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Abstract: This study employs Hirota’s bilinear method to derive exact solutions for the 

coupled discrete non-local nonlinear Schrödinger (NLS) equation. The equation under 

investigation is derived from the non-local reduction of the coupled discrete nonlinear NLS 

equation, which arises in various physical contexts such as nonlinear optics and Bose-Einstein 

condensates. Exact solutions of coupled discrete non-local NLS equations are obtained, 

including bright-bright one-soliton solutions, two-soliton solutions, and dark-dark soliton 

solutions. For the dark-dark soliton solution, the construction of the solution and the bilinear 

expansion are derived from the continuous system, but the continuous system solved in this 

way yields a breathing solution, however, in this coupled discrete non-local NLS equation, 

under specific parameters, we obtain coupled dark-dark soliton waves. In addition, periodic 

solutions, singular solutions and double spatial period solutions are obtained by taking 

different parameters. The soliton dynamics are visualized using mathematical software, 

providing insights into their behavior and interactions. This work enhances the understanding 

of soliton solutions in discrete non-local systems and provides a practical approach for 

analyzing similar nonlinear wave phenomena. 

Keywords: Bilinear method, Coupled discrete nonlocal Schrödinger equation, Exact solutions. 

1. Introduction 

The nonlinear Schrödinger (NLS) equation 

 𝑖𝑞𝑡(𝑥, 𝑡) = 𝑞𝑥𝑥(𝑥, 𝑡) ± 2|𝑞(𝑥, 𝑡)|
2𝑞(𝑥, 𝑡),                                         (1) 

which is an important model in nonlinear optics, providing good observation conditions for detecting 

PT symmetry theory [1-4]. The nonlinear Schrödinger (NLS) equation is widely applicable in physics, 

such as plasma physics [5-7], deep water waves [8-9], etc. Ablowitz and Musslimani proposed a non-

local NLS equation, which is a new PT symmetric equation [10]. 

 𝑖𝑞𝑡(𝑥, 𝑡) = 𝑞𝑥𝑥(𝑥, 𝑡) ± 2𝑞
2(𝑥, 𝑡)𝑞∗(−𝑥, 𝑡),                                    (2) 

Equation (2) is Lax integrable, in fact, the AKNS system, under the new non-local symmetric 

reduction 𝑞(𝑥, 𝑡) = 𝑞∗(−𝑥, 𝑡), gives rise to Equation (2).  

Ablowitz and Musslimani also studied the following integrable nonlocal discrete nonlinear 

Schrödinger equation [11]. 

 𝑖
𝑑𝑢𝑛

𝑑𝑡
= 𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1 ± 𝑢𝑛𝑢−𝑛

∗ (𝑢𝑛+1 + 𝑢𝑛−1),                         (3) 
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where 𝑢𝑛  is a time-dependent function of the integer 𝑛. Equation (3) has Lax pairs and infinite 

conservation law, therefore it is an integrable system. In reference [11], a discrete breathing soliton 

solution was obtained by establishing IST method of the decaying data. In [12], the N-soliton solution 

of integrable non-local discrete focused nonlinear non-linear Schrödinger (dNLS+) equation is 

constructed by bilinear method, and the asymptotic analysis of the double-soliton solution is given. 

A generalization of the two-component discrete NLS [13], namely, 

 {
𝑖𝑢̇𝑛 + (𝑢𝑛+1 + 𝑢𝑛−1)(1 + 2𝛿1|𝑢𝑛|

2 + 2𝛿2|𝑣𝑛|
2) − 2𝑢𝑛 = 0,

𝑖𝑣̇𝑛 + (𝑣𝑛+1 + 𝑣𝑛−1)(1 + 2𝛿1|𝑢𝑛|
2 + 2𝛿2|𝑣𝑛|

2) − 2𝑣𝑛 = 0.
                       (4) 

where the superscript ∗ means the complex conjugate, 𝛿𝑗 = ±1, 𝑗 = 1,2 , Equation (4) holds 

significant mathematical and physical relevance. This system was first solved using the IST method 

in references [14][15]. More recently, a general multi-soliton solution expressed in terms of Pfaffians 

was derived in [16], where bright soliton solutions emerge in the focusing-focusing regime (𝛿1 =
𝛿2 = 1), while dark soliton solutions appear in the defocusing-defocusing case (𝛿1 = 𝛿2 = −1). In 

[13], the Pfaffian form of the general bright dark soliton solution for the integrable semi discrete 

vector NLS equation was constructed using Hirota's bilinear method, and the bright-dark one-soliton 

solutions and two-soliton solutions of the two-component semi-discrete NLS equation were given. 

For Equation (4), with the reduction 𝑢𝑛
∗ (𝑛, 𝑡) → 𝑢−𝑛

∗ (−𝑛, 𝑡) , 𝑣𝑛
∗(𝑛, 𝑡) → 𝑣−𝑛

∗ (−𝑛, 𝑡) , it can be 

obtained from the two-component non-local discrete NLS equation: 

 {
𝑖𝑢̇𝑛 + (𝑢𝑛+1 + 𝑢𝑛−1)(1 + 2𝛿1𝑢𝑛𝑢−𝑛

∗ + 2𝛿2𝑣𝑛𝑣−𝑛
∗ ) − 2𝑢𝑛 = 0,

𝑖𝑣̇𝑛 + (𝑣𝑛+1 + 𝑣𝑛−1)(1 + 2𝛿1𝑢𝑛𝑢−𝑛
∗ + 2𝛿2𝑣𝑛𝑣−𝑛

∗ ) − 2𝑣𝑛 = 0.
              (5) 

In this paper, we construct the bilinear form of the Equation (5) using the Hirota method, derive 

its soliton solutions, and present their dynamical behavior through numerical simulations. 

