|10⟩ |11⟩  |10⟩ |10⟩ 
|11⟩ |10⟩  |11⟩ |01⟩ 

 

The CNOT gate for control qubit and target qubit in a two-qubit system is a 4 × 4 unitary matrix 

as the following: 

 Control = Qubit 1, Target = Qubit 2: 𝐶𝑁𝑂𝑇12 =

[
 
 
 
 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0]
 
 
 
 

,  

 Control = Qubit 2, Target = Qubit 1: 𝐶𝑁𝑂𝑇21 =

[
 
 
 
 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0]
 
 
 
 

.  

 

Figure 1: Quantum Circuit Diagram with Twelve Qubits and Five Layers 
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In a quantum computation, quantum gates are the components of a quantum circuit. A quantum 

circuit consists of multiple quantum gates applied to qubits. Quantum gates are the tools, while the 

quantum circuit is the entire mechanism designed to perform a specific quantum computation. 

Definition 11. Essentially, a quantum circuit is a framework for using unitary operators (quantum 

gates) to control and transform the initial quantum state of qubits into a final quantum state, which 

encodes the result of the quantum computation. 

In Figure 1, each vertical line represents a qubit, the blocks represent quantum gates applied to a 

set of qubits, quantum gates always act on one or more qubits. Each block in a row acts on disjoint 

sets of qubits, the total number of blocks in the quantum circuit is called its size, and time increases 

from bottom to top. In the diagram above, there are twelve qubits and five layers. 

Definition 12. The depth of a quantum circuit is defined as the number of layers of quantum gates 

in the quantum circuit diagram. 

Definition 13. A finite depth quantum circuit is a quantum circuit with a limited depth required to 

complete the computation, regardless of the size of quantum circuit or the number of qubits. 

Let {𝑈𝑖} be a set of unitary operators that act on disjoint sets of qubits within the same layer, then 

𝑈𝑙𝑎𝑦𝑒𝑟 = 𝑈1⊗𝑈2⊗⋯⊗𝑈𝑘 represents the unitary operator for a single layer of the quantum circuit, 

the tensor product is used because quantum gates in the same layer act on non-overlapping sets of 

qubits. 

Lemma 14. The overall unitary operator for the entire quantum circuit is 𝑈circuit
𝑁 =

𝑈𝑙
(1)𝑈𝑙

(2)⋯𝑈𝑙
(𝑁), 𝑁 is the depth of the quantum circuit. 

Proof. According to Definition 11, we let |𝜓⟩ be the initial state of the qubits, then 

 |𝜓1⟩ = 𝑈𝑙
(1)| 𝜓⟩ (16) 

represents the quantum state of the qubits after applying the unitary operator of the first layer, in the 

similar way, the quantum state of the qubits after applying the first two layers is 

 |𝜓2⟩ = 𝑈𝑙
(2)| 𝜓1⟩ = 𝑈𝑙

(2)𝑈𝑙
(1)|𝜓⟩. (17) 

So after applying the 𝑁 layers in the circuit, the final quantum state of the qubits is 

 
|𝜓final⟩ = 𝑈𝑙

(𝑁)𝑈𝑙
(𝑁−1)⋯𝑈𝑙

(1)|𝜓⟩

= 𝑈𝑙
(1)𝑈𝑙

(2)⋯𝑈𝑙
(𝑁)|𝜓⟩.

 (18) 

Thus, the overall unitary operator for the entire quantum circuit is 

 𝑈circuit
𝑁 = 𝑈𝑙

(1)𝑈𝑙
(2)⋯𝑈𝑙

(𝑁). (19) 

3. Clifford Quantum Cellular Automaton 

3.1. Quantum Cellular Automaton 

A cellular automaton (CA) consists of a regular grid of cells, each in one of a finite number of states. 

The grid can have any finite number of dimensions (e.g., 1D, 2D, etc.). Every cell has an initial state, 

and the state of each cell evolves over discrete time steps according to fixed, local rules, all cells in 

the grid update their states simultaneously at each time step. The new state of each cell depends on 

its current state and the states of its neighboring cells. 

