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Abstract: Dynamic social networks present significant challenges for rapid identification of 

high-impact nodes, which is crucial for effective information dissemination in scenarios such 

as emergency management and enterprise marketing. This study introduces a hybrid 

optimization framework, MLE-GA, that integrates maximum likelihood estimation (MLE) 

with traditional genetic algorithms (GA) to address these challenges. In the proposed two-

layer architecture, the outer GA layer performs a global search to optimize candidate seed 

node combinations, while the inner MLE layer dynamically estimates network parameters in 

real time, thereby constructing a probabilistic model that guides the evolution of the solution. 

Simulation experiments, including tests on synthetic datasets and real-world networks like 

Zachary’s Karate Club, demonstrate that MLE-GA achieves an error rate below 5% for 

identifying high-influence nodes, significantly outperforming conventional MLE approaches. 

The results confirm that the hybrid method not only effectively distinguishes between high- 

and low-influence nodes but also adapts to rapid changes in network structure, ensuring 

efficient resource allocation and robust optimization in dynamic environments. These 

findings underscore the potential of MLE-GA as a universal solution for complex social 

network problems where timely and accurate decision-making is imperative. 

Keywords: Genetic algorithms, Maximum likelihood estimation, Node influence 

identification 

1. Introduction 

In enterprise marketing, a core academic question is how to maximize the dissemination of 

advertising information using the smallest number of "seed users" within social network 

environments such as WeChat and Weibo [1]. This question intersects the mechanisms of social 

network communication with the optimal allocation of marketing resources. 

From the perspective of emergency management, when confronted with a major natural disaster, 

the primary concern is how to quickly and accurately identify efficient information transmission bases 

or communicators to disseminate disaster-related information as widely and efficiently as possible. 

As globalization accelerates and the effects of climate change become more pronounced, the 

frequency, intensity, and unpredictability of extreme weather events are clearly increasing [2]. 

According to statistics released by China's Ministry of Emergency Management in 2023, China's 

annual direct economic losses due to sudden-onset natural disasters exceeded 345.45 billion yuan, 

marking an increase of 12.6% compared to the five-year average, with 34% of these losses attributed 

to secondary disasters triggered by delays in information transmission. For instance, during the 2021 
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Henan rainstorm disaster, analysis revealed that as of 16:00 on July 21, 2021, the event had generated 

30,323,300 reports and discussions, with key rescue information being obscured by a vast amount of 

redundant content on microblogging platforms. 

Currently, most MLE algorithms are based on static network assumptions, making them difficult 

to adapt to the rapid changes in social network structure during disasters, where hourly change rates 

can reach 15%-30% [3-4]. For example, in the case of Typhoon Dusuari in 2023, a sudden shift in its 

trajectory could lead to the failure of traditional prediction models within a short period. The rapid 

changes in the path and intensity of the typhoon as it approaches landfall may prevent certain forecast 

nodes from accurately reflecting the actual situation. Therefore, it is imperative to develop new model 

algorithms capable of swiftly identifying "seed users" to meet emergency needs and optimize 

communication efficiency in practical applications. 

2. Problem statement 

Traditional maximum likelihood estimation algorithms have the limitation that they cannot 

effectively capture the decay pattern of propagation probabilities. This makes it difficult to maintain 

stable performance in complex environments with variable conditions. In view of this, this study 

designs an innovative method based on the legacy algorithm by borrowing the principle of biological 

evolution. The method is similar to the process of breeding good varieties of organisms, through 

continuous iterative optimization, the computer can gradually "evolve" a more optimal combination 

of "seed users" [5]. 

Specifically, the core objective of this study is to construct a genetic algorithm framework that 

incorporates dynamic MLE algorithm estimation. With this framework, an efficient search for 

influence-maximizing individuals in time-varying social networks can be achieved. This research 

path is expected to break the bottleneck of traditional algorithms and provide more effective solutions 

for social network communication analysis and related applications [6-7]. 

