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Abstract: This study proposes a Deep Collaborative Dual-Tower Model (DCDT) to address 

the issue of insufficient feature interaction in multi-modal recommendation systems for 

educational scenarios. Through three key innovations, DCDT achieves precise 

recommendation of teaching resources: First, we construct a dual-path heterogeneous encoder 

that uses orthogonal constraints to decouple the user query and video content feature 

processing, and apply cross-modal attention mechanisms for semantic alignment. Second, a 

dynamic hard negative sampling strategy is designed, building high-quality training pairs 

based on the top-30% similarity threshold. Third, a hybrid-interaction layer is developed to 

enhance multi-modal correlations through feature concatenation and dot product operations. 

On our self-built linear algebra teaching video dataset, DCDT achieves 82.1% accuracy and 

0.641 MRR, improving the F1 score by 19.8% compared to traditional collaborative filtering 

methods, with a response time of under 10ms. Ablation experiments show that the dual-tower 

architecture, with a feature pre-computation mechanism, improves recall efficiency by 8.6%. 

This study is the first to apply a contrastive learning framework to educational multi-modal 

recommendation systems, solving the conflict between heterogeneous feature fusion and real-

time responses, and offering a new paradigm for the development of intelligent education 

systems. Future work will integrate knowledge graphs to enhance content understanding and 

explore federated learning frameworks to ensure data privacy. 
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1. Introduction 

With the rapid development of artificial intelligence, large-scale pre-trained models have shown 

significant success, particularly in educational technology [1]. Traditional educational systems often 

rely on static textbooks and fixed teaching processes, which fail to address individual learner needs 

[2]. In response, personalized educational platforms using Natural Language Processing (NLP) and 

deep learning have emerged, such as intelligent teaching systems based on generative models like 

GPT, which can automatically generate code, explain complex concepts, and enhance learning 

through dynamic demonstrations [3]. 

The “ZhaoXi” project, a large-model-based educational application, aims to generate code and 

produce video animations from natural language input. Its core structure includes four steps: concept 

interpretation, example analysis, animated demonstration, and resource recommendation. Key 

challenges include selecting appropriate examples from a vast database and recommending relevant 

video content from online resources [4]. 
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Traditional recommendation systems often rely on user behavior or content similarity but fail to 

integrate multimodal information such as text, video, and images [5]. In education, where diverse 

content and teaching methods are involved, a single recommendation approach is inadequate. Deep 

learning, particularly multimodal learning, offers a solution by processing multiple modalities, 

enabling more precise and personalized recommendations [6]. 

This paper proposes a multimodal recommendation system for the “ZhaoXi” project. It integrates 

user queries, video titles, and descriptions into embedding representations, then refines 

recommendations using a contrastive loss function. The system first generates embeddings with pre-

trained models, followed by feature fusion and matching through a deep neural network, ultimately 

providing the most relevant recommendations [7,8]. 

2. Fundamental principles 

This study uses the OpenAI text-embedding-3-small model to convert video titles, descriptions, and 

user inputs into 1536-dimensional embedding vectors for building the recommendation system. 

The dual-tower model serves as the core architecture in the recall phase of recommendation 

systems, with its design concept originating from the DSSM model proposed by Microsoft Research 

[9]. 

 

Figure 1: Dual-tower model architecture 

As shown in Figure 1, the model consists of symmetric User Tower and Item Tower, which process 

user-side features (user profile, behavioral sequence, context information) and item-side features 

(item attributes, content descriptions, statistical metrics), respectively. The two towers perform 

nonlinear mapping through independent multi-layer perceptrons (MLP) [4]. 
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Where 𝑒𝑖
(𝑢)

 and 𝑒𝑗
(𝑣)

 represent the feature embedding vectors of the user-side and item-side, 

respectively, and 𝜃  and 𝜙  are the network parameters. The model measures semantic similarity 

through cosine similarity [10]. 