A quantum cellular automaton (QCA) is a lattice-based quantum system where each cell represents 

a finite-dimensional quantum state. A cell can be in multiple states simultaneously, because of the 

principle of superposition. The global state of the system evolves in discrete time steps by unitary 
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operators, which ensures the evolution is reversible. The new state of a cell depends on its current 

state and the states of its neighboring cells. 

 

Figure 2: How QCA Works 

In Figure 2, the points in the lattice are cells (qubits), 𝐴 is the region that contains a set of cells in 

the lattice at the initial time step (t = 0), the quantum state of this region is the combined state of all 

qubits within 𝐴 at t = 0. 𝐴′ is the evolved region of 𝐴 at t = 1, the quantum state in 𝐴′ is the result of 

applying the unitary operator to the quantum state of 𝐴. If there is a matrix associated with every cell 

or group of cells, then the matrix at t = 0 will be transformed into another matrix at t = 1 under the 

application of the unitary operator of QCA. 

Lemma 15. The QCA dynamics, defined as 𝛼(𝐴) = 𝑈∗𝐴𝑈, is a homomorphism, where A is any 

𝑛 × 𝑛 matrix and 𝑈 is a unitary operator representing the global evolution of the QCA. 

Proof. We need to show that 𝛼  satisfies preservation of matrix multiplication: 𝛼(𝐴𝐵) =
𝛼(𝐴)𝛼(𝐵), where 𝐴 and 𝐵 are any 𝑛 × 𝑛 matrices. 

Left-Hand Side (LHS): 

 𝛼(𝐴𝐵) = 𝑈∗(𝐴𝐵)𝑈, (20) 

Right-Hand Side (RHS): 

 

𝛼(𝐴)𝛼(𝐵) = (𝑈∗𝐴𝑈)(𝑈∗𝐵𝑈)

= 𝑈∗𝐴(𝑈𝑈∗)𝐵𝑈

= 𝑈∗𝐴𝐵𝑈.

 (21) 

So LHS is equal to RHS, which means that 𝛼 preserves matrix multiplication. In conclusion, the 

QCA dynamics 𝛼(𝐴) = 𝑈∗𝐴𝑈 is a homomorphism.  

Any 2 × 2  matrix can be written as 𝑎1𝐼 + 𝑎2𝑋 + 𝑎3𝑌 + 𝑎4𝑍 , 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ ℂ , and 𝐼  is the 

identity matrix, 𝑋,  𝑌,  𝑍 are Pauli matrices as mentioned in Definition 6. We denote the dynamics of 

a QCA by 𝛼: 𝐴 → 𝛼(𝐴), 𝐴 is any matrix and 𝛼 is linear transformation, which maps a matrix 𝑎1𝐼 +
𝑎2𝑋 + 𝑎3𝑌 + 𝑎4𝑍 to a new matrix 𝑎1𝛼(𝐼) + 𝑎2𝛼(𝑋) + 𝑎3𝛼(𝑌) + 𝑎4𝛼(𝑍). We know that 𝛼(𝐼) = 𝐼, 
if we can figure out where 𝛼  maps 𝑋, 𝑌  and 𝑍  to, then we can figure out where 𝛼  maps all the 

matrices to. Actually, we just need to know 𝛼(𝑋)  and 𝛼(𝑍) , because 𝑌 = [
0 −𝑖
𝑖 0

] = 𝑖𝑋𝑍  and 

because of Lemma 15, then 𝛼(𝑌) = 𝑖𝛼(𝑋)𝛼(𝑍). So if we know 𝛼(𝑋) and 𝛼(𝑍), then we know 𝛼(𝑌). 
Thus, if we know 𝛼(𝑋) and 𝛼(𝑍), then we know what the new matrix 𝑎1𝛼(𝐼) + 𝑎2𝛼(𝑋) + 𝑎3𝛼(𝑌) +
𝑎4𝛼(𝑍) exactly is. To relate to Section 2.5, quantum circuit is a special class of QCA, but not all 