3. Notation 

Table 1: Symbol definition 

Symbol Defination 

𝑉𝑡 Collection of nodes 

𝐸𝑡 Bilateral assembly 

𝐷𝑡 Dynamic parameter set 

𝑋𝑡 Resource allocation strategy 

T Time scale 

𝑐𝑖(𝑥𝑖(𝑡)) Resource costs 

α Penalty coefficient for non-compliance 

𝑟𝑖(𝑡) Resource requirements 

𝑥𝑖(𝑡) Assigned amount 

𝐵𝑖𝑗
′ (𝑡) Communications constraint 

β 
Maximum likelihood estimation of weight 

parameters 

θ 
The set of parameters to be estimated by the 

model 

 

Table 1 provides a comprehensive summary of all the symbols and their detailed definitions used 

throughout the formulas in this paper. The table not only includes the basic parameters integral to the 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/105/2025.22569 

48 



 

 

image reconstruction algorithm but also encompasses the variables required to describe the Poisson 

distribution, the Bernoulli distribution, and the maximum likelihood estimator. For example, the 

symbol λ represents the average light intensity per pixel, serving as a key parameter in the Poisson 

model, while T and t denote the total number of experiments and the number of selected sub-

experiments, respectively—parameters that are crucial for characterizing the scale of data collection 

and the inherent sampling properties. Moreover, yₙ is used to represent the binary signal output from 

the single-photon image sensor, which is fundamental in the reconstruction process. 

4. Algorithm analysis and design 

4.1. Problem modeling & dynamic parameter estimation 

4.1.1. Dynamic network modeling 

Assuming that the dynamic network is a time-discretized model, remember that the state of the 

network at moment t is 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡, 𝐷𝑡). 

Under the dynamic network modeling system constructed in this study, the objective function set 

consists of two core components: resource cost as well as default penalty. In the complex context of 

dynamic networks, the optimization objective is designed to achieve a balanced allocation of 

resources. This equilibrium encompasses the cost dimension incurred in the resource allocation 

process, as well as the quality dimension. By considering and optimizing these two dimensions, the 

system can be guaranteed to reach the ideal state of efficient operation in a continuously dynamic and 

changing environment [8-9]. 

So the long-term cost minimization objective function for the optimization objective is shown in 

the following equation: 

 Min ∑ [∑ 𝑐𝑖 (𝑥𝑖(𝑡) + 𝛼 ∙ Π(𝑟𝑖(𝑡) > 𝑥𝑖(𝑡)))
|𝑉𝑡|
𝑖=1 ]𝑇

𝑡=1  (1) 

 s. t.  ∑ 𝑥𝑖(𝑡)
|𝑉𝑡|
𝑖=1 ≤ 𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) (2) 

 s. t.  𝑥𝑖(𝑡) ≤ 𝐵𝑖𝑗(𝑡), 𝑖𝑓 (𝑣𝑖, 𝑣𝑗) ∈ 𝐸𝑡 (3) 

The cost function is usually a convex function, such as a linear or quadratic function, as a way to 

reflect the law of increasing marginal cost. So by introducing a resource cost term∑ ci(xi(t))to go 

ahead and measure the direct economic costs. In quantifying the indirect losses of under-allocation 

of resources, the intensity of penalties is moderated by introducing a default penalty coefficient 𝛼. 

4.1.2. Parameter dynamics and estimation challenges 

Parameters of the dynamic network, such as the mean value of the demand distribution μ(t), variance 

𝜎2(𝑡) all change over time, but are not directly observable and need to be estimated in real time from 

the historical data collected. Key challenges include: 

1. Non-smoothness: the parameter set may obey a Markov process or a random walk. 

2. Partial observability: global parameters can be inferred only from local data fed back by nodes, 

and the error may be large. 

3. Estimation delay: there is a time lag between the parameter estimation and the change in the 

network state. 