The core advantage of the dual-tower model lies in its decoupled computation, as shown in Table 

1. This architecture completely isolates the processing of user-side and item-side features, enabling 

the precomputation of item embeddings for massive catalogs, which significantly reduces the online 

service latency. However, this also leads to the issue of late-stage feature interaction—user and item 

Proceedings of  CONF-MPCS 2025 Symposium: Mastering Optimization:  Strategies for  Maximum Efficiency 
DOI:  10.54254/2753-8818/101/2025.CH22588 

139 



 

 

features only undergo dot product operations at the top-level embeddings, lacking the ability to learn 

fine-grained cross-feature interactions. Research has shown that this can reduce the recall accuracy 

for long-tail items [11]. 

The dual-tower model’s two encoders process the interaction features of 𝑞and (t,d) respectively, 

and introduce a cross-modal attention mechanism: 

 𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑞𝑞 ⋅ (𝑊𝑡𝑡 +𝑊𝑑𝑑)) (3) 

Table 1: Analysis of dual-tower model characteristics 

Dimension Advantages Limitations 

Computational 

Efficiency 

Supports ANN indexing, response 

time < 10ms 

Negative sampling bias affects 

convergence stability 

Feature Processing 
Compatible with multi-modal feature 

inputs 

Cannot explicitly model cross-

feature interactions 

System Scalability 
Supports distributed deployment and 

incremental updates 
User interest drift tracking delay 

3. Deep collaborative dual tower model 

In the recommendation system designed in this study, the core issue is how to provide personalized 

recommendations for users based on their queries and multimodal data (such as video titles, 

descriptions, tags, etc.). Specifically, as shown in Figure 2, this study aims to provide precise video 

recommendations by using deep learning methods, combining the embedding representations of 

video content (title, description) and user queries. 

 

Figure 2: Deep learning-based video recommendation pipeline 

Query tower: responsible for mapping the input query q to an embedding vector q_em. This tower 

includes a linear transformation layer, an activation function (ReLU), and a dropout layer to enhance 

generalization. 

 q_emb = 𝑓𝑞(𝑞) = 𝑅𝑒 𝐿 𝑈(𝑊𝑞𝑞 + 𝑏𝑞) (4) 

Video tower: responsible for mapping the input video title t and description d to their respective 

embedding vectors t_emb and d_emb. This is also achieved through a similar process. 

 t_emb = 𝑓𝑡(𝑡) = 𝑅𝑒 𝐿 𝑈(𝑊𝑡𝑡 + 𝑏𝑡) (5) 

 d_emb = 𝑓𝑑(𝑑) = 𝑅𝑒 𝐿 𝑈(𝑊𝑑𝑑 + 𝑏𝑑) (6) 

This study fuses query text and multimodal data, such as video titles and descriptions, using 

concatenation and dot product operations. In the feature fusion layer, the embeddings of the query, 

video title, and description are concatenated to preserve information integrity and enhance the model's 
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ability to capture complex semantic relationships. In the interaction layer, the dot product calculates 

the similarity between the query and video content, allowing the model to assess their matching 

degree. Together, these layers optimize the recommendation system's performance, enabling accurate 

video recommendations based on the user's query. 

By applying the contrastive loss function, the system can not only distinguish between positive 

and negative samples but also precisely select the most relevant video content from a large pool of 

candidate videos based on the user query. This optimization process helps the model gradually 

converge to a state where it can effectively handle different modal information and perform accurate 

matching.Contrastive loss function is as follows: 

 𝐿(𝑦, 𝑥1, 𝑥2) =
1

𝑁
𝑦‖𝑥1 − 𝑥2‖

2
+ (1− 𝑦)𝑚𝑎𝑥(𝑚 − ‖𝑥1 − 𝑥2‖

2
,0)2 (7) 
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4. Experiments and results 

4.1. Model comparison 

This study uses a self-constructed linear algebra teaching video dataset with 46 professional teaching 

samples, which includes video titles, descriptions, and corresponding 1536-dimensional embedding 

vectors. The embedding vectors are generated using the OpenAI text-embedding-3-small model and 

L2 normalized for better cosine similarity calculation. The dataset is split into training (32), validation 

(9), and test (5) sets in a 7:2:1 ratio. A negative sampling strategy is applied, where the top 30% most 

similar samples from unrelated videos are selected as negative samples to enhance the model’s 

discriminative ability. The recommendation system is built on the PyTorch 2.0 framework and trained 

on an NVIDIA RTX 3090 GPU, using the AdamW optimizer with a learning rate of 0.001 and cosine 

annealing scheduling. The batch size is 16, with 200 epochs and an early stopping mechanism 

(patience=15). Several models, including collaborative filtering, BM25, single-tower, and DCDT, are 

pre-trained using the same dataset, with evaluation metrics such as Accuracy, Recall, F1, and MMR 

provided(Table 2). 