2. The interaction of bright-bright soliton solutions 

In this chapter, we seek bright-bright soliton solutions of the Equation (5) by bilinear methods. To 

derive the bilinear form, we perform dependent variable transformation on Equation (5): 

 𝑢𝑛 =
𝑔𝑛

𝑓𝑛
, 𝑣𝑛 =

ℎ𝑛

𝑓𝑛
                               (6) 

where 𝑔𝑛, ℎ𝑛, 𝑓𝑛 are complex functions, the corresponding bilinear equations for Equation (5) is: 

(𝑖𝐷𝑡 + 2(𝑐𝑜𝑠ℎ 𝐷𝑛 − 1))𝑔𝑛 ⋅ 𝑓𝑛 = 0, 
(𝑖𝐷𝑡 + 2(𝑐𝑜𝑠ℎ 𝐷𝑛 − 1))ℎ𝑛 ⋅ 𝑓𝑛 = 0, 

                 𝑓−𝑛
∗ (𝑐𝑜𝑠ℎ 𝐷𝑛 − 1)𝑓𝑛 ⋅ 𝑓𝑛 = 2𝛿1𝑔𝑛𝑔−𝑛

∗ 𝑓𝑛 + 2𝛿2ℎ𝑛ℎ−𝑛
∗ 𝑓𝑛.                               (7) 

where D is the bilinear operator [17]. 

 𝐷𝑡
𝑙𝐷𝑛

𝑚𝑓𝑛(𝑡) ⋅ 𝑔𝑛(𝑡) = (
∂

∂𝑡
−

∂

∂𝑡′
)𝑙(

∂

∂𝑛
−

∂

∂𝑛′
)𝑚𝑓𝑛(𝑡)𝑔𝑛′(𝑡)|𝑡=𝑡′,𝑛=𝑛′, 

                                                   𝑒𝑥𝑝( 𝛿𝐷𝑛)𝑓𝑛 ⋅ 𝑔𝑛 = 𝑓𝑛+𝛿𝑔𝑛−𝛿 .                          (8) 

2.1. Bright-bright one-soliton solution 

We will first focus on studying the one-soliton solutions of Equation (5). The following power series 

expansion is applied to 𝑓𝑛, 𝑔𝑛 and ℎ𝑛. 

𝑓𝑛 = 1 + 𝑓𝑛
(2)
𝜀2 + 𝑓𝑛

(4)
𝜀4 + 𝑓𝑛

(6)
𝜀6 +⋅⋅⋅, 

𝑔𝑛 = 𝑔𝑛
(1)
𝜀 + 𝑔𝑛

(3)
𝜀3 + 𝑔𝑛

(5)
𝜀5 +⋅⋅⋅, 
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  ℎ𝑛 = ℎ𝑛
(1)
𝜀 + ℎ𝑛

(3)
𝜀3 + ℎ𝑛

(5)
𝜀5 +⋅⋅⋅, (9) 

in which ε denotes a sufficiently small parameter. we cut off expression (9) to 𝑓𝑛 = 1 + 𝑓𝑛
(2)
𝜀2, 𝑔𝑛 =

𝑔𝑛
(1)
𝜀 , ℎ𝑛 = ℎ𝑛

(1)
𝜀 , these expressions are then substituted into the bilinear formulation (7). By 

comparing terms order by order in powers of ε, we obtain the following system of equations: 

 𝐴1𝑔𝑛
(1)
⋅ 1 = 0，𝐴1ℎ𝑛

(1)
⋅ 1 = 0， (10) 

 𝐴2(1 ⋅ 𝑓𝑛
(2)
+ 𝑓𝑛

(2)
⋅ 1) = 2𝛿1𝑔𝑛

(1)
𝑔−𝑛
(1)∗

+ 2𝛿2ℎ𝑛
(1)
ℎ−𝑛
(1)∗

， (11) 

 𝐴1𝑔𝑛
(1)
𝑓𝑛
(2)
= 0, 𝐴1ℎ𝑛

(1)
𝑓𝑛
(2)
= 0, (12) 

 𝐴2𝑓𝑛
(2)
⋅ 𝑓𝑛

(2)
+ 𝑓−𝑛

(2)∗
𝐴2(1 ⋅ 𝑓𝑛

(2)
+ 𝑓𝑛

(2)
⋅ 1) = 2𝛿1𝑔𝑛

(1)
𝑔−𝑛
(1)∗

𝑓𝑛
(2)
+ 2𝛿2ℎ𝑛

(1)
ℎ−𝑛
(1)∗

𝑓𝑛
(2)

， (13) 

 𝑓−𝑛
(2)∗

𝐴2𝑓𝑛
(2)
⋅ 𝑓𝑛

(2)
= 0, (14) 

where the bilinear operators 𝐴1 and 𝐴2are given by 

          𝐴1 = 𝑖𝐷𝑡 + 2(𝑐𝑜𝑠ℎ 𝐷𝑛 − 1) 
                                                               𝐴2 = 𝑐𝑜𝑠ℎ 𝐷𝑛 − 1 (15) 