4.2. Traditional genetic algorithm design 

Traditional genetic algorithms are encoded using a chromosome structure, where each chromosome 

represents a candidate resource allocation strategy𝑋𝑡, as 𝑋𝑡={𝑥1(𝑡),𝑥2(𝑡),...,𝑥𝑖(𝑡)} [10]. Overall real 
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number coding is used, and the range of gene values is constrained by the communication𝑥𝑖(𝑡) ≤

𝐵𝑖𝑗

′
(𝑡) and resource attack constraints∑𝑥𝑖(𝑡) ≤ 𝐶(𝑡) to decide. 

4.2.1. Initialization 

Generate an initial population based on constraints to ensure that the genes of each chromosome are 

satisfied: 

 0 ≤ 𝑥𝑖(𝑡) ≤ min (𝐵𝑖𝑗

′
(𝑡), 𝐶(𝑡) − ∑ 𝑥𝑘(𝑡)𝑘≠𝑖 ) (4) 

4.2.2. Fitness function 

The objective of the optimization is converted to a fitness value that directly minimizes the total long-

term cost, as shown in the following equation: 

 Fitness(𝑋𝑡) = − ∑ [∑ 𝑐𝑖 (𝑥𝑖(𝑡) + 𝛼 ∙ Π(𝑟𝑖(𝑡) > 𝑥𝑖(𝑡)))
|𝑉𝑡|
𝑖=1 ]𝑇

𝑡=1  (5) 

4.2.3. Genetic algorithm specific operation flowchart 

 

Figure 1: Specific steps of the genetic algorithm (picture credit: original) 

Figure 1 shows the specific operation flow of the genetic algorithm.  

4.2.4. Analysis 

Based on the above process, genetic algorithm is used to carry out the optimization analysis of 

dynamic resource allocation. When the number of genetic generations is 50, 100, and 150, the optimal 

fitness decreases (i.e., the penalty for default increases) due to a sudden change in resource demand. 

In this process, the algorithm achieves re-convergence in about 10 to 20 generations by retaining the 

first 10% of individuals and initializing part of the population. This result amply demonstrates that 

the dynamic adaptation strategy employed possesses effectiveness. 
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Figure 2: Convergence curve (picture credit: original) 

According to the results shown in Figure 2, in terms of the overall trend, a rapid upward trend is 

presented at the beginning of the curve (generation 0 - 50).During this period, the fitness is gradually 

optimized from a negative value to a direction close to 0. This change reflects the process of 

transformation of the system from a high-cost, high-default state to a low-cost, low-default state. This 

indicates that the genetic algorithm can successfully balance the resource cost and default penalty in 

the dynamic environment, and achieve the optimization effect with robustness. 

4.3. MLE-GA hybrid optimization 

4.3.1. Design principle 

MLE is commonly used for parameter estimation to find the most probable parameter values by 

maximizing the likelihood function, whereas Genetic Algorithm is a global optimization algorithm 

suitable for solving complex, multi-peaked, non-linear optimization problems. The designed fusion 

algorithm MLE-GA essentially combines parameter estimation with global search to form the 

following two core patterns: 

1) Double-layer optimized structure. Outer layer: Genetic algorithms to optimize decision 

variables. Inner layer: MLE real-time estimation of environmental parameters.   

2) Probabilistic models guide evolution. Utilizes the probabilistic model developed by the MLE to 

guide the search direction of the genetic algorithm. Dynamically updates probabilistic model 

parameters via population data from genetic algorithms. 

4.3.2. Specific integration methods 

Each individual in the population contains not only the node selection scheme, but also the estimates 

of the environmental parameters. Decision variables are coded in a binary vector indicating whether 

a node is selected or not, e.g., [1,0,1,0] indicates the selection of nodes 1 and 3. Parameter coding, on 

the other hand, utilizes real vectors to indicate the current parameter estimates, for example [0.5,0.2] 

indicates μ = 0.5,σ = 0.2. 

