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Abstract: Global warming has emerged as a critical global concern, with the control of 

greenhouse gas emissions becoming a paramount priority for nations worldwide. Carbon 

dioxide (CO₂), a significant greenhouse gas, comprises a substantial portion of vehicle 

exhaust emissions. To effectively mitigate CO₂ emissions from automobiles, it is imperative 

to identify and analyze the key determinants influencing these emissions. In this paper, the 

collected data were fitted into a model through multiple linear regression in R. The variance 

inflation factor (VIF) detection method was used to detect multicollinearity, and the stepwise 

regression method was employed to eliminate multicollinearity in the model to study the 

related factors of CO₂ emissions from automobiles. The findings indicate that engine size, 

number of cylinders, and combined fuel consumption are primary factors affecting CO₂ 

emissions from vehicles. Among them, the combined fuel consumption is the most significant 

influencing factor. These results offer valuable insights for automotive engineers and 

researchers, guiding efforts to enhance vehicle design and reduce CO₂ emissions. 

Keywords: Carbon Dioxide Emission, Multiple Linear Regression, Multicolinearity, 

Stepwise Regression. 

1. Introduction 

Greenhouse gases (such as CO₂, CH₄, N₂O, etc.) can absorb the long-wave infrared radiation reflected 

from the Earth's surface, preventing heat from escaping into space and creating a warming effect 

similar to that of a greenhouse. The natural greenhouse effect maintains a suitable temperature on 

Earth, but human activities have significantly increased the concentration of greenhouse gases, 

leading to excessive heat retention. Climate warming will result in an intensification of extreme 

weather events, accelerated glacial melting and rising sea levels, reduced agricultural productivity 

leading to potential food crises, and even the collapse of ecosystems. Ultimately, these changes pose 

a significant threat to human survival and well-being [1]. In the long run, developing clean energy is 

the fundamental solution to greenhouse gas emissions. However, in the short term, human beings still 

rely on fossil energy for production activities. Therefore, reducing the emissions of greenhouse gases 

such as carbon dioxide is a preoccupation at present.  

With the rapid development of the automotive manufacturing industry, the number of cars in use 

has increased sharply. While cars have brought convenience to human life, they have also had a 

negative impact on the natural environment, the most significant of which is exhaust emissions [2]. 

In previous studies, most research focused on harmful gases in vehicle exhaust, such as carbon 

monoxide, hydrocarbons, nitrogen oxides, sulfur dioxide and particulate matter, while neglecting the 
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greenhouse gas carbon dioxide, which is not a harmful gas [3]. According to statistics, carbon dioxide 

accounts for over 99 percent of the carbon emissions from vehicle exhaust. Reducing carbon dioxide 

emissions from vehicle exhaust is of great significance in controlling greenhouse gas emissions in 

today's era of widespread car usage. To reduce carbon dioxide emissions from automobiles, it is 

necessary to identify the factors in cars that affect carbon dioxide emissions so as to make targeted 

improvements [4]. Therefore, this article will explore the relevant factors of carbon dioxide emissions 

from automobiles. 

This paper first introduces the relevant concepts of multiple linear regression and multicollinearity, 

as well as the solutions to multicollinearity. After fitting the collected data to the original regression 

model, the VIF method is used to detect multicollinearity. Then, the stepwise regression method is 

employed to correct it and obtain the final model. Finally, hypothesis testing is conducted on the final 

model. At the same time, the relevant factors influencing the carbon dioxide emissions of automobiles 

are obtained. 

2. Method and theory 

2.1. Multiple linear regression 

The statistical relationship between variables of objective things is the main research object of 

regression analysis. It is a statistical method that relies on a large number of experiments and 

observations of objective things to find the statistical regularity hidden in those seemingly uncertain 

phenomena. Multiple linear regression is a core method in statistics used to model the linear 

relationship between multiple independent variables and one dependent variable. After obtaining the 

multiple linear regression model, it is also necessary to conduct statistical tests on the regression 

model, including the significance test of the regression equation and the multicollinearity test of the 

explanatory variables, among which multicollinearity is the focus of this article. 

Suppose that there are 𝑛 observation samples, each sample containing 𝑘 independent variables 

𝑋1,𝑋2,… …,𝑋𝑘 and one dependent variable 𝑌. The model form is: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 + 𝜖𝑖(i = 1,2, ⋯ , 𝑛), (1) 

where β0, β1, ⋯ , βk are 𝑘 + 1  unknown parameters, β0  are regression constants, β1, β2, ⋯ , βk  are 

regression coefficients. 𝑌 is called the explained variable, while x1, x2, ⋯ , xk are 𝑘 general variables 

that can be accurately measured and controlled, and are called the explained variables. 

