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Abstract: This paper aims to derive a recursive relationship of the values of Riemann zeta 

function at even natural numbers by using the principles of elementary symmetric 

polynomials, and associations between them and zeta functions, thereby expressing 𝜁(2𝑘) in 

only terms of previous zeta function’s values. Moreover, this recursive formula is going to be 

proven equivalently to the explicit formula of 𝜁(2𝑘) . 
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1. Introduction 

The explicit formula of Riemann zeta function over 2𝑛 (𝑛 ∈ ℕ) is originally given by: 

𝜁(2𝑛) =
|𝐵2𝑛| (2𝜋)

2𝑛

2(2𝑛)!
 

Where 𝐵𝑛 denotes as the nth Bernoulli number. 

Also, the values of 𝐵𝑛 can be evaluated recursively by this following relationship, and it is the 

only simplest way to calculate their exact values: 

𝐵𝑛 = −
1

𝑛 + 1
∑ (𝑛 + 1

𝑘
)𝐵𝑘

𝑛−1

𝑘=0

 

Which is just being rewritten from the identity that ∑ (
𝑛 + 1

𝑘
)𝐵𝑘 = 0𝑛

𝑘=0  . 

However, when we are evaluating 𝜁(2𝑛) based on Bernoulli numbers, then we have to find the 

Bernoulli numbers at corresponding term first, then plug them in into the explicit formula. It will be 

very complex especially when 𝑛 becomes larger.  

However, there is a way to eliminate the Bernoulli numbers in the formula when we are calculating 

𝜁(2𝑛), which can simplify the process at some extend. 

That is, the recursive formula of Riemann zeta function 𝜁(𝑛) at even natural numbers can be 

expressed by the following equation: 
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𝜁(2𝑛) = (−1)
𝑛−1

(
𝑛𝜋2𝑛

(2𝑛 + 1)!
+ ∑(−1)

𝑘

𝑛−1

𝑘=1

𝜋2(𝑛−𝑘)𝜁(2𝑘)

(2(𝑛 − 𝑘) + 1)!
)  for 𝑛 ≥ 2 

From using this recursive formula: 

𝜁(2) =
𝜋2

3!
=

𝜋2

6
  

𝜁(4) = −
2𝜋4

5!
+

𝜋2

3!
𝜁(2) =

𝜋4

90
  

𝜁(6) =
3𝜋6

7!
−

𝜋4

5!
𝜁(2) +

𝜋2

3!
𝜁(4) =

𝜋6

945
  

𝜁(8) = −
4𝜋8

9!
−

𝜋6

7!
𝜁(2) +

𝜋4

5!
𝜁(4) −

𝜋2

3!
𝜁(6) =

𝜋8

9450
  

… 

This formula is derived from the principles of elementary symmetric polynomials and the 

associations between them and the values of zeta function. Also, it is equivalent to the original explicit 

formula of zeta function, that is, 𝜁(2𝑛) =
|𝐵2𝑛|(2𝜋)2𝑛

2(2𝑛)!
. 

2. Elementary symmetric polynomials & Newton’s identities 

For variables 𝑥1, … , 𝑥𝑘  (𝑘 > 1), let 𝑝𝑘(𝑥1, … , 𝑥𝑛) be the power sum ∑ 𝑥𝑖
𝑘𝑛

𝑖=1  and 𝑒𝑘(𝑥1, … , 𝑥𝑛) be 

the elementary symmetric polynomial such that 𝑒𝑘(𝑥1, … , 𝑥𝑛) = ∑ 𝑥𝑖1 ⋅ 𝑥𝑖2 …𝑥𝑖𝑘1≤𝑖1<𝑖2<⋯<𝑖𝑘 . 

For example, we know that (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 , replace 𝑎 + 𝑏  by 𝑝1 ; 𝑎2 + 𝑏2  by 

𝑝2; 𝑎𝑏 by 𝑒2 and we obtain 𝑝1
2 = 2𝑒2 + 𝑝2 ⇒ 𝑒2 =

1

2
(𝑝1

2 − 𝑝2) . This is important because it 

generalizes the following summation identity: 

∑ 𝑖𝑗

1≤𝑖<𝑗

=
1

2
[
 
 
 

(∑ 𝑖

∞

𝑛=1

)

2

− ∑ 𝑗2

∞

𝑛=1
]
 
 
 

 

Similarity for 𝑒3, expanding (𝑎 + 𝑏 + 𝑐)3 and do some elementary algebra: 