A probabilistic model of demand change needs to be defined first: 

 r𝑡 ∼ N(𝜇𝑡, 𝜎𝑡
2) (6) 
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When an environmental change is detected and a parameter update is required based on the demand 

data observed in the current population, the global parameters are updated by maximum likelihood 

estimation, then the two parameters are calculated as follows: 

 𝜇 =
1

𝑁
(∑ 𝑟𝑖

(𝑡)𝑁
𝑖=1 ) (7) 

 𝜎2 =
1

𝑁
(∑ (𝑟𝑖

(𝑡)
− 𝜇)2𝑁

𝑖=1 ) (8) 

Next, the fitness function F needs to be re-framed, and this function can be defined on the basis of 

the original Fitness function. The parameters estimated by the MLE are used as weights and the fitness 

function is reframed so that it evaluates both the quality of the solution and the fit of the parameters: 

 F = − ∑ [∑ 𝑐𝑖(𝑥𝑖(𝑡) + 𝛼 ∙ Π(𝑟𝑖(𝑡) + 𝛽 ∙ log (𝜇, 𝜎2)))
|𝑉𝑡|
𝑖=1 ]𝑇

𝑡=1  (9) 

Genetic manipulation will then be performed, a step also known as parameter-guided crossover 

and mutation. In this operation, both decision variables and parameter estimates need to be optimized 

to ensure that the new solution is adapted to the updated environment. 

Crossover: In the decision variables section, a single point crossover is used, e.g., [1,0|1,0] with 

[0,1|0,1] to generate the[1,1|0,1]. 

Mutation: Randomly invert a bit in the decision variable, e.g., change 1 to 0, and add a Gaussian 

perturbation to the parameters. 

Finally, the most adapted individual is retained to avoid losing the quality solution obtained. The 

conditions for determining convergence rely mainly when on the following two conditions. 

Adaptation enhancement rate < threshold 

Parameter estimates are stable 

When five consecutive generations are boosted <1% or then the current node selection scheme and 

final parameter estimates are returned. For example, if the fitness of five consecutive generations is 

105,105.5,105.6, 105.7, it is judged as convergence. 

4.4. Hybrid algorithm implementation 

This part aims to validate the performance of MLE-GA in dynamic social network resource allocation, 

comparing traditional genetic algorithm, static MLE method. 

4.4.1. Traditional genetic algorithm 

Firstly the synthetic data needs to be set to simulate the social network by setting the number of nodes 

N=100 and the edge weights to follow a normal distribution, which all vary periodically over time. 

Secondly, a dynamic environment simulation is introduced, setting the periodic transformation 

T=50 generations, while a random perturbation is introduced, i.e., Gaussian noise is applied to the 

parameters with probability p=0.1 per generation. 

Then set the algorithm parameters such as maximum number of iterations G=200, crossover rate, 

variance rate, MLE weights 𝛽 =1.2. 

We first model a social network relationship that satisfies the above conditions, as shown in Figure 

3. 
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Figure 3: Random social network (picture credit: original) 

Now based on the designed stochastic social network model using traditional GA algorithms for 

simulation experiments, the goal is to optimize the search in dynamic environments, by changing the 

environmental parameters every 50 generations to simulate the changing conditions in the real world, 

allowing the algorithms to optimize in changing environments. The fitness function is defined through 

the edge weights of selected nodes and simulated propagation gains. Individual adaptation values are 

utilized to represent the sum of edge weights of the selected nodes, the higher the value, the better the 

corresponding individual performs in the current environment and the closer it is to the optimal 

solution of the problem. 

 

Figure 4: Traditional genetic algorithm fitness over generations (picture credit: original)  

According to the Figure 4 running results, it can be seen that the best fitness value is relatively low 

at generation 0-50, and with the iteration of the algorithm, the best fitness value rises gradually 

through genetic operations such as selection, crossover and mutation. 