QCA comes from quantum circuits. In the QCA dynamics 𝛼(𝐴) = 𝑈∗𝐴𝑈, if 𝑈 is the overall unitary 

operator of the quantum circuit, then this QCA comes from quantum circuit. 
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3.2. Clifford Quantum Cellular Automaton 

Definition 16. A Clifford Quantum Cellular Automaton (Clifford QCA) is a specific type of Quantum 

Cellular Automaton (QCA). This evolution of system is controlled by a global unitary operator 𝑈, 

constructed by local Clifford gates, ensuring locality. And the system is reversible, the state of the 

system at any previous time step can be uniquely determined from its state at a later time step. Let 𝒫𝑛 

be the Pauli group on n-qubits, consisting of all tensor products of Pauli operators {𝐼, 𝑋, 𝑌, 𝑍} with 

phase factors ±1, ±𝑖. For Clifford QCA, 

𝛼(𝑃) = 𝑈∗𝑃𝑈 ∈ 𝒫𝑛,  ∀𝑃 ∈ 𝒫𝑛, 

where 𝑈 is the global unitary operator. This means that for any Pauli operator 𝑃, its image 𝛼(𝑃) is 

also a Pauli operator. 

4. Results 

4.1. QCA and Automorphism 

Definition 17. An automorphism of a group 𝐺 is an isomorphism from 𝐺 to itself. If 𝑓 is the function 

such that: 

 1. 𝑓: 𝐺 → 𝐺.  

 2. 𝑓(𝑥 ∗ 𝑦) = 𝑓(𝑥) ∗ 𝑓(𝑦).  

 3. 𝑓 is bijective.  

Theorem 18.  The conjugation by an invertible matrix is an automorphism. 

Proof. Let 𝑀𝑛(𝔽) be the group that contains 𝑛 × 𝑛 matrices over the field 𝔽. And let 𝐵 be an 

𝑛 × 𝑛 invertible matrix, 𝐴 is any 𝑛 × 𝑛 matrix, then we define the map: 𝜑𝐵(𝐴) = 𝐵𝐴𝐵
−1. If this map 

satisfy the following, then it is an automorphism: 

 1. 𝜑𝐵:𝑀𝑛(𝔽) → 𝑀𝑛(𝔽).  

 2. 𝜑𝐵(𝐴𝐶) = 𝜑𝐵(𝐴)𝜑𝐵(𝐶), where 𝐶 is any 𝑛 × 𝑛 matrix.  

 3. 𝜑𝐵 is bijective.  

1. To prove 𝜑𝐵:𝑀𝑛(𝔽) → 𝑀𝑛(𝔽): We know that 𝐴  is an 𝑛 × 𝑛  matrix, B is an 𝑛 × 𝑛  invertible 

matrix, and 𝐵−1 is also an 𝑛 × 𝑛 invertible matrix, so the product 𝐵𝐴𝐵−1 is also an n by n matrix. 

𝐴 ∈ 𝑀𝑛(𝔽), and 𝐵𝐴𝐵−1 ∈ 𝑀𝑛(𝔽), so the map 𝜑𝐵(𝐴) = 𝐵𝐴𝐵
−1 satisfies 𝜑𝐵:𝑀𝑛(𝔽) → 𝑀𝑛(𝔽). 

2. To prove 𝜑𝐵(𝐴𝐶) = 𝜑𝐵(𝐴)𝜑𝐵(𝐶), where 𝐶 is any 𝑛 × 𝑛 matrix:Left-Hand Side (LHS): 

 𝜑𝐵(𝐴𝐶) = 𝐵𝐴𝐶𝐵
−1, (22) 

Right-Hand Side (RHS): 

 

𝜑𝐵(𝐴)𝜑𝐵(𝐶) = (𝐵𝐴𝐵−1) (𝐵𝐶𝐵−1)

= 𝐵𝐴(𝐵−1𝐵)𝐶𝐵−1

= 𝐵𝐴𝐶𝐵−1.

