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Abstract: The global crude oil market is influenced by geopolitical, supply-demand, and 

financial factors with important macroeconomic considerations. This research used a 

multivariate linear regression and an ARIMA time series model to explore past price behavior 

and forecast short-term trends. The primary variables involved are the macroeconomic 

variables, financial indicators, and measure of geopolitical risk. After addressing stationarity, 

this paper found the selected ARIMA model performed well and predicted generally 

decreasing oil prices one year ahead, with increasing confidence intervals around those 

predictions reflecting increasing uncertainty concerning future prices. Residual diagnostics 

support the adequacy of the model, but the model is constrained by structural breaks (e.g., 

financial crises, pandemic shocks) in data, and the omission of relevant exogenous variables. 

The results of the analysis reaffirm that the long-term price behavior of crude oil is driven by 

supply-demand fundamentals but highlight the pressure for hybrid models with machine 

learning algorithms that account for nonlinear relationships and structural breaks. The 

research provides actionable information for both policymakers and investors as they 

navigate volatile markets with important geopolitical risk factors.   

Keywords: Crude oil prices, ARIMA model, geopolitical risk. 

1. Introduction 

The international crude oil market is the backbone of the global economy, and changes in prices have 

widespread implications on political situation, production, and macroeconomic elements, such as 

inflation rate, stability of economic growth and unemployment. Prices are determined by a complex 

interaction of geopolitical forces, supply-demand forces, financial market speculation, and other 

macroeconomic factors. The understanding of the determinants of oil prices has long been on the 

target of energy economics research, as accurate forecasting enables governments and businesses to 

formulate risk-protection policies and make optimal use of resources. However, nonlinear and 

turbulent properties of oil markets pose serious problems for investigation. The current study employs 

a multivariate linear regression model which can systematically test the relative contributions of 

major driving forces for achieving a better ability to illustrate oil price behavior. 

In the current literature, several drivers of crude oil prices have been recorded by using a range of 

methodological techniques. Hamilton pioneered the analysis of supply shocks in oil crises using 

historical decomposition methods as a foundation for geopolitical risk analysis [1]. Kilian further 

developed this model by decomposing oil price volatility into supply shocks, demand shocks, and 

precautionary demand shocks with a structural vector autoregression (SVAR) model [2]. Studies have 
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recently included additional financial market variables: Tang et al. demonstrated the growing 

importance of speculative futures market trading with Granger causality tests [3]. Macroeconomically, 

the time-varying responsiveness of oil prices with respect to dollar fluctuations has been quantified 

by Baumeister and Peersman using time-varying parameter models [4]. 

Recent methodology in energy economics has begun to refine the information. Nonlinear 

relationships among West Texas Intermediate (WTI) prices and inventories were identified using 

machine learning models by Zhang et al. [5]. However, Bastianin et al. emphasized the potential 

overfitting risks in advanced models through comparative out-of-sample forecasting performance 

comparison [6]. The role of renewable energy transitions has also been increasingly important in 

recent literature, with Wesseh and Lin’s generation negative correlations between clean energy 

investment and oil price dynamics [7]. Technically, the forecasting power of moving average 

indicators in crude oil markets was proved by Kristjanpoller and Hernández [8]. To be more specific, 

structural breaks in price series were theoretically and rigorously addressed by Lee et al. through 

Markov regime-switching models, while the dominant role of supply and demand fundamentals in 

long-term pricing were proved by Narayan's (2019) meta-analysis of 150 studies [9, 10]. 

Despite these great advances, there are still significant gaps in current research. First, most current 

models simply overlook interaction effects between fundamental and financial variables. Second, the 

assumption of linear relationships in conventional regression models is unable to capture threshold 

effects at market extremes. Third, not enough emphasis has been placed on time variations in variable 

significance across different market cycles. This study addresses these limitations by employing a 

multivariate linear regression framework that includes both physical market drivers and financial 

market variables. 

2. Methods 

2.1. Data source 

The confluence of this study is based on time-series data spanning multiple years, with specific focus 

on macroeconomic and financial variables pertaining to movements in global crude oil prices. Data 

has been used from publicly available sources, including national statistical databases, financial 

market reports, and platforms on energy economics. The selected variables are primarily crude oil 

prices, commodity indices, stock market indices, exchange rates, GDP, geopolitical risk (GPR), and 

the Baltic Dry Index (BDI). A clean-up was also performed on the data in order to delete certain 

variables that in the first place had too many missing values and were outliers, providing consistency 

and reliability for analysis. 