⇒ (𝑎 + 𝑏 + 𝑐)3 = 𝑎3 + 𝑏3 + 𝑐3 + 6𝑎𝑏𝑐 + 3𝑎2𝑏 + 3𝑎2𝑐 + 3𝑏2𝑎 + 3𝑏2𝑐 + 3𝑐2𝑎 + 3𝑐2𝑏  

= (𝑎3 + 𝑏3 + 𝑐3) + 6𝑎𝑏𝑐 + 3𝑎2(𝑏 + 𝑐 + 𝑎 − 𝑎) + 3𝑏2(𝑎 + 𝑐 + 𝑏 − 𝑏) + 3𝑐2(𝑎 + 𝑏 + 𝑐 − 𝑐)   

= (𝑎3 + 𝑏3 + 𝑐3) + 6𝑎𝑏𝑐 + (3𝑎2 + 3𝑏2 + 3𝑐2) (𝑎 + 𝑏 + 𝑐) − (3𝑎3 + 3𝑏3 + 3𝑐3)  

= −2 (𝑎3 + 𝑏3 + 𝑐3) + 6𝑎𝑏𝑐 + 3 (𝑎2 + 𝑏2 + 𝑐2) (𝑎 + 𝑏 + 𝑐)  

⇒ 𝑝
1

3
= −2𝑝3 + 6𝑒3 + 3𝑝2𝑝1 ⇒ 𝑒3 =

1

6
(𝑝

1

3
− 3𝑝1𝑝2 + 2𝑝3)  

We can keep deriving, but it becomes complicated when 𝑘 goes larger since it involves a lot of 

substitution and the coefficients are irregular.  

However, there is a way to make it simpler: 
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Define 𝐸(𝑡) to be the generating function of 𝑒𝑘, that is, 

𝐸(𝑡) = ∑ 𝑒𝑘𝑡
𝑘

∞

𝑘=1

 

It can be observed that by the definition of 𝑒𝑘, 

𝐸(𝑡) = ∏(1 + 𝑥𝑖𝑡)

𝑛

𝑖=1

 

Taking logarithms from both sides: 

(Note that ln 𝑋 is an alternative notation for log𝑒 𝑋) 

ln 𝐸(𝑡) = ln ∏(1 + 𝑥𝑖𝑡) = ∑ ln(1 + 𝑥𝑖𝑡)

𝑛

𝑖=1

𝑛

𝑖=1

 

∵ ln(1 + 𝑥𝑖𝑡) =∑
(−1)

𝑘−1
(𝑥𝑖𝑡)

𝑘

𝑘

∞

𝑘=1

  (Taylor′s expansion for ln(1 + 𝑋))  

∴ ln 𝐸(𝑡) = ∑
(−1)

𝑘−1
𝑝𝑘𝑡

𝑘

𝑘

∞

𝑘=1

 

And taking derivatives respect to 𝑡 from both sides of the equation: 

𝐸′(𝑡)

𝐸(𝑡)
= ∑(−1)

𝑘−1
𝑝𝑘𝑡

𝑘−1

∞

𝑘=1

 

⇒ 𝐸′(𝑡) = 𝐸(𝑡) ∑(−1)
𝑘−1

𝑝𝑘𝑡
𝑘−1

∞

𝑘=1

 

= (1 + 𝑒1𝑡 + 𝑒2𝑡
2 + ⋯)(𝑝1 − 𝑝2𝑡 + 𝑝3𝑡

2 − ⋯) 

By comparing and equating the coefficient of 𝑡𝑘−1 and therefore obtain: 

𝑘𝑒𝑘 = ∑(−1)
𝑘−1

𝑒𝑘−𝑖𝑝𝑖

𝑘

𝑖=1

 

Which is so called Newton’s Identities for elementary symmetric polynomials. From using this 

principle, we may express 𝑒𝑘 in terms of 𝑝1, 𝑝2, … , 𝑝𝑘 (Note that 𝑒1 = 𝑝1): 

𝑒1 = 𝑝1  

𝑒2 =
1

2
(𝑝

1

2
− 𝑝2)  
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𝑒3 =
1

6
(𝑝

1

3
− 3𝑝1𝑝2 + 2𝑝3)  

𝑒4 =
1

24
(𝑝

1

4
− 6𝑝

1

2
𝑝2 + 8𝑝1𝑝3 + 3𝑝

2

2
− 6𝑝4)  

… 

This property will further be using to derive the recursive formula of 𝜁(2𝑘) essentially. 

3. Associations with Riemann zeta functions 

According to Euler’s product formula, for any polynomial function 𝑃(𝑥), it can be written as 

𝑃(𝑥) = 𝑎𝑛 ∏(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

where 𝑥1, 𝑥2, … , 𝑥𝑖 are the roots of 𝑃(𝑥) and 𝑎𝑛 is the leading coefficient of 𝑃(𝑥). 