 (23) 

So LHS is equal to RHS, which means that 𝜑𝐵(𝐴𝐶) = 𝜑𝐵(𝐴)𝜑𝐵(𝐶). 

3. To prove that 𝜑𝐵 is bijective, we need to show 

• Injectivity: If 𝜑𝐵(𝐴) = 𝜑𝐵(𝐶), then 𝐴 = 𝐶. 
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Suppose 𝐵𝐴𝐵−1 = 𝐵𝐶𝐵−1, then multiplying both sides with 𝐵−1 on the left and 𝐵 on the right: 

 
𝐵−1 (𝐵𝐴𝐵−1)𝐵 = 𝐵−1 (𝐵𝐶𝐵−1)𝐵

𝐴 = 𝐶.
 (24) 

So 𝜑𝐵 is injective. 

• Surjectivity: Given any matrix D, we need to find some A such that φB(A) = D, i.e., 

 𝐵𝐴𝐵−1 = 𝐷

𝐴 = 𝐵−1𝐷𝐵.
 (25) 

Since A exists for any D, so 𝜑𝐵 is surjective. 

Thus, 𝜑𝐵 is bijective. 

In conclusion, the map 𝜑𝐵 is an automorphism, so the conjugation by an invertible matrix is an 

automorphism. 

Lemma 19. Quantum cellular automaton is an automorphism. 

Proof. According to Lemma 15, we know that the QCA dynamics 𝛼(𝐴) = 𝑈∗𝐴𝑈  is a 

homomorphism, where A is any 𝑛 × 𝑛 matrix, and 𝑈 is an 𝑛 × 𝑛 unitary operator. We only need to 

prove that 𝛼(𝐴):𝑀𝑛(𝔽) → 𝑀𝑛(𝔽) and 𝛼(𝐴) is bijective. 

1. The mapping preserves the space: 𝐴 is an 𝑛 × 𝑛 matrix, 𝑈 is an 𝑛 × 𝑛 unitary matrix, 𝑈∗ is also 

an 𝑛 × 𝑛  unitary matrix, so 𝑈∗𝐴𝑈  is an 𝑛 × 𝑛  matrix. 𝐴 ∈ 𝑀𝑛(𝔽)  and 𝑈∗𝐴𝑈 ∈ 𝑀𝑛(𝔽) , so 

𝛼(𝐴):𝑀𝑛(𝔽) → 𝑀𝑛(𝔽), which means 𝛼(𝐴) preserves the space. 

2. The mapping is bijective: Since 𝑈 is unitary, we define the inverse of 𝛼 as 𝛼−1(𝐴) = 𝑈𝐴𝑈∗. Then, 

we need to check 𝛼−1 is indeed the inverse: 

 

𝛼−1(𝛼(𝐴)) = 𝑈(𝑈∗𝐴𝑈)𝑈∗

= 𝐴.

𝛼 (𝛼−1(𝐴)) = 𝑈∗(𝑈𝐴𝑈∗)𝑈

= 𝐴.

 (26) 

Thus, 𝛼 is bijective. So QCA is an automorphism.  

4.2. Conjugation by a Quantum Circuit 

Theorem 20. The conjugation by a (finite depth) quantum circuit is a quantum cellular automaton. 

Proof. Let 𝑈 be a unitary matrix, which represents a quantum circuit, and 𝐴 be a local operator. 