At generation 50-125, the fitness curve rises at the approximately 50th generation of the best 

fitness drastic change and keeps floating within a certain range. 
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At generation 125-200, the fitness value again rose rapidly at about generation 125 and was 

maintained at a relatively stable level, and the overall value was maintained at a higher value overall, 

although it still fluctuated slightly. 

4.4.2.   Maximum log-likelihood estimation 

The MLE algorithm is used to estimate the influence of nodes in social networks, and by comparing 

the real influence of nodes with the influence estimated by the MLE algorithm, as a way to evaluate 

the effectiveness of the algorithm in estimating the influence of nodes in social network optimization 

scenarios. 

The results of the experiment are shown in Figure 5, which shows the influence distribution of 

social network nodes, the closer to red color, the higher the influence, and the closer to blue color, 

the lower the influence. In the left side of Figure 5, "True influence", it can be seen that some nodes 

are close to the dark red color, which means high influence, but most of the nodes are between light 

blue and dark blue color, which means the nodes have medium or low influence. On the left side of 

Figure 5, "True influence" shows that some of the nodes are close to dark red, indicating high 

influence, but most of the nodes are in the range of light blue and dark blue, which means that the 

influence of the nodes is in the middle or low level. The color coding mechanism of "Estimated 

influence" on the right side of the figure is the same as that on the left side. Compared with the left 

side, the location and color of some high influence nodes are similar, but there are also many nodes 

whose influence color is quite different from the real situation, which indicates that although there is 

a certain degree of match between the MLE estimation results and the real value, some of them still 

have deviations. 

 

Figure 5: Comparison of true influence and estimated influence (picture credit: original) 

4.4.3.   Hybrid algorithm 

According to the predefined algorithm design principle, which is a two-layer optimization structure, 

the outer genetic algorithm optimizes the decision variables and the inner MLE estimates the 

environmental parameters in real time. A set of genetic algorithms is designed in the main loop and 

utilizes the embedded MLE algorithm to estimate environmental parameters in real time. In order to 

verify the sensitivity of the algorithm, it is assumed that the set objective values are [0.5, 0.5]. 

Mat lab results are as follows: Optimal parameter: 0.4993    0.5000. 

Optimal adaptation: -4.3512e-07. 

The result visualization result Figure 6 shows that the blue far point indicates the different 

parameter combinations of the 200th generation, that is, the individuals in the population, and the red 
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marked point indicates the optimal parameter position, and the optimal parameter is very close to the 

two-dimensional preset value [0.5,0.5], and the optimal fitness indicates that the optimal parameter 

combinations are very small in error, very close to 0, which means that the algorithm performs 

excellently. 

 

Figure 6: Two-dimensional image display (picture credit: original) 

When the parameters are extended to three dimensions, the ideal value is still set to [0.5, 0.5, 0.5], 

and Mat lab runs as follows: Optimal parameter: 0.4998    0.5003    0.5001. 

Optimal adaptation: -1.3118e-07. 

The 3D image is shown in Figure 7, the algorithm still maintains a good exploration performance. 

 

Figure 7: Three-dimensional image display (picture credit: original) 

Next for the social network model to find the high influence nodes, the following results can be 

calculated and the results are shown in Figure 8. 
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Figure 8: Optimal estimated impact (picture credit: original) 

Based on the results, it can be seen that the values of the optimal estimated influence range from -

0.0158 to 1.0055, with the following distributions: 

High-impact nodes (> 0.8): For example0.9665,1.0055,0.9357, The estimated influence of these 

nodes is close to or above 1, indicating that the algorithm considers these nodes to have high influence 

in the social network.  

Medium impact node (0.4 ≤ impact ≤ 0.8): For example0.7376,0.7065,0.6405, these estimated 

impact of these nodes are in the medium range. 

