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Abstract: With the rise of the Single-Pilot Operation (SPO) mode, the human-machine 

interaction design of aircraft cockpits faces new challenges. This paper focuses on optimizing 

human-machine interaction in single-pilot aircraft cockpits by constructing a three-

dimensional evaluation system based on the NSGA-II multi-objective optimization strategy. 

This system comprehensively analyzes the reachability of operating components (D), the 

contrast of color information (C), and the cognitive load of pilots (L). Data are derived from 

assumptions and simulation analyses based on literature and theory, covering factors such as 

pilot characteristics, component layout, color contrast limits, and flight mission complexity. 

By generating Pareto front solutions, the paper reveals trade-offs among the three objectives, 

providing a new quantitative decision-making basis and research direction for cockpit design. 
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1. Introduction 

In recent years, the advancement of aviation automation has driven a trend toward crew reduction in 

aircraft cockpits, making Single-Pilot Operation (SPO) a research hotspot. In SPO, pilots shift from 

team-based to independent decision-making, intensifying the impact of component reachability and 

cockpit visual information on cognitive load. Previous studies have found that during the approach 

phase, the peak cognitive load in single-pilot flight can reach 0.7—well above the optimal range of 

0.3–0.5[1]—thus threatening decision-making efficiency. 

While some scholars have proposed a "pilot-centered" interface dynamic allocation principle [2], 

there remains a lack of multi-objective optimization methods that integrate spatial layout, visual 

information, and cognitive load. Therefore, this paper addresses three core issues: 

Problem 1: How to analyze and optimize the reachability of pilot operations to ensure that key 

controls are accessible to pilots of various body sizes. 

Problem 2: How to analyze and optimize cockpit color visibility by examining the effects of color 

selection and contrast on visual perception and information acquisition. 

Problem 3: How to construct a multi-objective optimization model based on NSGA-II to balance 

reachability (D), contrast (C) and cognitive load (L), and validate the optimization under different 

weight configurations (e.g., wide-body versus narrow-body aircraft). 

NSGA-II, proposed by Deb et al. in 2002[3], effectively balances convergence and diversity in 

multi-objective problems. The design in this study applies NSGA-II to generate a uniformly 
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distributed Pareto front without preset weight biases, providing quantitative decision support for 

cockpit design. 

2. Analysis on pilot operation behavior and cockpit color information design 

2.1. Reachability analysis of pilot operation behavior 

In a single-pilot environment, the pilot must operate multiple components within a limited space. 

Research by Ye et al. [4,5] indicates that cockpit design should account for the pilot’s body shape, 

operating habits, and task requirements. Yang [6] also noted that toggle switch errors are closely 

related to component reachability. 

Reachability Design Based on Pilot Arm Length 

Using the pilot’s sitting center as the origin, the Euclidean distance between an operating 

component and the origin is calculated as [7]: 

 d = √(xcomp − xpilot)2 + (ycomp − ypilot)2 (1) 

If d ≤ Arm Length , the component is easily reachable; otherwise, layout adjustments or 

compensatory design measures are required. 

Calculation of Reachability Score  

Distance is converted into a reachability score D using formulas such as: 

 D =
1

1+d
 or D = max (0, 1 −

d

Arm Length
) (2) 

A higher D signifies that the operating component is more accessible. 

2.2. Analysis of visibility and cognitive load in cockpit color information design 

Impact of Color Selection on Cognitive Load 

Color plays a vital role in cockpit design by affecting information recognition and cognitive load. 

Li[8] recommends using high-saturation colors in interfaces emphasizing contrast to efficiently 

recognize hues such as red and yellow are preferable. 

Impact of Contrast on Cognitive Load 

Contrast is defined as the brightness ratio of a white screen (at its brightest) to a black screen (at 

its darkest) in a dark environment. A high-contrast design enables quick information identification 

and reduces cognitive load. However, excessively high or low contrast increases interpretation effort. 

Studies by Shen et al. [9] and Kang et al. [10] emphasize that optimized contrast is crucial for both 

safety and efficiency. 