The multiple linear regression model contains four basic assumptions, namely, that each 

explanatory variable is not correlated with one another, the random error term is a random variable 

with an average or expected value of zero, the explanatory variables are not correlated with the 

random disturbance term, and the random disturbance term follows a normal distribution. 

2.2. Multicollinearity and its discriminant method and influence 

The sufficient and necessary condition to establish a multiple linear regression model is that the 

rank 𝑟 (𝑋) of the design matrix 𝑋 = 𝑘 + 1, which means that the column vectors of the sample 

matrix are linearly independent. However, in the actual production problem, when considering 

multiple influencing factors, due to the complexity of things, there is a certain correlation between 

most of the factors. Generally, when the correlation of independent variables is weak, it can be 

considered to meet the modeling requirements of regression models, but when the correlation of 

independent variables is strong, the modeling conditions of regression models are violated, and the 

model is said to have multicollinearity problems [5]. 

In the analysis of practical problems, it is more common that a linear relationship approximately 

holds, that is, there exists a set of constant 𝑐0, 𝑐1, 𝑐2, ⋯ , 𝑐𝑘not all zero, such that: 
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𝑐0 + 𝑐1𝑥𝑖1 + 𝑐2𝑥𝑖2 + ⋯ 𝑐𝑘𝑥𝑖𝑘 ≈ 0, 𝑖 = 1,2, ⋯ , 𝑛 (2) 

When the independent variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑘have the relationship as shown in equation (2), it is 

said that there exists multicollinearity among the independent variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑘. 

This article will introduce two currently more mainstream methods for discriminating 

multicollinearity, which are variance inflation factor (VIF) and eigenvalue diagnosis of 

multicollinearity [6]. The VIF diagnoses multicollinearity by measuring the impact of the correlation 

among independent variables on the variance of regression coefficients. The specific formula is: 

𝑉𝐼𝐹𝑖 =
1

1 − 𝑅𝑖
2

(3) 

Among them, 𝑅𝑖 is the coefficient of determination when the 𝑖th independent variable is taken as 

the dependent variable and regressed with other independent variables. VIF greater than 10 indicates 

the presence of severe multicollinearity. 

The eigenvalue diagnostic method is a multicollinearity discrimination method based on the 

eigenvalues and condition indices of the independent variable matrix.  First, perform principal 

component analysis on the standardized independent variable matrix and calculate the eigenvalues. 

Then, calculate the condition index, which is defined as the ratio of the square root of the largest 

eigenvalue to that of the eigenvalue. 

𝑘𝑖 = √
𝜆𝑚

𝜆𝑖
, 𝑖 = 0,1,2, ⋯ , 𝑘 (4) 

Among them, 𝑘𝑖  is referred to as the condition number of the characteristic root 𝜆𝑖 . The 

determination rule is as follows: when 0 < 𝑘 < 10, 𝑋 has no collinearity problem; when 10 < 𝑘 ≤
100 , 𝑋  may have a relatively strong collinearity problem; when 𝑘 ≥ 100 , 𝑋 has a serious 

multicollinearity problem. 

The variance inflation factor method can visually reflect the degree of collinearity between a single 

variable and other variables. Moreover, its calculation is relatively simple, and most mainstream 

statistical software supports direct calculation. At the same time, this method can pinpoint specific 

variables, facilitating subsequent processing. In comparison, although the eigenvalue diagnostic 

method has stronger capabilities in global analysis and complex multicollinearity detection, it has 

cumbersome calculation steps and lacks a direct variable location function. Therefore, this paper will 

adopt the variance inflation factor method to detect multicollinearity. The existence of 

multicollinearity will undermine the stability of parameter estimation. For instance, in the case of 

binary regression, the variance of the estimator is positively correlated with the correlation of the 

independent variable. 

The regression equation of the independent variables 𝑥1 and 𝑥2 and the dependent variable 𝑦 is: 

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 (5) 

Let 𝑇11 = ∑ 𝑥𝑖1
2𝑛

𝑖=1 , 𝑇12 = ∑ 𝑥𝑖1𝑥𝑖2
𝑛
𝑖=1 , 𝑇22 = ∑ 𝑥𝑖2

2𝑛
𝑖=1 , and the correlation coefficient between 

𝑥1and 𝑥2 is 𝑟12 =
𝑇12

√𝑇11√𝑇22
. After the calculation, it can be obtained that 

𝑉𝐴𝑅(𝛽1) =
𝜎2

(1 − 𝑟12
2 )𝑇11

(6) 

𝑉𝐴𝑅(𝛽2) =
𝜎2

(1 − 𝑟12
2 )𝑇22

(7) 
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From the above two formulas, it can be seen that when the correlation coefficient between the 

independent variables is larger, the variance of the parameter estimates increases, which significantly 

undermines the practical value of the regression model. 