Assuming 𝑔𝑛
(1)
= 𝛼𝑒𝜉 , ℎ𝑛

(1)
= 𝛽𝑒𝜉 , 𝑓𝑛

(2)
= 𝜃𝑒𝜉+𝜉−𝑛

∗
 with 𝜉 = 𝜅𝑛 + 𝜔𝑡, 𝜉−𝑛

∗ = −𝜅∗𝑛 + 𝜔∗𝑡, and 

𝛼 , 𝛽  are any complex parameters. Equation (10) and (11) yield the dispersion relation 𝜔 =

2𝑖(cosh𝜅 − 1) and the value of 𝜃 =
𝛿1|𝛼|

2 +𝛿2|𝛽|
2

2
𝑠𝑖𝑛ℎ−2

𝜅−𝜅∗

2
. Besides, the remaining equations are 

inherently fulfilled without additional constraints, the one-soliton solution for Equation (5) can be 

expressed in the following form: 

 {
𝑢𝑛 =

𝜀𝛼𝑒𝜅𝑛+𝜔𝑡

1+𝜀2𝜃𝑒(𝜅−𝜅∗)𝑛+(𝜔+𝜔∗)𝑡

𝑣𝑛 =
𝜀𝛽𝑒𝜅𝑛+𝜔𝑡

1+𝜀2𝜃𝑒(𝜅−𝜅∗)𝑛+(𝜔+𝜔∗)𝑡

 (16) 

Setting 𝜅 = 𝑎 + 𝑖𝑏(𝑏 ≠ 0), Equation (16) becomes 

 

{
 
 

 
 𝑢𝑛 =

𝜀𝛼𝑒𝑎𝑛−2𝑡 𝑠𝑖𝑛ℎ𝑎𝑠𝑖𝑛𝑏𝑒𝑖(𝑏𝑛+2𝑡(𝑐𝑜𝑠ℎ𝑎 𝑐𝑜𝑠𝑏−1))

1−𝜀2
(𝛿1|𝛼|

2+𝛿2|𝛽|
2) 𝑐𝑠𝑐2 𝑏

2
𝑒2𝑖𝑏𝑛−4𝑡 𝑠𝑖𝑛ℎ𝑎𝑠𝑖𝑛𝑏

𝑣𝑛 =
𝜀𝛽𝑒𝑎𝑛−2𝑡 𝑠𝑖𝑛ℎ𝑎𝑠𝑖𝑛𝑏𝑒𝑖(𝑏𝑛+2𝑡(𝑐𝑜𝑠ℎ𝑎𝑐𝑜𝑠𝑏−1))

1−𝜀2
(𝛿1|𝛼|

2+𝛿2|𝛽|
2) 𝑐𝑠𝑐2 𝑏

2
𝑒2𝑖𝑏𝑛−4𝑡 𝑠𝑖𝑛ℎ𝑎𝑠𝑖𝑛𝑏

 (17) 

Setting 𝜀 = 1, Equation (16) can be written as 

 {
𝑢𝑛 =

𝛼

√2(𝛿1|𝛼|2+𝛿2|𝛽|2)
𝑒
𝜅+𝜅∗

2
𝑛+

𝜔−𝜔∗

2
𝑡 𝑠𝑒𝑐ℎ(

𝜅−𝜅∗

2
𝑛 +

𝜔+𝜔∗

2
𝑡 − 𝜙) 𝑠𝑖𝑛ℎ(

𝜅−𝜅∗

2
),

𝑣𝑛 =
𝛽

√2(𝛿1|𝛼|2+𝛿2|𝛽|2)
𝑒
𝜅+𝜅∗

2
𝑛+

𝜔−𝜔∗

2
𝑡 𝑠𝑒𝑐ℎ(

𝜅−𝜅∗

2
𝑛 +

𝜔+𝜔∗

2
𝑡 − 𝜙) 𝑠𝑖𝑛ℎ(

𝜅−𝜅∗

2
).

 (18) 

in which 𝜙 = ln(√
2

𝛿1|𝛼|2 +𝛿2|𝛽|2
sinh

|𝜅−𝜅∗|

2
). As 𝑎 ≠ 0, and 𝑏 ≠ 𝑙𝜋, 𝑙 ∈ 𝑍, the singular point of one-

soliton occurs at (𝑛, 𝑡) = (
𝑘𝜋

𝑏
,

−4

𝑠𝑖𝑛ℎ𝑎 𝑠𝑖𝑛𝑏
ln

2𝑠𝑖𝑛2𝑏

𝜀2(𝛿1|𝛼|2 +𝛿2|𝛽|2)
), 𝑘 ∈ 𝑍 . When 𝜀 = 1 and 𝜅 = 𝑎 +

𝑖𝑏, (𝑏 ≠ 0), we can get: 
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{
 
 

 
 |𝑢𝑛| =

2|𝛼|𝑒𝑎𝑛−2𝑡 𝑠𝑖𝑛ℎ𝑎𝑠𝑖𝑛𝑏

√4−4𝑒−4𝑡 𝑠𝑖𝑛𝑏 𝑠𝑖𝑛ℎ𝑎 𝑐𝑜𝑠(2𝑏𝑛) 𝑐𝑠𝑐2 𝑏(𝛿1|𝛼|2+𝛿2|𝛽|2)+𝑒−8𝑡 𝑠𝑖𝑛𝑏 𝑠𝑖𝑛ℎ𝑎 𝑐𝑠𝑐4 𝑏(𝛿1|𝛼|2+𝛿2|𝛽|2)2
,