2.2. Variable selection and description 

The dependent variable is crude oil price (WTI). The independent variables are commodity Index, 

which Represents global raw material demand; the SSE Index which measures Chinese stock market 

performance and has relationship with energy consumption; Exchange Rate (CNY/USD), which 

affects oil import costs for China; GDP, which shows Quarterly Chinese GDP data proxies’ 

macroeconomic activity; GPR, which is Geopolitical Risk Index, shows supply disruptions (e.g., wars, 

sanctions); BDI, which is Baltic Dry Index, reflects global shipping costs and trade volume (Table 1). 

Table 1: Descriptive statistics of variables 

Variable Unit Mean Std. Dev. Min Max 

Oil Price USD/barrel 76.32 18.45 12.34 122.11 

Commodity  Index 895.6 102.3 674 1213 

SSE Index Points 3054.7 198.6 2702 3636 
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Exchange Rate Rate 7.12 0.21 6.71 7.56 

GDP Billion CNY 298450 18732 205245 347890 

GPR Index 112.6 38.7 58.4 318.9 

BDI Points 1,847 672 398 5062 

2.3. Method introduction 

The Autoregressive Integrated Moving Average (ARIMA) model is a widely used statistical approach 

for analyzing and forecasting time series data. ARIMA models are particularly suited for non-

stationary time series, where differencing is applied to achieve stationarity. The model is defined by 

three parameters: p (autoregressive order), d (degree of differencing), and q (moving average order), 

denoted as ARIMA(p,d,q). Autoregressive Component (AR) captures the relationship between an 

observation and its lagged values. For example, an AR(p) model uses p lagged observations of the 

time series as predictors. Integrated Component (I) is applied to stabilize the mean of the time series 

by removing trends or seasonality. Moving Average Component (MA) models the dependency 

between an observation and residual errors from a moving average of lagged observations. An MA(q) 

model uses q lagged forecast errors. 

3. Results and discussion 

3.1. Stationarity test  

The correlation between international oil price and time is shown by the time series graph, which 

shows the change in oil price against time (Figure 1). The Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) graphs illustrate the correlation of differenced data.  

 

Figure 1: Time series graph of oil price 

This research involves generating a dataset regarding global crude oil prices, alongside the need 

for further processing of several additional variables to ensure stationarity which is an important 

assumption for all kinds of time series modeling. The first ACF (Figure 2) of raw oil price series 

shows considerable autocorrelation with high data intensity, thereby suggesting that the time series 

was non-stationary. Stationarity was attained through first-order differencing. ACF and PACF plots 

Table 1: (continued) 
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for differenced data are shown in Figure 2 and 3, showing a clear decaying pattern and stationarity of 

differenced data. It was also augmented with an augmented Dickey-Fuller (ADF) test with statistic 

value -7.671 and p = 0.01 (Table 2) and thus rejected the null hypothesis of non-stationarity at a 1% 

significance level. 

Table 2: Augmented dickey-fuller test results 

Test Statistic Lag Order p-value 

-7.671 7 0.01 

 

Figure 2: ACF plots for differenced data 

 

Figure 3: PACF plots for differenced data 

3.2. Model selection and evaluation 

The process of identification of the best ARIMA model had many possible combinations. Various 

configurations used optimization techniques with performance measured using Root Mean Square 

Error (RMSE) and Akaike Information Criterion (AIC). As listed in Table 3, the ARIMA(3,1,1) 

model attained the lowest AIC (2387.12) and a competitive RMSE (4.579), performing better than 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/105/2025.22543 

11 



 

 

the others such as ARIMA(3,1,2) (AIC: 2389.04) and ARIMA(4,1,1) (AIC: 2396.18). The marginal 

variance in RMSE involved among the models stressed the preference of AIC to be parsimony in 

favor of ARIMA(3,1,1) regarding simplicity and accuracy. Therefore, using ARIMA(3,1,1) model is 

the best way to analyze and forecast the international oil price. 

Table 3: ARIMA model performance comparison 

Model RMSE AIC 

(1,1,0) 4.633 2390.52 

(1,1,1) 4.633 2392.52 

(3,1,1) 4.579 2387.12 

(4,1,1) 4.620 2396.18 

3.3. Forecasting oil price dynamics 

The ARIMA(3,1,1) model is selected to show the figure of real value in the past years and a prediction 

of the future trend. 

 

Figure 4: ARIMA(3,1,1) forecast vs. historical data 

The selected ARIMA(3,1,1) model was used to make oil price forecasts over an entire year, from 

October 2023 to September 2024. The model shows, as shown in Figure 4 and Table 4, that there will 

be a short-lived price increase from 92.02 USD/barrel in October 2023 to gradually decline at 86.84 

USD/barrel for September 2024. In line with the inherent volatility of oil markets, the increasing 

confidence intervals (e.g., 80% Confidence Interval (CI): 63.03-110.64; 95% CI: 50.43-123.25 for 

September 2024) indicate that there is a rising uncertainty across longer horizons. 