Calculation of Contrast Score 

According to visual ergonomics theory, contrast C is calculated as: 

 C =
Lmax−Lmin

Lmax+Lmin
 (3) 

where Lmax and  Lmin denote the maximum and minimum brightness levels, respectively. 

3. Construction of multi-objective optimization model based on NSGA-II 

This section describes parametric modeling, coding scheme, and optimization function construction 

for cockpit design. All parameters are mapped to the [0, 1] interval through normalization. 
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3.1. Parametric modeling and coding scheme 

To comprehensively describe cockpit design elements, a parameter system is established comprising 

three main parts:  

Spatial Layout: Position of operating components. 

Visual Interface: Color contrast. 

Mission Complexity: Workload for different flight phases. 

A normalized coding strategy is used: 

 Xnorm =
X−Xmin

Xmax−Xmin
 (4) 

Where X  is the original data. Xmax , Xmin  are the maximum and minimum dataset values 

respectively. 

3.1.1. Position of operating components 

Using the pilot's sitting center as the origin (0, 0), a coordinate system is based on the "Full Arm 

Length Parameters for Chinese Male Mixed Aircraft Pilots" (GJB 4856-2003): 

Mean ± SE: 550.5 ± 0.52 mm 

Standard deviation: 21.8 mm 

Minimum: 487.0 mm, Maximum: 627.0 mm 

The lateral range is set to [−62.7, 62.7] cm and the longitudinal range to [0, 62.7] cm. Four key 

operating components (main control stick, throttle lever, emergency button, and navigation panel) are 

linearly mapped using: 

 xnorm =
x+62.7

125.4
, ynorm =

y

62.7
 (5) 

3.1.2. Color contrast 

Each of the four groups of operating components corresponds to brightness values Lmax and Lmin. 

Using the RGB color model (256 levels from 0 to 255), normalization is: 

 Lnorm =
L

255
 (6) 

This converts the brightness values into a normalized value suitable for further processing. 

3.1.3. Mission complexity 

Mission complexity is quantified using NASA-TLX[11], which evaluates workload through six 

dimensions: mental demands, physical demands, temporal demands, performance, effort, and 

frustration. For each flight phase (takeoff, cruising, approach), pairwise comparisons yield relative 

importance scores ni (with ∑ ni = 15 × k6
i=1 (7), constant k is normalized). 

Weights are given by: 

 wi =
ni

15
 (8) 

Assuming raw scores si (ranging from 0 to 100) for each dimension, the weighted score mi is 

computed as: 

 mi = 20si (9) 

In this equation, the factor of 20 (derived from 
1

5
× 100) converts the raw score into a scale 

comparable with the normalized weights. The total workload for a flight phase is then calculated as: 
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 Total Workload =  ∑ (mi × wi) = ∑ (20si ×
ni

15
) =

20

15
∑ (si × ni)

6
i=1

6
i=1

6
i=1  (10) 

These values are normalized to the [0, 1]  range. Overall, 19 dimensions are encoded: 8 for 

operating components, 8 for color contrast, and 3 for mission complexity. 

3.2. Construction of the multi-objective optimization function 

The optimization function is defined as: 

 F = ω1 ∙ D + ω2 ∙ C − ω3 ∙ L (11) 

where: 

F is the overall optimization score, a weighted sum of the three objectives. 

D is the reachability score. 

C is the color contrast score. 

L is the pilot’s cognitive load. 

ω1, ω2 and ω3 are weight coefficients for each objective, satisfying ω1 + ω2 + ω3 = 1. 

The negative sign before L indicates that reducing load is desired. 

3.3. Analysis of weight distribution and aircraft model differences 

Cockpit layout varies between wide-body and narrow-body aircraft, influencing weight distribution 

of the objectives, particularly the reachability score D. 