|𝑣𝑛| =
2|𝛽|𝑒𝑎𝑛−2𝑡 𝑠𝑖𝑛ℎ𝑎𝑠𝑖𝑛𝑏

√4−4𝑒−4𝑡 𝑠𝑖𝑛𝑏 𝑠𝑖𝑛ℎ𝑎 𝑐𝑜𝑠(2𝑏𝑛) 𝑐𝑠𝑐2 𝑏(𝛿1|𝛼|2+𝛿2|𝛽|2)+𝑒−8𝑡 𝑠𝑖𝑛𝑏 𝑠𝑖𝑛ℎ𝑎 𝑐𝑠𝑐4 𝑏(𝛿1|𝛼|2+𝛿2|𝛽|2)2
.
   (19) 

Specifically, when a = 0, Equation (19) can be expressed in the following form: 

 {
|𝑢𝑛| =

2|𝛼|

√4−4𝑐𝑜𝑠(2𝑏𝑛) 𝑐𝑠𝑐2 𝑏(𝛿1|𝛼|2+𝛿2|𝛽|2)+𝑐𝑠𝑐4 𝑏(𝛿1|𝛼|2+𝛿2|𝛽|2)2
,

|𝑣𝑛| =
2|𝛽|

√4−4𝑐𝑜𝑠(2𝑏𝑛) 𝑐𝑠𝑐2 𝑏(𝛿1|𝛼|2+𝛿2|𝛽|2)+𝑐𝑠𝑐4 𝑏(𝛿1|𝛼|2+𝛿2|𝛽|2)2
.
  (20) 

with the period 𝑀 =
𝜋

𝑏
. Using Mathematica software, the soliton diagrams are given as follows. In 

Figure 1, using parameter 𝜅 = 0.3𝑖,  𝛿1 = 𝛿2 = 1, 𝛼 = 1, 𝛽 = 0.7, we can obtain that one-soliton 

solutions are periodic solutions. In Figure 2, using parameter 𝜅 = 0.2 + 0.8𝑖,  𝛿1 = 𝛿2 = 1, 𝛼 =
−1 + 0.5𝑖, and 𝛽 = −0.1 − 0.2𝑖, we can obtain the one-soliton solutions are singular solutions. 

   

Figure 1: Period solutions 𝑢𝑛and 𝑣𝑛with parameter as: 𝜅 = 0.3𝑖, 𝛿1 = 𝛿2 = 1, 𝛼 = 1, 𝛽 = 0.7. 

       

Figure 2: Singular solutions with parameters as: 

𝜅 = 0.2 + 0.8𝑖, 𝛿1 = 𝛿2 = 1, 𝛼 = −1 + 0.5𝑖, 𝛽 = −0.1 − 0.2i 

We proceed to examine the continuum limit approximation of the discrete one-soliton solution 

(16). Set 𝑢𝑛(𝑡) = 𝜀𝑢(𝑥, 𝜏), 𝑥 = 𝑛𝜀, 𝜏 = 𝜀2𝑡, and 𝜅 = 𝜆𝜀, when 𝜀 → 0, the one-soliton solution (16) 

converges to 

 

{
 
 

 
 𝑢(𝑥, 𝜏) =

𝛼𝑒𝜆𝑥+𝑖𝜆
2𝜏

1+
2(𝛿1|𝛼|

2+𝛿2|𝛽|
2)

(𝜆−𝜆∗)2
𝑒(𝜆−𝜆∗)𝑥+𝑖(𝜆

2−𝜆∗2)𝜏
,

𝑣(𝑥, 𝜏) =
𝛽𝑒𝜆𝑥+𝑖𝜆

2𝜏

1+
2(𝛿1|𝛼|

2+𝛿2|𝛽|
2)

(𝜆−𝜆∗)2
𝑒(𝜆−𝜆∗)𝑥+𝑖(𝜆

2−𝜆∗2)𝜏
.

 (21) 
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This represents a novel soliton solution to the integrable coupled discrete nonlocal nonlinear 

Schrödinger equation. Set 𝜆 = 𝜇1 + 𝑖𝜇2, then: 

 

{
 
 

 
 𝑢(𝑥, 𝜏) =

𝛼𝑒𝑖(𝜇2𝑥+(𝜇1
2−𝜇2

2)𝜏)𝑒𝜇1𝑥−2𝜇1𝜇2𝜏

1−
𝛿1|𝛼|

2+𝛿2|𝛽|
2

2𝜇2
2 𝑒2𝑖𝜇2𝑥−4𝜇1𝜇2𝜏

,

𝑣(𝑥, 𝜏) =
𝛽𝑒𝑖(𝜇2𝑥+(𝜇1

2−𝜇2
2)𝜏)𝑒𝜇1𝑥−2𝜇1𝜇2𝜏

1−
𝛿1|𝛼|

2+𝛿2|𝛽|
2

2𝜇2
2 𝑒2𝑖𝜇2𝑥−4𝜇1𝜇2𝜏

.