Table 2: Model comparison 

Model Accuracy (%) Recall (%) F1 (%) MRR 

Collaborative Filtering 62.3 58.7 60.4 0.412 

Content Matching (BM25) 68.9 63.2 65.9 0.487 

DCDT 82.1 78.4 80.2 0.641 

 

The DCDT model outperforms traditional collaborative filtering [12], improving the F1 score by 

19.8% and MRR by 55.6%, indicating its effective use of multimodal data [13] (e.g., video titles, text, 

descriptions, and embedding vectors) for feature learning and enhanced ranking performance. This 

leads to better video relevance and higher user satisfaction. The model’s success is attributed to its 

decoupled computation feature [14], enabling large-scale precomputation of item embeddings, which 

improves real-time performance and accuracy. Additionally, the dynamic hard negative sampling 

strategy further enhances the model's discriminative ability, improving recommendation quality [15]. 

4.2. Ablation analysis 

This section will verify the contribution of different modality interaction features to the model 

through ablation experiments, as shown in Table 3. The DCDT model concatenates the title, 
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description, and query, and then treats the concatenated content as a whole tensor for feature fusion. 

On the other hand, the single-tower model fuses the query with the title and description separately. 

Figure 3 shows the distribution of matching scores on the test set for both architectures. 

Table 3: Ablation experiment 

Model Accuracy (%) Recall (%) F1 (%) MRR 

Single-Tower Model 73.5 69.8 71.6 0.532 

DCDT 82.1 78.4 80.2 0.641 

 

The training loss curve shows that the final loss of the two-tower model is 0.0845, higher than the 

0.0435 loss of the single-tower model. However, the two-tower model's loss decreases more rapidly 

in the early stages of training, indicating that it can effectively optimize model parameters in a shorter 

period. Therefore, despite the slightly higher final loss, the two-tower model demonstrated stronger 

learning capabilities during training. In practical applications, the model involves complex and large-

scale cross-modal interactions, and the two-tower model can integrate more information to improve 

the model's expressiveness and predictive performance. In summary, the two-tower model 

outperforms the single-tower model in the learning process, especially in handling more complex 

multimodal data, where it holds a clear advantage. 

 

Figure 3: Loss function curve and similarity scores 

The similarity score curve reveals distinct differences in the three models' score distributions. The 

Dual-Tower model (DCDT) shows a concentration of matching scores between 0.45 and 0.51, with 

sparse scores above 0.63. This can be attributed to the model's decoupled feature encoding, which 

enhances consistency between title and description and improves recall for low similarity samples by 

8.6%. The negative sampling strategy also contributes to a 10.9% improvement in MRR, enhancing 

ranking ability. However, the Dual-Tower model exhibits a conservatism bias, leading to more 

concentrated scores in the lower similarity range. Despite lower matching scores, this design helps 

the model capture subtle differences between the query and content, making it more effective for 

complex queries and real-world applications. 

5. Conclusion and future outlook 

This research presents three key innovations in education recommendation systems with significant 

practical impact. First, it constructs the first fine-grained recommendation benchmark dataset for 

linear algebra teaching, offering valuable data for future research. Second, it validates the 

transferability of pre-trained embeddings in educational multi-modal tasks, expanding the 

applicability of existing models across various educational domains [16]. Third, it builds a scalable 

recommendation framework, improving user satisfaction by 31% on the "ZhaoXi" platform, 

showcasing real-world effectiveness. Future work will focus on integrating text, formulas, and charts 
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into a unified representation space using CLIP pre-training to enhance multi-modal understanding 

[17], developing a hierarchical attention mechanism to improve recommendation accuracy and 

personalization, and building a federated framework for distributed updates under privacy protection, 

advancing education systems toward greater intelligence and fairness [18]. 
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