Let 𝑃(𝑥) = sin 𝑥, then 

sin 𝑥 = 𝑥 ∏(1 −
𝑥2

(𝑛𝜋)2
)

∞

𝑛=1

 

⟹
sin 𝑥

𝑥
= ∏(1 −

𝑥2

(𝑛𝜋)2
)

∞

𝑛=1

 

And associate it with Taylor’s expansion of 
sin𝑥

𝑥
: 

∏(1 −
𝑥2

(𝑛𝜋)2
)

∞

𝑛=1

= ∑
(−1)

𝑛−1
𝑥2𝑛−2

(2𝑛 − 1)!

∞

𝑛=1

 

Equating the coefficients of 𝑥2, 𝑥4, … , 𝑥2𝑛: 

𝑥2: −
1

3!
= −

1

𝜋2
∑

1

𝑖2

∞

𝑖=1

 

𝑥4:
1

5!
=

1

𝜋4
∑

1

𝑖2𝑗2
1≤𝑖<𝑗

 

⋮ 

𝑥2𝑛:
(−1)

𝑛

(2𝑛 + 1)!
=

(−1)
𝑛

𝜋2𝑛
∑

1

𝑖
1

2
𝑖

2

2
… 𝑖𝑛

2
1≤𝑖1<𝑖2<⋯<𝑖𝑛

(𝑛 > 2) 

⇒ 𝑥2𝑛:
1

(2𝑛 + 1)!
=

1

𝜋2𝑛
∑

1

𝑖
1

2
𝑖

2

2
… 𝑖𝑛

2
1≤𝑖1<𝑖2<⋯<𝑖𝑛

(𝑛 > 2) 
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The summation part 

∑
1

𝑖
1

2
𝑖

2

2
… 𝑖𝑛

2
1≤𝑖1<𝑖2<⋯<𝑖𝑛

(𝑛 > 2) 

can be considered as an elementary symmetric polynomial 𝑒𝑛(𝑥1, … , 𝑥𝑘)  where 𝑥1, 𝑥2, … , 𝑥𝑘 =
1

𝑖1
2 ,

1

𝑖2
2 , … ,

1

𝑖𝑛
2 (𝑛 = 𝑘) 

∴ 𝑒𝑛 = ∑
1

𝑖
1

2
𝑖

2

2
… 𝑖𝑛

2
1≤𝑖

1
<𝑖

2
<⋯<𝑖𝑛

=
𝜋2𝑛

(2𝑛 + 1)!
 

Therefore, the power sum 𝑝𝑛(𝑥1, … , 𝑥𝑘) has  

𝑝𝑛 = ∑
1

𝑖2𝑛

∞

𝑖=1

= 𝜁(2𝑛) 

Associate with Newton’s identities which has been proven in 1.1: 

𝑛𝑒𝑛 = ∑(−1)
𝑘−1

𝑒𝑛−𝑘𝑝𝑛

𝑛

𝑘=1

 

⇒
𝑛𝜋2𝑛

(2𝑛 + 1)!
= ∑(−1)

𝑘−1
𝑛

𝑘=1

𝜋2(𝑛−𝑘)

(2(𝑛 − 𝑘) + 1)!
𝜁(2𝑘) 

⇒
𝑛𝜋2𝑛

(2𝑛 + 1)!
= ∑(−1)

𝑘−1

𝑛−1

𝑘=1

𝜋2(𝑛−𝑘)

(2(𝑛 − 𝑘) + 1)!
𝜁(2𝑘) + (−1)

𝑛−1
𝜁(2𝑛) 

⇒ (−1)
𝑛−1

𝜁(2𝑛) =
𝑛𝜋2𝑛

(2𝑛 + 1)!
+ ∑(−1)

𝑘

𝑛−1

𝑘=1

𝜋2(𝑛−𝑘)

(2(𝑛 − 𝑘) + 1)!
𝜁(2𝑘) 

⇒ 𝜁(2𝑛) = (−1)
𝑛−1

(

 
𝑛𝜋2𝑛

(2𝑛 + 1)!
+ ∑(−1)

𝑘

𝑛−1

𝑘=1

𝜋2(𝑛−𝑘)

(2(𝑛 − 𝑘) + 1)!
𝜁(2𝑘)

)

 , for 𝑛 ≥ 2 

Which obtain the recursive formula for 𝜁(2𝑛) where 𝑛 ≥ 2 . 

4. Associations with the explicit formula of Riemann zeta functions 

For 𝑛 ∈ ℕ∗, the explicit formula of Riemann zeta function is given by: 

𝜁(2𝑛) =
|𝐵2𝑛| (2𝜋)

2𝑛

2(2𝑛)!
 

where 𝐵𝑛 is the 𝑛th Bernoulli number. 