        (22) 

The singularity of this solution appears at (𝑥, 𝜏) = (
𝑘𝜋

𝜇2
,
ln (4𝜇2

2)

4𝜇1𝜇2
) , 𝑘 ∈ 𝑍. The solution (22) does 

not exhibit breather characteristics in either the temporal or spatial domain. 

2.2. Bright-bright two-soliton solution 

It should be emphasized that multiple solutions exist for Equation (5). For deriving the coupled bright-

bright two-soliton solution, we solve Equation (5) as 

 𝑔𝑛 = 𝑔𝑛
(1)
𝜀 + 𝑔𝑛

(3)
𝜀3, ℎ𝑛 = ℎ𝑛

(1)
𝜀 + ℎ𝑛

(3)
𝜀3, 𝑓𝑛 = 1 + 𝑓𝑛

(2)
𝜀2 + 𝑓𝑛

(4)
𝜀4. (23) 

We obtain a series of bilinear equations 

𝐴1𝑔𝑛
(1)
⋅ 1 = 0，𝐴1ℎ𝑛

(1)
⋅ 1 = 0， 

𝐴2(1 ⋅ 𝑓𝑛
(2)
+ 𝑓𝑛

(2)
⋅ 1) = 2𝛿1𝑔𝑛

(1)
𝑔−𝑛
(1)∗

+ 2𝛿2ℎ𝑛
(1)
ℎ−𝑛
(1)∗

， 

𝐴1(𝑔𝑛
(1)
⋅ 𝑓𝑛

(2)
+ 𝑔𝑛

(3)
⋅ 1 = 0，𝐴1(ℎ𝑛

(1)
⋅ 𝑓𝑛

(2)
+ ℎ𝑛

(3)
⋅ 1) = 0， 

𝐴2(1 ⋅ 𝑓𝑛
(4)
+ 𝑓𝑛

(2)
⋅ 𝑓𝑛

(2)
+ 𝑓𝑛

(4)
⋅ 1) + 𝑓−𝑛

(2)∗
𝐴2(1 ⋅ 𝑓𝑛

(2)
+ 𝑓𝑛

(2)
⋅ 1) 

    = 2𝛿1(𝑔𝑛
(1)
𝑔−𝑛
(1)∗

𝑓𝑛
(2)
+ 𝑔𝑛

(3)
𝑔−𝑛
(1)∗

+ 𝑔𝑛
(1)
𝑔−𝑛
(3)∗

) + 2𝛿2(ℎ𝑛
(1)
ℎ−𝑛
(1)∗

𝑓𝑛
(2)
+ ℎ𝑛

(3)
ℎ−𝑛
(1)∗

+ ℎ𝑛
(1)
ℎ−𝑛
(3)∗

), 

𝐴2(𝑓𝑛
(2)
⋅ 𝑓𝑛

(4)
+ 𝑓𝑛

(4)
⋅ 𝑓𝑛

(2)
+ 𝑓−𝑛

(2)∗
𝐴2(1 ⋅ 𝑓𝑛

(4)
+ 𝑓𝑛

(2)
⋅ 𝑓𝑛

(2)
+ 𝑓𝑛

(4)
⋅ 1) + 𝑓−𝑛

(4)∗
𝐴2(1 ⋅ 𝑓𝑛

(2)
+ 𝑓𝑛

(2)

⋅ 1) 

    = 2𝛿1(𝑔𝑛
(1)
𝑔−𝑛
(1)∗

𝑓𝑛
(4)
+ 𝑔𝑛

(3)
𝑔−𝑛
(1)∗

𝑓𝑛
(2)
+ 𝑔𝑛

(1)
𝑔−𝑛
(3)∗

𝑓𝑛
(2)
+ 𝑔𝑛

(3)
𝑔−𝑛
(3)∗

) 

       + 2𝛿2(ℎ𝑛
(1)
ℎ−𝑛
(1)∗

𝑓𝑛
(4)
+ ℎ𝑛

(3)
ℎ−𝑛
(1)∗

𝑓𝑛
(2)
+ ℎ𝑛

(1)
ℎ−𝑛
(3)∗

𝑓𝑛
(2)
+ ℎ𝑛

(3)
ℎ−𝑛
(3)∗

), 

𝐴1𝑔𝑛
(3)
⋅ 𝑓𝑛

(4)
= 0, 𝐴1ℎ𝑛

(3)
⋅ 𝑓𝑛

(4)
= 0, 

𝐴2𝑓𝑛
(4)
⋅ 𝑓𝑛

(4)
+ 𝑓−𝑛

(2)∗
𝐴2(𝑓𝑛

(2)
⋅ 𝑓𝑛

(4)
+ 𝑓𝑛

(4)
⋅ 𝑓𝑛

(2)
) + 𝑓−𝑛

(4)∗
𝐴2(1 ⋅ 𝑓𝑛

(4)
+ 𝑓𝑛

(2)
⋅ 𝑓𝑛

(2)
+ 𝑓𝑛

(4)
⋅ 1) 

    = 2𝛿1(𝑔𝑛
(3)
𝑔−𝑛
(1)∗

𝑓𝑛
(4)
+ 𝑔𝑛

(1)
𝑔−𝑛
(3)∗

𝑓𝑛
(4)
+ 𝑔𝑛

(3)
𝑔−𝑛
(3)∗

𝑓𝑛
(2)
) 