So we define the conjugation by a quantum circuit as 𝜑(𝐴): 𝐴 → 𝑈𝐴𝑈−1 = 𝑈𝐴𝑈∗. We suppose that 

𝐴 is supported in region 𝑋, which means that 𝐴 only acts on qubits nontrivially within 𝑋, and 𝐴 acts 

as the identity outside of 𝑋. If 𝑌 is disjoint from 𝑋, then 𝐴 commutes with any operator supported in 

𝑌. Firstly, we only focus on the case when 𝑈 is a single-layer circuit. We assume that 𝑈 = ∏ 𝐺𝛾𝛾 , 

where 𝐺𝛾 represents the quantum gate in quantum circuit, there are finite many 𝐺𝛾 intersect with 𝐴, 

and the others don’t intersect with 𝐴, so all 𝐺𝛾 commute with 𝐴 except finitely many 𝐺𝛾 that intersect 

with 𝐴. Let the support of 𝐺𝛾 be 𝑍, so we have 

 

𝑈𝐴𝑈∗ = ∏ 𝐺𝛾𝛾  𝐴  (∏ 𝐺𝛾𝛾 )∗

= ∏ 𝐺𝛾𝛾  𝐴  ∏ 𝐺𝛾
∗

𝛾

= ∏ 𝐺𝛾𝑍∩𝑋≠∅ 𝐴  ∏ 𝐺𝛾
∗

𝑍∩𝑋≠∅ .

 (27) 
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The support of 𝑈𝐴𝑈∗ is the union of 𝑋 and the support of all 𝐺𝛾 that intersect with 𝐴. And we 

assume that the support of 𝐺𝛾 has bounded diameter that is less than 𝑟, so for 𝐺𝛾 that intersect with 

𝐴, the farthest distance between the boundary of X and the point on the support of 𝐺𝛾 is less than the 

bounded diameter of support of 𝐺𝛾, which is also less than 𝑟. So 𝑈𝐴𝑈∗ is supported within 𝐵𝑟(𝑋) =

{𝑦 is the point | 𝑑(𝑦, 𝑋) < 𝑟}. 
Then, in a similar way, when 𝑈 has multiple layers, then the region where 𝑈𝐴𝑈∗ is supported 

expands with each layer, after 𝑛 layers, the 𝑈𝐴𝑈∗ is supported within a neighborhood of 𝑋 that is a 

ball of radius 𝑛𝑟 , denoted as 𝐵𝑛𝑟(𝑋) = {𝑧 is the point | 𝑑(𝑧, 𝑋) < 𝑛𝑟} , where 𝑟  represents the 

quantity of expansion of region per layer. 

All in all, 𝐴 is supported in region 𝑋 , then 𝑈𝐴𝑈∗  is supported in region 𝐵𝑛𝑟(𝑋), and 𝐵𝑛𝑟(𝑋) 
always contains 𝑋 , which means that 𝑈𝐴𝑈∗  is supported in a neighborhood of 𝑋 . Thus, the 

conjugation by (finite depth) quantum circuit is locality-preserving, so the conjugation by a (finite 

depth) quantum circuit is a quantum cellular automaton.  

If the operation of a QCA can be decomposed into the operations of several local quantum circuits, 

then this QCA can be written as the conjugation by the quantum circuits, so not all QCAs are the 

conjugation by the quantum circuit. 

𝑆𝑊𝐴𝑃 is a quantum gate, swap gate swaps two qubits: |00⟩ →|00⟩, |01⟩ →|10⟩, |10⟩ →|01⟩, 

|11⟩ →|11⟩. Swap gate can be represented by a unitary matrix 𝑆𝑊𝐴𝑃 = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]. According 

to Definition 10, we have 𝑆𝑊𝐴𝑃 = 𝐶𝑁𝑂𝑇12 𝐶𝑁𝑂𝑇21 𝐶𝑁𝑂𝑇12 , 𝐶𝑁𝑂𝑇12  and 𝐶𝑁𝑂𝑇21  are unitary 

matrices, and 𝐶𝑁𝑂𝑇 is a quantum gate, 𝑆𝑊𝐴𝑃 can be written as the product of three quantum gates, 

so 𝑆𝑊𝐴𝑃 is a quantum circuit. 