2.3. Solutions to multicollinearity 

The mainstream solutions to multicollinearity include but are not limited to the following three: 

removing highly collinear variables, combing related variables, and stepwise regression. 

The method of removing highly collinear variables refers to the process of detecting and 

eliminating redundant variables that are highly correlated with other variables in order to reduce 

multicollinearity. The detection index is usually VIF. The potential weakness of this method is that it 

might delete important information [7,8].  

The method of combining related variables refers to the construction of comprehensive indicators 

by linearly combining or merging highly correlated indicators to reduce the number of variables and 

weaken multicollinearity. If 𝑥1 and 𝑥2 are highly correlated, then construct 𝑍 such that: 

𝑍 = 𝑚1𝑥1 + 𝑚2𝑥2 (8) 

In the formula, 𝑚1 and 𝑚2 represent the weights of each variable, which are usually determined 

by the significance of each variable, empirical rules, and statistical methods. Stepwise regression is a 

variable selection technique that combines forward selection and backward elimination strategies to 

dynamically adjust the independent variables in the model through statistical tests [9]. The main 

process is as follows. 

Model initialization refers to that the initial model is an empty model that only contains the 

intercept term: 

𝑌 = 𝛽0 (9) 

The variable introduction refers to that each time, select the variable from those not yet included 

in the model that has the greatest explanatory contribution to the dependent variable and is statistically 

significant. The statistical test for variable introduction is to calculate the partial F-statistic. 

𝐹𝑒𝑛𝑡𝑒𝑟 =
𝑆𝑆𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − 𝑆𝑆𝐸𝑓𝑢𝑙𝑙

𝑑𝑓𝑓𝑢𝑙𝑙 − 𝑑𝑓𝑟𝑒𝑑𝑢𝑐𝑒𝑑
÷

𝑆𝑆𝐸𝑓𝑢𝑙𝑙

𝑛 − 𝑝𝑓𝑢𝑙𝑙 − 1
(10) 

SSE represent Sum of Squared Errors, df represent Degree of Freedom, n represent Sample Size. 

If 𝐹𝑒𝑛𝑡𝑒𝑟 > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, then introduce the variable. 

Variable elimination refers to eliminate the variables that are not significant after introducing new 

variables. For the selected variable 𝑋𝑗, calculate its t-statistic. 

𝑡𝑗 = 𝛽�̂� 𝑆𝐸(𝛽�̂�)⁄ (11) 

If |𝑡𝑗| < 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, then eliminate the selected variable 𝑋𝑗. Iterative loop refers to that continue this 

process iteratively until it is no longer possible to introduce any new variables, and all remaining 

variables in the model are significant, with none requiring removal. 
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Figure 1: Distribution of CO₂ emissions by cylinder count 

3. Results and applications 

3.1. Data presentation 

According to the survey, the potential factors related to the carbon dioxide emissions of automobiles 

are engine size, number of cylinders, urban road fuel consumption, highway road fuel consumption 

and combined fuel consumption. This article will explore the relevant factors of automotive carbon 

dioxide emissions through 7,385 sets of data containing the aforementioned variables. 

Through R, as shown in Figure 1, it can be visually observed that there is a positive correlation 

between the number of cylinders and carbon dioxide emissions. 

  

Figure 2: Engine size vs. CO₂ emissions and fuel consumption vs. CO₂ emissions 

As shown in Figure 2, in each data sets, the carbon dioxide emissions corresponding to the engine 

size are distributed on both sides of the regression line, demonstrating a positive correlation between 

engine size and carbon dioxide emissions. The graphical representation indicates that the carbon 

dioxide emissions associated with the combined fuel consumption in each data set are dispersed 

around the regression line, thereby confirming a positive correlation between fuel consumption and 

CO₂ emissions. The initial regression model was obtained by fitting through the lm function in R [10]. 