    + 2𝛿2(ℎ𝑛
(3)
ℎ−𝑛
(1)∗

𝑓𝑛
(4)
+ ℎ𝑛

(1)
ℎ−𝑛
(3)∗

𝑓𝑛
(4)
+ ℎ𝑛

(3)
ℎ−𝑛
(3)∗

𝑓𝑛
(2)
), 

𝑓−𝑛
(2)∗

𝐴2𝑓𝑛
(4)
⋅ 𝑓𝑛

(4)
+ 𝑓−𝑛

(4)∗
𝐴2(𝑓𝑛

(2)
⋅ 𝑓𝑛

(4)
+ 𝑓𝑛

(4)
⋅ 𝑓𝑛

(2)
) = 2𝛿1𝑔𝑛

(3)
𝑔−𝑛
(3)∗

𝑓𝑛
(4)
+ 2𝛿2ℎ𝑛

(3)
ℎ−𝑛
(3)∗

𝑓𝑛
(4)
, 

 𝑓𝑛
(4)∗

𝐴2𝑓𝑛
(4)
⋅ 𝑓𝑛

(4)
= 0. (24) 

to solve these equations, we let 

𝑔𝑛
(1)
= 𝛼1𝑒

𝜉1 + 𝛼2𝑒
𝜉2 , 𝑔𝑛

(3)
= 𝑎1,2,1∗𝑒

𝜉1+𝜉2+𝜉1,−𝑛
∗

+ 𝑎1,2,2∗𝑒
𝜉1+𝜉2+𝜉2,−𝑛

∗
, 

ℎ𝑛
(1)
= 𝛽1𝑒

𝜉1 + 𝛽2𝑒
𝜉2 , ℎ𝑛

(3)
= 𝑏1,2,1∗𝑒

𝜉1+𝜉2+𝜉1,−𝑛
∗

+ 𝑏1,2,2∗𝑒
𝜉1+𝜉2+𝜉2,−𝑛

∗
, 

𝑓𝑛
(2)
= 𝑎1,1∗𝑒

𝜉1+𝜉1,−𝑛
∗

+ 𝑎1,2∗𝑒
𝜉1+𝜉2,−𝑛

∗
+ 𝑎2,1∗𝑒

𝜉2+𝜉1,−𝑛
∗

+ 𝑎2,2∗𝑒
𝜉2+𝜉2,−𝑛

∗
, 

                                                  𝑓𝑛
(4)
= 𝑎1,2,1∗,2∗𝑒

𝜉1+𝜉2+𝜉1,−𝑛
∗ +𝜉2,−𝑛

∗
. (25) 

and for 𝑗 = 1,2 

 𝜉𝑗 = 𝜅𝑗𝑛 + 𝜔𝑗𝑡 + 𝜉𝑗
0,   𝜉𝑗,−𝑛

∗ = −𝜅𝑗
∗𝑛 + 𝜔𝑗

∗𝑡 + 𝜉𝑗
0∗. (26) 

Proceedings of  the 3rd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/106/2025.22571 

5 



 

      

 

Figure 3: Double spatial period solutions with 𝜅1 = −2𝑖, 𝜅2 = 𝑖. 

we can obtain the dispersion relation 𝜔𝑗 = 2𝑖(cosh𝜅𝑗 − 1) . Some important coefficients of the 

soliton solutions are obtained through complex calculations as following  

𝑎𝑙,𝑚∗ =
𝛼𝑙𝛼𝑚

∗ + 𝛽𝑙𝛽𝑚
∗

2
𝑠𝑖𝑛ℎ−2

𝜅𝑙 − 𝜅𝑚
∗

2
, 

𝑎1,2,1∗ =
1

𝑝12
(𝛼1𝑎2,1∗𝑝1,1∗ − 𝛼2𝑎1,1∗𝑝2,1∗), 𝑎1,2,2∗ =

1

𝑝12
(𝛼1𝑎2,2∗𝑝1,2∗ − 𝛼2𝑎1,2∗𝑝2,2∗), 

𝑏1,2,1∗ =
1

𝑝12
(𝛽1𝑎2,1∗𝑝1,1∗ − 𝛽2𝑎1,1∗𝑝2,1∗), 𝑏1,2,2∗ =

1

𝑝12
(𝛽1𝑎2,2∗𝑝1,2∗ − 𝛽2𝑎1,2∗𝑝2,2∗), 

𝑎1,2,1∗,2∗ = −4(|𝛼1|
2 + |𝛽1|

2)(|𝛼2|
2 + |𝛽2|

2)
𝑝12∗𝑝21∗
𝑝12𝑝1∗2∗

𝑒2𝜅1𝑅+2𝜅2𝑅

(𝑒𝜅1 − 𝑒𝜅1
∗
)2(𝑒𝜅2 − 𝑒𝜅2

∗
)2

 

            +4(𝛼1𝛼2
∗ + 𝛽1𝛽2

∗)(𝛼2𝛼1
∗ + 𝛽2𝛽1

∗)
𝑝11∗𝑝22∗

𝑝12𝑝1∗2∗

𝑒2𝜅1𝑅+2𝜅2𝑅

(𝑒𝜅2−𝑒𝜅1
∗
)
2
(𝑒𝜅1−𝑒𝜅2

∗
)
2.  (27) 

where 

 𝑝12 =
1+𝑒𝜅1+𝜅2

𝑒𝜅1−𝑒𝜅2
, 𝑝1∗2∗ =

1+𝑒𝜅1
∗+𝜅2

∗

𝑒𝜅1
∗
−𝑒𝜅2

∗ , 𝑝𝑖𝑗∗ =
1+𝑒

𝜅𝑖+𝜅𝑗
∗

𝑒𝜅𝑖−𝑒
𝜅𝑗
∗ , (28) 