Lemma 21. 𝑆𝑊𝐴𝑃 is the conjugation by a quantum circuit. 

Proof. By the definition, 𝑆𝑊𝐴𝑃:𝑈 ⊗ 𝑉 → 𝑉 ⊗𝑈, where 𝑈 and 𝑉 are two operators. If we prove 

that 𝑆𝑊𝐴𝑃:𝑈 ⊗ 𝑉 → 𝐶(𝑈⊗ 𝑉)𝐶∗, where 𝐶 is a quantum circuit, and 𝐶(𝑈 ⊗ 𝑉)𝐶∗ = 𝑉 ⊗𝑈, then 

𝑆𝑊𝐴𝑃 is the conjugation by a quantum circuit. We know that 𝑆𝑊𝐴𝑃 can be represented as a unitary 

matrix, we find that 𝑆𝑊𝐴𝑃∗ = 𝑆𝑊𝐴𝑃 . We establish that 𝐶 = 𝑆𝑊𝐴𝑃 , so 𝐶(𝑈 ⊗ 𝑉)𝐶∗ =
𝑆𝑊𝐴𝑃(𝑈⊗ 𝑉)𝑆𝑊𝐴𝑃∗ = 𝑆𝑊𝐴𝑃(𝑈⊗ 𝑉)𝑆𝑊𝐴𝑃 = 𝑉 ⊗𝑈 , so 𝑆𝑊𝐴𝑃  is the conjugation by a 

quantum circuit.  

4.3. QC is a Subgroup of QCA 

Proposition 22. 𝑄𝐶 ⊊ 𝑄𝐶𝐴, where 𝑄𝐶 represents the set of conjugations by the quantum circuits, 

𝑄𝐶𝐴 represents the set of QCAs. Besides, 𝑄𝐶 is a subgroup of 𝑄𝐶𝐴, denoted as 𝑄𝐶 ≤ 𝑄𝐶𝐴. 

Proof. According to Lemma 19, the set of QCAs is the set of automorphisms, which forms a group 

under composition, so the set of QCAs is a group. As we mentioned before, some QCAs can be 

decomposed by into several local quantum circuits, but some QCAs cannot, so 𝑄𝐶 ⊊ 𝑄𝐶𝐴. And let 

𝐵 be an 𝑛 × 𝑛 unitary matrix, and 𝐴 is any 𝑛 × 𝑛 matrix, so the conjugation by a quantum circuit is 

denoted as 𝜑𝐵(𝐴) = 𝐵𝐴𝐵
−1, the inverse of this is 𝜑𝐵

−1(𝐴) = 𝐵−1𝐴𝐵, because 𝐵 is an 𝑛 × 𝑛 unitary 

matrix, so the set of conjugations by the quantum circuits is closed under inverse. And let 𝜑𝑀(𝐴) =
𝑀𝐴𝑀−1, 𝜑𝑁(𝐴) = 𝑁𝐴𝑁

−1 be the elements in the set of conjugations by the quantum circuits, where 

𝑀  and 𝑁  are 𝑛 × 𝑛  unitary matrices, and 𝐴  is any 𝑛 × 𝑛  matrix. 𝜑𝑁(𝜑𝑀(𝐴)) = 𝑁𝑀𝐴𝑀
−1𝑁−1 =

(𝑁𝑀)𝐴(𝑁𝑀)−1, since the matrix 𝑁𝑀 is an 𝑛 × 𝑛 unitary matrix, so the set of conjugations by the 

quantum circuits is closed under multiplication. Thus, the set of conjugations by the quantum circuits 

is a subgroup of set of QCAs, denoted as 𝑄𝐶 ≤ 𝑄𝐶𝐴.  

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/92/2025.22378 

190 



 

 

4.4. QC is a Normal Subgroup of QCA 

Proposition 23.  𝑄𝐶 is a normal subgroup of 𝑄𝐶𝐴, denoted as 𝑄𝐶 ⊴ 𝑄𝐶𝐴, where 𝑄𝐶 represents the 

set of conjugations by the quantum circuits and 𝑄𝐶𝐴 represents the set of QCAs. 

