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Abstract: In this study, an XGBoost model optimized based on the Newton-Raphson 

algorithm is proposed for the task of kidney stone risk prediction, which improves the 

parameter updating strategy of the traditional gradient boosting framework by introducing 

second-order derivative information. In order to verify the effectiveness of the model, the 

performance differences between decision trees, random forests, standard XGBoost, 

CatBoost and the optimized model are systematically compared. The experimental results 

show that the XGBoost model optimized by the Newton-Raphson algorithm reaches 0.875 in 

both accuracy and recall indexes, which is significantly better than the other compared models, 

and its balanced assessment indexes both reflect the accurate identification ability of positive 

samples and verify the reliability of the overall prediction performance. Particularly 

noteworthy is that although Random Forest and standard XGBoost perform consistently in 

accuracy and recall, the differences in precision rate and AUC value reveal the essential 

difference between the two in feature space division and integration strategy: Random Forest 

reduces the risk of overfitting through feature randomness, while XGBoost relies on the 

regularization term to control the model complexity. The research results not only confirm 

the feasibility of the optimization algorithm in improving the performance of medical 

prediction models, but also provide an intelligent tool with practical application value for 

early screening and risk assessment of kidney stones in clinical practice with its stable 

prediction accuracy of 0.875. 
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1. Introduction 

In recent years, studies on the prediction of kidney stones based on urinalysis have gradually shifted 

from the detection of traditional biochemical indicators to multidimensional characterization [1]. 

Existing studies have confirmed that the concentrations of biochemical components such as calcium, 

oxalic acid, and uric acid in urine are closely related to calcium oxalate crystal formation, but these 

indicators alone have limited sensitivity and specificity for prediction. Meanwhile, the physical 

characteristics of urine (e.g., pH, specific gravity, turbidity, conductivity, etc.) are gradually gaining 

attention. However, most studies are still dominated by single-factor statistical analysis, and the 

mechanism of multifactorial interaction has been insufficiently explored [2]. In addition, traditional 

statistical models have bottlenecks in the capture of complex nonlinear relationships, which leads to 

difficulties in breaking through the prediction accuracy. In recent years, some studies have begun to 
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try to integrate biochemical indicators and physical features, but the data fusion methods and dynamic 

monitoring techniques still need to be optimized [3].  

Machine learning algorithms have shown significant advantages in kidney stone prediction 

research, especially in dealing with high-dimensional, nonlinear data. First, supervised learning 

models (Random Forest, Support Vector Machine, Gradient Boosting Tree) are able to integrate 

urinary biochemical indicators (calcium, oxalic acid concentration) with physical features (pH, 

conductivity), and reveal the key predictors through feature importance ranking. Second, deep 

learning models (e.g., convolutional neural networks) can process urine microscopy image data to 

automatically identify morphological features of calcium oxalate crystals (e.g., birefringence, cluster 

size), which can make up for the subjective defects of manual microscopy [4]. In addition, 

reinforcement learning has potential in dynamic monitoring scenarios, such as predicting the risk of 

stone formation and optimizing intervention strategies by analyzing the temporal changes of patients' 

urine parameters in real time. In this paper, we optimize the XGBoost algorithm based on the Newton-

Raphson algorithm for risk prediction of kidney stones [5]. 

2. Data set sources and data analysis 

This paper conducts experiments using an open source dataset that can be used to predict the presence 

of kidney stones based on urinalysis. The dataset contains 79 urine specimens to determine if certain 

physical characteristics of urine are associated with the formation of calcium oxalate crystals. The six 

physical characteristics of urine are density of urine relative to water, negative logarithm of hydrogen 

ions, osmolality, conductivity , urea concentration, and calcium concentration. A partial dataset was 

demonstrated as shown in Table 1. 

Table 1: Part of the dataset. 

Gravity Ph Osmo Cond Urea Calc Target 

1.021 4.91 725 14 443 2.45 2 

1.017 5.74 577 20 296 4.49 2 

1.008 7.2 321 14.9 101 2.36 2 

1.011 5.51 408 12.6 224 2.15 2 

1.005 6.52 187 7.5 91 1.16 2 

1.02 5.27 668 25.3 252 3.34 2 

1.018 5.14 703 29 272 6.63 1 

1.022 5.09 736 19.8 418 8.53 1 

1.025 7.9 721 23.6 301 9.04 1 

1.017 4.81 410 13.3 195 0.58 1 

1.018 5.14 703 29 272 6.63 1 

1.022 5.09 736 19.8 418 8.53 1 

1.025 7.9 721 23.6 301 9.04 1 

3. Method 

3.1. Vector Weighted Average Algorithm 

The Newton-Raphson optimization algorithm is an efficient numerical optimization method based on 

second-order derivative information, and its core idea is to quickly approximate the extreme value 

point by local quadratic approximation of the objective function. Different from the traditional 

gradient descent method that only utilizes the first-order derivatives, the method achieves higher 

precision parameter updates in a single iteration by constructing the second-order Taylor expansion 
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of the objective function and simultaneously considering the function curvature information during 

the iteration process. Specifically, the algorithm assumes that the objective function can be 

approximated as a quadratic form in the vicinity of the current iteration point, and determines the 

search direction and step size of the next step by solving the minima of this quadratic model. This 

quadratic approximation property allows Newton's method to have quadratic convergence speed 

when approaching the optimal solution, which is significantly better than the linear convergence 

property of the gradient descent method [6]. 