It is found that the CO₂ emissions is 

𝐶𝑂2 Emissions = 50.8179 + 5.5090 ∙ Engine Size + 6.5421 ∙ Cylinders 
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+1.2212 ∙ Fuel consump(city) + 1.4350 ∙ Fuel consump(highway) 
+10.6892 ∙ Fuel consump(combined) (12) 

3.2. Detection of multicollinearity 

As shown in the Figure 3, the heat map shows that there may be correlations between engine size and 

the number of cylinders, as well as between city fuel consumption and highway fuel consumption, 

which leads to strong multicollinearity. Find highly collinear variables by calculating VIF in R. 

Table 1: VIF of each variable 

Variable VIF 

Engine Size 8.528664 

Cylinders 7.572818 

Fuel Consumption(city) 2059.8866997 

Fuel Consumption(highway) 556.043118 

Fuel Consumption(combined) 4625.521279 

 

If the VIF exceeds 10, it indicates the presence of significant multicollinearity. Consequently, city 

fuel consumption, highway fuel consumption, and combined fuel consumption are identified as 

highly collinear variables, whereas the number of cylinders and engine size exhibit relatively lower 

correlations, as shown in Table 1. 

  

Figure 3: Heatmap of engine size vs. cylinders vs. CO₂ emissions and city vs. highway fuel 

consumption vs. CO₂ emissions 

3.3. Correction of multicollinearity 

In terms of carbon dioxide emissions from automobiles, there is a lack of expert solutions for 

integrating urban fuel consumption and highway fuel consumption as variables, so the combined 

variable method cannot be used to eliminate multicollinearity. When dealing with redundant variables, 

to ensure that the model still has a high explanatory power after reducing collinearity, which means 

achieving a balance between explanatory power and complexity, the stepwise regression method is 

used instead of the variable removal method. An improved model was obtained through stepwise 

regression using R. 

𝐶𝑂2 Emssions = 51.1704 + 5.4971 ∙ Engine size + 6.4875 ∙ Cylinders 
+13.2688 ∙ Fuel consumption(combined) (13) 
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Through stepwise regression, the two redundant variables of city fuel consumption and highway 

fuel consumption were removed. 

3.4. Model validation and evaluation 

The validation and evaluation of the multiple linear regression model begin by examining the 

fundamental assumptions of linear regression, specifically linearity, normality, and homoscedasticity. 

Verify and visualize whether the model conforms to the basic assumptions of the linear regression 

model through R. The residuals vs. fitted value plot is used to check whether the variance of the 

residuals is constant and whether there is a nonlinear relationship in the model. When the residuals 

are randomly distributed around the horizontal line 𝑦 = 0 without any obvious pattern, it indicates 

that the model conforms to the assumptions of linearity and homoscedasticity. 

Both the quantities-quantities plot and the residual histogram are used to test the normality of 

residuals. When the points in the quantities-quantities plot are roughly distributed along the diagonal 

line and the residual histogram is close to a bell-shaped curve, it indicates that the model conforms to 

the normality assumption. As shown in the Figure 4, it can be seen from the results that all the 

assumptions of the linear regression model hold true. 

 

Figure 4: Residual analysis 

As shown in the Figure 5, the comparison chart of expected values and actual values shows that 

the expected values can reflect the changing trend of the actual values. After calculation and 

modification, the residual standard error of the regression model is 0.8792, close to 1, which also 

indicates a good fitting effect of the model. 
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Figure 5: Predicted vs. actual CO₂ emissions 

4. Conclution 

This article introduces the application of multiple linear regression in multivariate fitting models, as 

well as the impact of possible multicollinearity in the model and its identification and correction. 

Through the fitting and correction of existing data on carbon dioxide emissions from automobiles, it 

is concluded that engine size, cylinder number and combined fuel consumption are significant 

influencing factors of carbon dioxide emissions. Moreover, since the coefficient of comprehensive 

fuel consumption is greater than that of the other variables, it can be known that combined fuel 

consumption plays a dominant role in the impact on carbon dioxide emissions. To reduce carbon 

dioxide emissions from automobiles, car manufacturers can focus their research on engine size, the 

number of cylinders and combined fuel consumption. 

In future research, more comprehensive data can be collected to explore whether more factors 

influence the carbon dioxide emissions of automobiles. Additionally, based on this article, it can be 

investigated which factors have lower improvement costs to achieve more efficient improvements, 

because identifying low-cost, high-impact interventions can guide policymakers and manufacturers 

in making informed decisions that lead to more efficient improvements in emission reduction. At the 

same time, other methods for addressing multicollinearity can be explored to better eliminate 

collinearity while maintaining the model's explanatory power. Techniques such as principal 

component analysis, ridge regression, or even machine learning algorithms might offer promising 

solutions. 
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