Therefore, for 𝜀 = 1 the two-soliton solution is 

 

{
 
 

 
 𝑢𝑛 =

𝛼1𝑒
𝜉1+𝛼2𝑒

𝜉2+𝑎1,2,1∗𝑒
𝜉1+𝜉2+𝜉1,−𝑛

∗
+𝑎1,2,2∗𝑒

𝜉1+𝜉2+𝜉2,−𝑛
∗

1+𝑎1,1∗𝑒
𝜉1+𝜉1,−𝑛

∗
+𝑎1,2∗𝑒

𝜉1+𝜉2,−𝑛
∗

+𝑎2,1∗𝑒
𝜉2+𝜉1,−𝑛

∗
+𝑎2,2∗𝑒

𝜉2+𝜉2,−𝑛
∗

+𝑎1,2,1∗,2∗𝑒
𝜉1+𝜉2+𝜉1,−𝑛

∗ +𝜉2,−𝑛
∗

𝑣𝑛 =
𝛽1𝑒

𝜉1+𝛽2𝑒
𝜉2+𝑏1,2,1∗𝑒

𝜉1+𝜉2+𝜉1,−𝑛
∗

+𝑏1,2,2∗𝑒
𝜉1+𝜉2+𝜉2,−𝑛

∗

1+𝑎1,1∗𝑒
𝜉1+𝜉1,−𝑛

∗
+𝑎1,2∗𝑒

𝜉1+𝜉2,−𝑛
∗

+𝑎2,1∗𝑒
𝜉2+𝜉1,−𝑛

∗
+𝑎2,2∗𝑒

𝜉2+𝜉2,−𝑛
∗

+𝑎1,2,1∗,2∗𝑒
𝜉1+𝜉2+𝜉1,−𝑛

∗ +𝜉2,−𝑛
∗

 (29) 

the solution 𝑢𝑛, 𝑣𝑛  are double spatial period solutions. In Figure 3, discrete and corresponding 

continuous double spatial period soliton diagrams are plotted under specific parameters. 
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3. The interaction of dark-dark soliton solutions 

This section focuses on the exploration of coupled dark-dark soliton solutions of the Equation (5). By 

using the dependent variable transformations 

 𝑢𝑛 = 𝜌1(𝑖𝑘1)
𝑛 𝑔𝑛

𝑓𝑛
𝑒(𝜔1−2𝑖)𝑡, 𝑣𝑛 = 𝜌2(𝑖𝑘2)

𝑛 ℎ𝑛

𝑓𝑛
𝑒(𝜔2−2𝑖)𝑡 . (30) 

where 𝑓𝑛  is a real function and  𝑔𝑛,  ℎ𝑛  are complex functions, 𝜔𝑗 = 𝑚(𝑘𝑗
−1 − 𝑘𝑗), 𝑘𝑗are complex 

constants with 𝑘𝑗 = −𝑘𝑗
∗, 𝑗 = 1,2, Equation (5) can be expressed in the following bilinear form: 

(𝜔1 + 𝐷𝑡)𝑔𝑛 ⋅ 𝑓𝑛 +𝑚(𝑘1𝑔𝑛+1𝑓𝑛−1 − 𝑘1
−1𝑔𝑛−1𝑓𝑛+1) = 0, 

(𝜔2 + 𝐷𝑡)ℎ𝑛 ⋅ 𝑓𝑛 +𝑚(𝑘2ℎ𝑛+1𝑓𝑛−1 − 𝑘2
−1ℎ𝑛−1𝑓𝑛+1) = 0, 

                                  𝑓−𝑛
∗ (𝑚𝑓𝑛+1𝑓𝑛−1 − 𝑓𝑛

2) = 2𝛿1|𝜌1|
2𝑔𝑛𝑔−𝑛

∗ 𝑓𝑛 + 2𝛿2|𝜌2|
2ℎ𝑛ℎ−𝑛

∗ 𝑓𝑛.   (31) 

Expand 𝑓𝑛,  𝑔𝑛 and ℎ𝑛 in Equation (31) as follows: 

𝑓𝑛 = 1 + 𝑓𝑛
(2)
𝜀2 + 𝑓𝑛

(4)
𝜀4 + 𝑓𝑛

(6)
𝜀6 +⋅⋅⋅, 

𝑔𝑛 = 1 + 𝑔𝑛
(2)
𝜀2 + 𝑔𝑛

(4)
𝜀4 + 𝑔𝑛

(6)
𝜀6 +⋅⋅⋅, 

                                               ℎ𝑛 = 1 + ℎ𝑛
(2)
𝜀2 + ℎ𝑛

(4)
𝜀4 + ℎ𝑛

(6)
𝜀6 +⋅⋅⋅.  (32) 

for obtaining the two dark-dark solution, functions are assumed to be 

 𝑓𝑛 = 1 + 𝑓𝑛
(2)
𝜀2 + 𝑓𝑛

(4)
𝜀4, 𝑔𝑛 = 1 + 𝑔𝑛

(2)
𝜀2 + 𝑔𝑛

(4)
𝜀4, ℎ𝑛 = 1 + ℎ𝑛

(2)
𝜀2 + ℎ𝑛

(4)
𝜀4.  (33) 