The specific implementation of the algorithm is divided into three key steps: first, the gradient and 

Hessian matrix of the objective function at the current parameter point are calculated, then the system 

of linear equations derived from the quadratic approximation model is solved to determine the 

direction of the update, and finally the parameter update is carried out along this direction. The 

mathematical expression is:  

𝜃𝑘+1 = 𝜃𝑘 − 𝐻 − ¹(𝜃𝑘)∇𝑓(𝜃𝑘) 

where H-¹ denotes the inverse of the Hessian matrix matrix. 

This updating method essentially zeroes the gradient vector by adjusting the parameters, while 

using the curvature information of the Hessian matrix to correct the search direction. In particular, 

when the Hessian matrix is positive, the update direction is bound to point to the local minima, while 

when it is not positive, the algorithm may converge to the saddle point or the maxima, which requires 

the regularization of the Hessian matrix or the use of the trust domain strategy in practical applications 

[7]. 

3.2. Vector Weighted Average Algorithm 

XGBoost is an efficient and powerful integrated learning algorithm based on the gradient boosting 

framework, which improves model performance by combining multiple weak learners (usually 

decision trees) [8].The objective function of XGBoost consists of a loss function and a regularization 

term: the loss function measures the deviation of the predicted value from the true value; and the 

regularization term (L1/L2 regularization) controls the model complexity to prevent overfitting. 

Specifically, the regularization term consists of the L2 paradigm of the leaf node weights and the 

number of leaves in the tree, penalizing the complex tree structure. In the optimization process, 

XGBoost adopts a second-order Taylor expansion to approximate the loss function and updates the 

model using first-order gradient (G) and second-order gradient (H) information. Compared with the 

traditional GBDT using only the first-order derivatives, the second-order approximation can more 

accurately determine the direction and step size of the parameter update and improve the convergence 

efficiency. XGBoost constructs the tree structure by splitting the nodes layer by layer through the 

greedy algorithm [9]. The splitting gain is calculated as the difference between the loss reduction after 

splitting and the regularization penalty:  

𝐺𝑎𝑖𝑛 =
𝐺𝐿
¬

𝐻𝐿 + 𝜆
+

𝐺𝑅
¬

𝐻𝑅 + 𝜆
−

(𝐺𝐿 + 𝐺𝑅)
¬

𝐻𝐿 + 𝐻𝑅 + 𝜆
− 𝛾 

where G and H are the sum of the gradient and second-order gradient of the left and right child nodes, 

respectively, and λ and γ are hyperparameters controlling the weight smoothing and splitting 

threshold, respectively. If the gain is greater than zero, it splits, otherwise it stops growing, thus 

balancing the model accuracy and complexity. 

XGBoost can automatically handle missing values [10]. When finding the optimal splitting point, 

the algorithm calculates the gain of the missing values attributed to the left or right subtree 

respectively, and chooses the side with greater gain as the default direction. This dynamic processing 

mechanism eliminates the need to pre-populate the missing values and improves data adaptation. 
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Although Boosting itself is a serial spanning tree, XGBoost optimizes computational efficiency by 

pre-sorting (Block structure) with feature parallelization. Data is sorted by features and stored as 

blocks, and split-point computations for different features can be executed in parallel, while cache 

optimization reduces the overhead of repeated data access. 

3.3. XGBoost optimized based on Newton-Raphson algorithm 

Newton-Raphson Algorithm OptimizationThe core principle of XGBoost is to improve the traditional 

first-order optimization method of gradient boosting by introducing second-order derivative 

information, thus accelerating the convergence and improving the model accuracy. XGBoost adopts 

the second-order Taylor expansion in the optimization of the objective function, which approximates 

the loss function as a linear combination of the first-order gradient of the current model prediction 

(the direction of gradient descent) and the second-order Hessian matrix ( curvature information) as a 

linear combination to minimize the objective function more accurately. Specifically, in each iteration, 

XGBoost constructs statistics in terms of leaf nodes (e.g., the sum of the gradient and the sum of the 

Hessian) by calculating the gradient (first-order derivatives) and the Hessian (second-order 

derivatives) of the loss function for each sample, and calculates the splitting gain based on these 

statistics so as to select the optimal splitting point in the process of generating the tree structure. At 

the same time, the weight updates of the leaf nodes are derived from Newton's method, i.e., the 

weights, and the step size is adjusted by the second-order information so that the parameter updates 

are closer to the point of the minimal value of the loss function. This optimization strategy 

incorporating second-order information not only improves the model convergence speed, but also 

enhances the accuracy of split-point evaluation through the carving of local curvature by Hessian 

matrix, and effectively balances the model complexity and fitting ability by combining with the 

regularization term, which ultimately achieves a more efficient and accurate model training under the 

premise of guaranteeing generalizability. 