Low-impact nodes (< 0.4): For example0.0237,0.0233, -0.0158. The estimated influence of these 

nodes is low or even negative, indicating that these nodes have weak influence. 

According to the comparison of True Influence and Estimated Influence shown in Figure 9, it can 

be seen that the location and color of the high influence nodes in the two graphs are extremely similar, 

saying that the estimation results of the destiny algorithm are more accurate, and that the density of 

the lines between nodes reflects the influence transfer relationship, and the high influence nodes are 

usually connected to other nodes in a higher number. 

For example, the color of node 52 is close to dark red in the left image of Figure 9, indicating that 

its true influence is higher, while node 52 in the right image also has a very similar dark red color, 

indicating a more accurate estimate of its influence. 
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Figure 9: Node comparison diagram (picture credit: original) 

In order to verify that the algorithm can work properly in a real situation, then it is necessary to 

cite the real social network data, here Zachary's Karate Club social network is selected, as shown in 

Figure 10, the three nodes with the highest influence are node 0, node 33, and node 32. The MLE-

GA for the high-influence node recognition error is less than 5%, and it can accurately distinguish 

low-influence nodes. 

 

Figure 10: Zachary’s karate club social network (picture credit: original) 

Using the designed MLE-GA algorithm, the results can be obtained as shown in Figure 11. 
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Figure 11: Optimal estimation of impact by MLE-GA (picture credit: original) 

Meanwhile, the results are visualized as shown in Figure 12, and the obtained high-influence nodes 

are the same as in Zachary's Karate Club in reality, which are node 0, node 33, and node 32, which 

indicates that MLE-GA has excellent analytical capabilities in real social networks. 

 

Figure 12: Estimation by the MLE-GA (picture credit : original) 

 

Figure 13: Fitness curve (picture credit : original) 
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By analyzing Figure 6 and Figure 7, it can be seen that the optimization ability of MLE-GA in 

different dimensions and complex situations is relatively excellent, and the optimal parameter 

combinations found by the algorithm are extremely close to the target value, which verifies the 

effectiveness of the algorithm as well as its excellent results. 

According to the comparison of analyzing Figure 9, it can be seen that the estimation result of the 

algorithm is closer to the real value for MLE-GA for high-influence nodes, which indicates that the 

algorithm can effectively capture high-influence nodes. For low influence nodes the algorithm is 

equally effective in identifying low influence nodes. 

The visualization result in Figure 12 shows that the node importance predicted by the MLE-GA 

algorithm matches with the reality, reflecting that the algorithm can have a good performance for 

finding high impact nodes under the consideration of the complexity of the situation. Figure 13 

indicates that most of the nodes are concentrated in the lower range of degrees, indicating that most 

of the members have a low number of connections. This could mean that most members are connected 

to only a few people in this social network. In the few nodes that have high degrees, these nodes may 

be the center nodes or key nodes in the graph and may be important people in the social network. 

5. Conclusion 

The hybrid MLE-GA algorithm proposed in this study demonstrates significant advantages in 

dynamic social network optimization. Traditional GA performs well under static network 

assumptions but is difficult to cope with rapid changes in dynamic networks, while the MLE 

algorithm is capable of parameter estimation but lacks the ability of global optimization. MLE-GA 

effectively solves the problem by combining the real-time parameter estimation of MLE with the 

global search capability of GA. this problem. The experimental results show that MLE-GA is able to 

converge quickly and maintain high optimization accuracy in the dynamic change of network 

structure. And compared with the traditional methods, MLE-GA is more capable of identifying high-

influence nodes, and its estimation results are highly consistent with the real values, which shows 

significant potential in the selection of seed users in enterprise marketing as well as in the emergency 

management of natural disasters, because the diffusion range of information dissemination is crucial 

in such scenarios, and this algorithm can significantly improve the efficiency of searching for 

maximized nodes. At the same time, it also performs well in the identification of low-influence nodes, 

which can provide a reliable basis for optimizing the allocation of resources. 
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