3.3.1. Wide-body aircraft 

Larger cockpits with widely distributed controls often force pilots to adjust posture or extend arms, 

leading to lower reachability scores D and a reduced ω1. Consequently, higher weights are assigned 

to color contrast (ω2) and cognitive load (ω3). In this study, the weights for wide-body aircraft are set 

as: 

ω1 = 0.3, ω2 = 0.35, ω3 = 0.35 

3.3.2. Narrow-body aircraft 

More compact layouts yield higher reachability scores, thus a higher ω1, while ω2 and ω3 are 

lower. The weights for narrow-body aircraft are set as: 

ω1 = 0.5, ω2 = 0.25, ω3 = 0.25 

Simulations using these configurations generate two sets of Pareto front solutions via NSGA-II, 

revealing how changes in weight distribution affect trade-offs among D, C, and L. 

3.4. NSGA-II algorithm process and simulation details 

The NSGA-II algorithm is employed to address the multi-objective optimization problem, with the 

essential steps outlined as follows: 

Population Initialization 

An initial collection of solutions is created, and the values of their objective functions are 

computed. 

Detail on Simulation Parameters: Population size = 200; mutation rate = 0.05; crossover rate = 0.8; 

iterations = 1000. 

Non-Dominated Sorting 
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The population is segmented into several non-dominated fronts according to the principle of Pareto 

dominance. 

Crowding Distance Calculation 

For each solution, crowding distance is computed to ensure diversity. The formula is: 

 crowding distancei = ∑
fm(i+1)−fm(i−1)

fm
max−fm

min
M−1
m=1  (12) 

where fm(i + 1) and fm(i − 1) are the objective function values of the adjacent solutions, and fm
max

 

and fm
min

 are the maximum and minimum values for the m − th objective respectively. 

Selection, Crossover, and Mutation 

A binary tournament selection is used to choose parent solutions. New solutions are generated via 

crossover and mutation. 

Population Update and Iteration 

The combined parent-offspring population is truncated back to the original size and repeated until 

a termination condition is met. 

3.5. Experimental overview and results 

Simulation experiments are conducted separately for wide-body and narrow-body aircraft using the 

specified weight configurations. The generated 3D Pareto fronts (Figures 1 and 2) demonstrate: 

A uniform distribution in objective space, indicating effective exploration and diversity. 

A trade-off between reachability and contrast: When reachability D is high, contrast C tends to 

decrease, suggesting that optimizing for accessibility might sacrifice visual clarity.  

Lower contrast is associated with higher cognitive load, implying that suboptimal layouts force 

pilots to expend more cognitive resources. An increase in C can also lead to higher L due to 

potential visual interference. 

 

Figure 1: 3D Pareto front (wide-body aircraft) 
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Figure 2: 3D Pareto front (narrow-body aircraft) 

Comparative analysis reveals that wide-body aircraft solutions have lower D (due to a lower ω1), 

while narrow-body solutions exhibit higher D and more balanced C and L distributions. 

4. Conclusion 

This study explores the optimization of human-machine interaction in single-pilot aircraft cockpits, 

focusing on reachability, contrast, and cognitive load. By constructing a multi-objective optimization 

model based on NSGA-II, a three-dimensional evaluation system is developed to address complex 

design challenges. Simulation data—derived from theoretical assumptions and literature on pilot 

characteristics, component layouts, color contrast limits, and mission complexity—supports the study. 

The results reveal a complex trade-off among the three objectives, as illustrated by the Pareto front. 

The NSGA-II model effectively generates Pareto front solutions, providing a scientific basis for 

decision-making and assisting designers in selecting optimal cockpit configurations. This approach 

enhances cockpit interface usability and adheres to the "pilot as the core" principle, creating a more 

intuitive and less burdensome operating environment. 

Despite its contributions, the study has certain limitations. The simulation relies on assumptions 

due to constraints in real-world data collection, which may introduce biases. Future work should 

incorporate empirical data from actual single-pilot flight environments to validate and refine the 

model. Additionally, this study simulated only daytime color contrast; future research should explore 

night-time conditions. Expanding the literature review and examining sensitivity to model parameters 

will further enhance the robustness of the findings. 

Overall, this research establishes a systematic framework for optimizing cockpit layouts by 

balancing reachability, contrast, and cognitive load. Future research should verify and extend these 

findings with diverse datasets and explore additional factors and more efficient optimization 

algorithms to continually improve cockpit usability and safety. 
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