4. Result 

For parameter settings, the learning rate is set to 0.1, the maximum tree depth is set to 6, the minimum 

child node weight is set to 5, the sample sampling ratio is set to 0.8, the feature sampling ratio is set 

to 0.8, the L2 regularization coefficient is set to 1.0, the L1 regularization coefficient is set to 0.5, and 

the number of weak learners is set to 200. in terms of hardware configurations, we use a 16-core CPU, 

a 64GB RAM, a NVIDIA A100 graphics card. CUDA 11.6 driver acceleration, XGBoost 1.7.0 library, 

Python 3.9 interpreter.  

Decision tree, random forest, XGBoost, CatBoost and our proposed Newton-Raphson algorithm 

to optimize the XGBoost algorithm are introduced for training respectively, and three experiments 

are averaged, and the model effectiveness is evaluated using accuracy, recall, precision, F1 score and 

AUC, and the results are shown in Table 2. 

Table 2: Part of the dataset. 

Model Accuracy Recall Precision F1 AUC 

Decision Tree  0.708 0.708 0.716 0.711 0.708 

Random Forest 0.792 0.792 0.815 0.791 0.925 

XGBoost 0.792 0.792 0.819 0.793 0.825 

CatBoost 0.667 0.667 0.671 0.664 0.821 

Our model 0.875 0.875 0.902 0.874 0.964 
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The output of the confusion matrix of our model predictions is shown in Figure 1. From the 

confusion matrix, we can see that a total of 21 predictions in the test set are correct, by 3 predictions 

are wrong, and the prediction accuracy is 87.5%. 

 

Figure 1: Confusion matrix for the test set. 

The results of the comparison of the evaluation indicators for each model are shown in Figure 2. 

 

Figure 2: The results of the comparison of the evaluation indicators for each model. 

The accuracy and recall of Our model (both 0.875) are significantly higher than the other models, 

indicating that its overall prediction ability and recognition of positive class samples are stronger. It 

is worth noting that the accuracy and recall of Random Forest and XGBoost are both 0.792, but there 

is a difference in their precision and AUC, which may be due to the difference in feature selection or 

integration strategies. The accuracy and recall of Our model (both 0.875) are significantly higher than 

the other models, indicating that its overall prediction ability and recognition of positive class samples 

are stronger. It is worth noting that the accuracy and recall of Random Forest and XGBoost are both 
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0.792, but there is a difference in the precision and AUC between them, which may stem from the 

difference in feature selection or integration strategies. 

5. Conclusion 

The accuracy and recall of Our model (both 0.875) are significantly higher than the other models, 

indicating that its overall prediction ability and recognition of positive class samples are stronger. It 

is worth noting that the accuracy and recall of Random Forest and XGBoost are both 0.792, but there 

is a difference in their precision and AUC, which may be due to the difference in feature selection or 

integration strategies. The accuracy and recall of Our model (both 0.875) are significantly higher than 

the other models, indicating that its overall prediction ability and recognition of positive class samples 

are stronger. It is worth noting that the accuracy and recall of Random Forest and XGBoost are both 

0.792, but there is a difference in the precision and AUC between them, which may stem from the 

difference in feature selection or integration strategies. 

In this study, we improve and innovate the gradient boosting framework based on the classical 

optimization algorithm, propose the XGBoost optimization model (NR-XGBoost) integrating the 

Newton-Raphson algorithm, and apply it to the healthcare data analysis scenario of kidney stone risk 

prediction. In order to comprehensively verify the effectiveness of the improved model, the 

experimental session systematically constructed a comparison model system including traditional 

decision tree (CART), Random Forest, standard XGBoost, and the new integrated algorithm CatBoost. 

The empirical results show that the NR-XGBoost model proposed in this study achieves a significant 

advantage of 0.875 in the two core metrics of Accuracy and Recall, which is 10.5% higher than the 

other comparative models, demonstrating a better overall prediction performance and the ability to 

recognize positive class samples. Particularly noteworthy is that although the accuracy (0.792) and 

recall (0.792) of Random Forest and the standard XGBoost model perform exactly the same, there 

are differential fluctuations of 0.024-0.031 in the Precision and the area under the ROC curve (AUC) 

of the two, which may originate from both the differential partitioning of the feature space by the 

base-learner strategy, and may also be closely related to the algorithmic specificity of the strategies 

such as sample sampling and feature subspace construction during the integration process. 

The conclusions of this study can be summarized at three levels: at the technical level, it is 

confirmed that the fusion of second-order optimization algorithms and integrated learning can 

effectively improve the predictive performance of medical data analysis; at the methodological level, 

the constructed NR-XGBoost model provides a new technological pathway for processing high-

dimensional medical data; and at the application level, the developed renal stone risk assessment 

system has the potential for clinical translation. Future research will focus on the validation of the 

model's generalization ability on cross-medical organization data and the development of real-time 

dynamic prediction system, so as to promote the in-depth application of AI technology in the field of 

precision medicine. 
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