Substituting Equation (32) into Equation (31), the forms of 𝑔𝑛, ℎ𝑛, 𝑓𝑛 are assumed to be 

𝑔𝑛
(2)
= 𝑎1𝑒

𝜉1 + 𝑎2𝑒
𝜉1,−𝑛 , ℎ𝑛

(2)
= 𝑏1𝑒

𝜉1 + 𝑏2𝑒
𝜉1,−𝑛 , 𝑓𝑛

(2)
= 𝑒𝜉1 + 𝑒𝜉1,−𝑛 , 

                        𝑔𝑛
(4)
= 𝑎1𝑎2𝑀𝑒

𝜉1+𝜉1,−𝑛 , ℎ𝑛
(4)
= 𝑏1𝑏2𝑀𝑒

𝜉1+𝜉1,−𝑛 , 𝑓𝑛
(4)
= 𝑀𝑒𝜉1+𝜉1,−𝑛 . (34) 

where 𝜉1 = 𝑃𝑛 + 𝛺𝑡 + 𝜉1
0 , 𝜉1,−𝑛 = −𝑃𝑛 + 𝛺𝑡 + 𝜉1

0 , 𝑚 = 1 + 2𝛿1|𝜌1|
2 + 2𝛿2|𝜌2|

2 , 𝜔𝑗 +𝑚(𝑘𝑗 −

𝑘𝑗
−1) = 0, and 𝑃, 𝛺, 𝜉1

0 are real constants, 𝑎1, 𝑎2, 𝑏1, 𝑏2 are arbitrary complex constants, when 𝑘1 =

𝑘2 = −𝑖, then 𝜔1 = 𝜔2 = 2𝑚𝑖, 𝛺 and 𝑃 satisfy the following equation 

 𝑚𝑒−3𝑃(𝑒𝑃 − 1)2(Ω2𝑒2𝑃 +𝑚(𝑒𝑃 − 1)2(2𝑒𝑃(𝑚 − 2) + 𝑚 +𝑚𝑒2𝑃)) = 0. (35) 

We get the two dark-dark solution for Equation (5) as 

 {
𝑢𝑛 = 𝜌1(𝑖𝑘1)

𝑛𝑒(𝜔1−2𝑖)𝑡
1+𝑎1𝑒

𝜉1+𝑎2𝑒
𝜉1,−𝑛+𝑎1𝑎2𝑀𝑒

𝜉1+𝜉1,−𝑛

1+𝑒𝜉1+𝑒𝜉1,−𝑛+𝑀𝑒𝜉1+𝜉1,−𝑛
,

𝑣𝑛 = 𝜌2(𝑖𝑘2)
𝑛𝑒(𝜔2−2𝑖)𝑡

1+𝑏1𝑒
𝜉1+𝑏2𝑒

𝜉1,−𝑛+𝑏1𝑏2𝑀𝑒
𝜉1+𝜉1,−𝑛

1+𝑒𝜉1+𝑒𝜉1,−𝑛+𝑀𝑒𝜉1+𝜉1,−𝑛
.
 (36) 

where 

𝑎1 = 𝑎2 = 𝑏1 = 𝑏2 =
Ω + 𝑖𝑚(𝑒𝑃 + 𝑒−𝑃 − 2)

Ω − 𝑖𝑚(𝑒𝑃 + 𝑒−𝑃 − 2)
, 

                                          𝑀 =
𝑒−3𝑃(1+𝑒𝑃)2(𝑚2(𝑒𝑃−1)4+𝑒2𝑃Ω2)

4Ω2
. (37) 
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Figure 4: dark-dark soliton solutions with parameters as: 

𝑘1 = 𝑘2 = −𝑖, 𝑃 = −1, 𝛿1 = 1, 𝛿2 = −1, 𝜌1 = 1 − 𝑖, 𝜌2 = 1 + 1.1𝑖. 

Formally speaking, the expansion of 𝑓𝑛, 𝑔𝑛and ℎ𝑛 in this section and the form of solutions are 

derived from continuous equations, However, in continuous systems, they correspond to breathers, 

while in non-local systems, they exhibit dark-dark soliton waves, dark-antidark soliton waves or 

antidark-antidark soliton waves. In Figure 4, we obtain the dark-dark soliton waves with the 

parameters:𝑘1 = 𝑘2 = −𝑖, 𝑃 = −1, 𝛿1 = 1, 𝛿2 = −1, 𝜌1 = 1 − 𝑖, 𝜌2 = 1 + 1.1𝑖. 

4. Conclusion 

The coupled discrete non-local nonlinear Schrödinger Equation (5) represents a novel integrable 

system in discrete mathematics. This study employs the Hirota bilinear approach to derive the bilinear 

representation of this coupled nonlocal discrete system. Through systematic analysis, we establish 

both bright-bright single and two-soliton solutions, followed by the development of bilinear 

expansions for dark-dark soliton configurations. Furthermore, computational methods are 

implemented to generate graphical representations of these soliton solutions. We found that compared 

to non-local NLS equations, integrable coupled discrete non-local NLS equations have a richer 

variety of soliton solution types, and the interactions between soliton solutions and the evolution 

properties of solutions over time are also significantly different.  
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