Proof. Let 𝛼 be a QCA, 𝛽 be the conjugation by quantum circuit. We need to prove that 𝛼𝛽𝛼−1 ∈
𝑄𝐶, which means that 𝛼𝛽𝛼−1 is the conjugation by quantum circuit. Suppose 𝛽(𝐴) = 𝐵𝐴𝐵−1, where 

𝐵  is an 𝑛 × 𝑛 unitary matrix that represents the quantum circuit, 𝐴 is any 𝑛 × 𝑛 matrix, 𝑂 is the 

matrix on qubits. We have 

 𝛼𝛽𝛼−1(𝑂) = 𝛼 (𝐵𝛼−1(𝑂)𝐵−1), (28) 

because of Lemma 19, we have 

 
𝛼𝛽𝛼−1(𝑂) = 𝛼(𝐵)𝛼 (𝛼−1(𝑂))𝛼 (𝐵−1)

= 𝛼(𝐵)𝑂𝛼 (𝐵−1) ,
 (29) 

because of Lemma 19, so 𝛼(𝐵−1) = 𝛼(𝐵)−1, so 

 𝛼𝛽𝛼−1(𝑂) = 𝛼(𝐵)𝑂𝛼(𝐵)−1. (30) 

We know that 𝑛 × 𝑛 unitary matrix 𝐵 represents the quantum circuit, 𝛼 operates on a quantum 

circuit 𝐵, meaning that 𝛼 operates on every quantum gate in circuit, in each layer, quantum gates will 

act on more qubits, the number of qubits every gate acts on is limited. So 𝛼(𝐵) is also a quantum 

circuit, but the number of qubits that each quantum gate acts on has increased. We find that 

𝛼𝛽𝛼−1(𝑂) = 𝛼(𝐵)𝑂𝛼(𝐵)−1 , where 𝛼(𝐵) is a quantum circuit and 𝑂 is the matrix on qubits, so 

𝛼(𝐵)𝑂𝛼(𝐵)−1  is the conjugation by the quantum circuit, so 𝑄𝐶  is a normal subgroup of 𝑄𝐶𝐴 , 

denoted as 𝑄𝐶 ⊴ 𝑄𝐶𝐴, where 𝑄𝐶 represents the set of conjugations by the quantum circuits and 𝑄𝐶𝐴 

represents the set of QCAs.  

4.5. QCA/QC is an Abelian Group 

Definition 24. The group G is abelian if 𝑥 ∗ 𝑦 = 𝑦 ∗ 𝑥 for all 𝑥, 𝑦 ∈ 𝐺. 

Proposition 25. 𝑄𝐶𝐴/𝑄𝐶 is an abelian group, where 𝑄𝐶𝐴 represents the set of QCAs, and 𝑄𝐶 

represents the set of conjugations by the quantum circuits. 

Proof. Suppose 𝛼, 𝛽 ∈ 𝑄𝐶𝐴, according to Proposition 23, we have 𝑄𝐶𝐴/𝑄𝐶 = {𝜀𝑄𝐶 | 𝜀 ∈ 𝑄𝐶𝐴}. 
We suppose that two elements in this group are 𝛼𝑄𝐶 and 𝛽𝑄𝐶, to show that 𝑄𝐶𝐴/𝑄𝐶 is an abelian 

group, we need to show that (𝛼𝑄𝐶)(𝛽𝑄𝐶) = (𝛽𝑄𝐶)(𝛼𝑄𝐶), equivalent to showing that (𝛼𝛽)𝑄𝐶 =
(𝛽𝛼)𝑄𝐶 , which means that we need to show that 𝛼𝛽 = 𝐴𝛽𝐵𝛼𝐶 ≃ 𝛽𝛼 , where 𝐴, 𝐵, 𝐶 ∈ 𝑄𝐶 . 