Table 4: ARIMA(3,1,1) forecasts with confidence intervals 

Time 
Forecast 

(USD) 

80%CI 

(Low) 

80%CI 

(High) 

95%CI 

(Low) 

95%CI 

(High) 

2023/10 92.02 86.15 97.90 83.04 101.01 

2024/03 89.99 71.12 108.88 61.12 118.87 

2024/09 86.84 63.03 110.64 50.43 123.25 
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3.4. Residual diagnostics 

The Q-Q plot is used to analyze the autocorrelation for the residuals and the distribution pattern. 

 

Figure 5: Q-Q plot of residuals 

An analysis of the residuals was performed to verify model adequacy. There was no significant 

autocorrelation for the quantile-quantile (Q-Q) plot (Figure 5) indicated that they were approximately 

normally distributed with slight deviations in the tails. The Durbin-Watson statistic of 1.98 reflected 

no pronounced autocorrelation; besides the Ljung-Box test (p = 0.21) supported the null hypothesis 

of residual independence. The cumulative evidence confirmed the model's assumption that white 

noise residuals underpinned the development of the model. 

3.5. Discussion 

Performance on these tests confirms the robustness of the model. However, a discussion of the 

limitations is in order. The structural breaks in historical data which have been graphed in Figure 4. 

Since 2007, oil prices have likely experienced greater volatility due to geopolitical events, the 2008 

financial crisis, and the shale oil boom. Constant parameters over time in an ARIMA framework 

mean that structural breaks of this nature make the model difficult to tune well. Extended short-run 

accuracy coupled with the bad idea of omitting long-run trends by excluding data through 2007 might 

improve model fit. In addition, external sources of economic disturbances: The incorporation of 

macroeconomic variables, such as GDP growth rates, interest rates, and indices of geopolitical risk 

into the model, has not been attempted, while they are known to be of episodic importance in 

influencing oil prices. The COVID-19 demand shock in 2020 or OPEC supply decisions would render 

such forecasts redundant. One possible avenue for use in improving adaptability is the hybridization 

of this with exogenous variables (ARIMAX) modeling or machine learning techniques. There are 

some reliefs in sight for energy-importing economies plagued by inflation, as oil prices are expected 

to fall to $87 a barrel by the end of 2024. Policymakers, however, need to be careful of upside risks 

such as supply disruptions or renewed demand out of emerging markets. Investors, meanwhile, can 

use the model confidence intervals to protect themselves against volatility in futures markets. 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/105/2025.22543 

13 



 

 

3.6. Comparative insights 

The results coincide with prior studies which point towards dominant supply-demand fundamentals 

determining the long-run price of oil [10]. However, the model's inability to account for nonlinear 

interactions between financial speculation and geopolitical risk, a gap in recent literature, suggests 

that more advanced approaches should be possible [3, 6]. For illustration, Zhang et al. showed that 

using machine learning models for nonlinear inventory-price relationships increases forecasting 

accuracy, while Bastianin et al. warned against overfitting in complex models [5, 6]. 

4. Conclusion 

This research has developed an ARIMA (3,1,1) model for crude oil price forecasting, providing useful 

outputs of Root Mean Squared Error (RMSE) of 4.579 and an Akaike Information Criterion (AIC) 

score of 2387.12. The model has demonstrated stability compared with classical statistical models, 

with a short-term volatility modeled to the moving average term (MA=1) and long-run trends 

modeled across the autoregressive term (AR=3). The selection of the ARIMA (3,1,1) model focuses 

on simplicity and accuracy, as demonstrated by both the RMSE and AIC statistics. These findings, 

aligning with historical studies, demonstrate the supply and demand fundamentals driving price, and 

reflect the challenges of modeling nonlinear market structures such as speculative bubbles or 

asymmetric responses to geopolitical shocks. Despite these useful outputs, limitations of this model 

are similar to substantial limitations in standard linear models. First, the model assumes stationarity 

and linear relationships (to account for temporal relationships in data) which may overlook or 

oversimplify the chaotic turbulent regime shifting nature of oil markets. For context, structural change, 

such as financial crisis in 2007-2008 or demand crash in 2020 due to COVID-19 pandemic, is beyond 

the model’s forecast. Second, the exclusion of exogenous variables in the model reduces usability in 

the rapidly changing market. Future research should be improved to address these limitations with 

introduction of hybrid models that use ARIMA and machine learning to capture nonlinear. 
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