According to Lemma 21, we have 𝑆𝑊𝐴𝑃 ∈ 𝑄𝐶. 
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Figure 3: The Operations on a System 

In Figure 3, the points represent qubits, and 𝛼 acts on qubit first and 𝛽 acts on qubit secondly, then 

we have a system. Next, we do the stabilization on this system, meaning that the original system does 

the tensor product with another system that only contains identity operators. Then, though elements 

in the new whole system have one more dimension, they are essentially unchanged, as shown in Step 

1. Subsequently, we insert a 𝑆𝑊𝐴𝑃 in Step 2, the new system is equal to the system shown in Step 3, 

which is also equal to the system shown in Step 4. Then, we insert three 𝑆𝑊𝐴𝑃 in three places circled 

with dashed line, then we get the system in Step 5, which is equal to the system shown in Step 6. The 

following is the process we do in Figure 3: 

 

𝛽 ∘ 𝛼
𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
→         (𝛽 ⨂ 𝐼) ∘ (𝛼 ⨂ 𝐼) ⋯⋯ 𝑆𝑡𝑒𝑝 1

  ≅ (𝛽 ⨂ 𝐼) ∘ 𝑆𝑊𝐴𝑃 ∘ (𝛼 ⨂ 𝐼) ⋯⋯ 𝑆𝑡𝑒𝑝 2

  = 𝑆𝑊𝐴𝑃 ∘ (𝐼 ⨂ 𝛽) ∘ (𝛼 ⨂ 𝐼) ⋯⋯ 𝑆𝑡𝑒𝑝 3

  = 𝑆𝑊𝐴𝑃 ∘ (𝛼 ⨂ 𝐼) ∘ (𝐼 ⨂ 𝛽)   

  = (𝐼 ⨂ 𝛼) ∘ 𝑆𝑊𝐴𝑃 ∘ (𝐼 ⨂ 𝛽) ⋯⋯ 𝑆𝑡𝑒𝑝 4

  = 𝑆𝑊𝐴𝑃 ∘ (𝐼 ⨂ 𝛼) ∘ (𝐼 ⨂ 𝛽) ∘ 𝑆𝑊𝐴𝑃 ⋯⋯ 𝑆𝑡𝑒𝑝 5

  = (𝛼 ⨂ 𝐼) ∘ (𝛽 ⨂ 𝐼) ⋯⋯ 𝑆𝑡𝑒𝑝 6

 (31) 

We can see that the order of 𝛼 and 𝛽 is reversed in the first subsystem in step 6 compared to step 

1, and only identity operators act on the second subsystem where we do stabilization. Thus, we find 

that (𝛽 ⊗ 𝐼) ∘ (𝛼 ⊗ 𝐼) is equivalent to (𝛼 ⊗ 𝐼) ∘ (𝛽 ⊗ 𝐼) by applying 𝑆𝑊𝐴𝑃 operations, 𝐴, 𝐵, 𝐶 ∈
𝑄𝐶, they are 𝑆𝑊𝐴𝑃 operations here, so 𝛼𝛽 = 𝐴𝛽𝐵𝛼𝐶 ≃ 𝛽𝛼, then 𝑄𝐶𝐴/𝑄𝐶 is an abelian group.  
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5. Discussion 

Our study explores QCA through group theory, offering new insights into its mathematical structure. 

While QCA has primarily been studied in the context of quantum computing and quantum 

information, its broader applications remain largely unexplored. One intriguing direction is whether 

QCA can be used as a computational tool to solve hard problems in group theory. Since group-

theoretic methods help analyze QCA dynamics, it is natural to ask the reverse — can QCA provide 

novel solutions for problems like finite simple group classification or infinite group representations? 

If so, it could introduce new approaches to approach these problems that might be faster or more 

effective than classical methods. Future research should focus on establishing a formal connection 

between QCA models and algebraic structures, possibly leading to novel quantum algorithms that 

extend beyond conventional quantum algorithms. 
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