Then according to the recursive formula derived before, the equation 
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|𝐵2𝑛| (2𝜋)
2𝑛

2(2𝑛)!
= (−1)

𝑛−1

(

 
𝑛𝜋2𝑛

(2𝑛 + 1)!
+ ∑(−1)

𝑘

𝑛−1

𝑘=1

𝜋2(𝑛−𝑘)

(2(𝑛 − 𝑘) + 1)!
𝜁(2𝑘)

)

  for 𝑛 > 1 

must be satisfied. 

Lemma: 

𝑥 cot 𝑥 = 1 − ∑
22𝑛 |𝐵2𝑛|

(2𝑛)!
𝑥2𝑛

∞

𝑛=1

 

Proof: 

Recall that the generating function of Bernoulli numbers 𝐵𝑛 is 

𝑥

𝑒𝑥 − 1
= ∑

𝐵𝑛

𝑛!

∞

𝑛=0

𝑥𝑛  for |𝑥| < 2𝜋 

⟹
𝑥

2
∙
𝑒𝑥 + 1

𝑒𝑥 − 1
= 1 + ∑

𝐵𝑛

𝑛!
𝑥𝑛

∞

𝑛=2

 

Since LHS is an even function and 𝐵2𝑛+1 = 0 for 𝑛 = 1,2,3… 

⟹
𝑥

2
∙
𝑒𝑥 + 1

𝑒𝑥 − 1
= ∑

𝐵2𝑛

(2𝑛)!
𝑥2𝑛

∞

𝑛=0

 for |𝑥| < 2𝜋 

⟹
𝑥

2
∙
𝑒

𝑥

2 + 𝑒
−

𝑥

2

𝑒
𝑥

2 − 𝑒
−

𝑥

2

= ∑
𝐵2𝑛

(2𝑛)!
𝑥2𝑛

∞

𝑛=0

  

⟹
𝑥

2
coth

𝑥

2
= ∑

𝐵2𝑛

(2𝑛)!
𝑥2𝑛

∞

𝑛=0

 

⟹ 𝑥 coth 𝑥 = ∑
𝐵2𝑛22𝑛

(2𝑛)!
𝑥2𝑛,

∞

𝑛=0

  |𝑥| < 𝜋 

Since coth 𝑖𝑥 = −𝑖 cot 𝑥, substitute 𝑖𝑥 → 𝑥 to obtain: 

𝑖𝑥 coth 𝑖𝑥 = ∑
(−1)

𝑛
𝐵2𝑛22𝑛

(2𝑛)!
𝑥2𝑛

∞

𝑛=0

 

⟹ 𝑥 cot 𝑥 = ∑
(−1)

𝑛
𝐵2𝑛22𝑛

(2𝑛)!
𝑥2𝑛,

∞

𝑛=0

  |𝑥| < 𝜋 
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∵ (−1)
𝑛+1

𝐵2𝑛 = |𝐵2𝑛| 

∴ 𝑥 cot 𝑥 = − ∑
|𝐵2𝑛| 22𝑛

(2𝑛)!
𝑥2𝑛

∞

𝑛=0

 

= 1 − ∑
|𝐵2𝑛| 22𝑛

(2𝑛)!
𝑥2𝑛

∞

𝑛=1

,   |𝑥| < 𝜋 

As we successfully obtain the generating function of 𝐵2𝑘, we may use it to deduce the generating 

function of 𝜁(2𝑘): 

Since 

 𝜁(2𝑘) =
|𝐵2𝑘|(2𝜋)

2𝑘

2(2𝑘)!
 (1) 

and 

 𝑥 cot 𝑥 = 1 − ∑
22𝑘|𝐵2𝑘|

(2𝑘)!
𝑥2𝑘∞

𝑘=1
 (2) 

By substituting 𝑥 = 𝜋𝑥 into (2): 

⟹ 𝜋𝑥 cot 𝜋𝑥 = 1 − ∑
22𝑘 |𝐵2𝑘|

(2𝑘)!
(𝜋𝑥)2𝑘

∞

𝑘=1

 

⟹ 1 − 𝜋𝑥 cot 𝜋𝑥 = ∑
(2𝜋)

2𝑘
|𝐵2𝑘|

(2𝑘)!
𝑥2𝑘

∞

𝑘=1

 

⟹
1

2
(1 − 𝜋𝑥 cot 𝜋𝑥) = ∑

(2𝜋)
2𝑘

|𝐵2𝑘|

2(2𝑘)!
𝑥2𝑘

∞

𝑘=1

 

And associate with (1): 

⟹
1

2
(1 − 𝜋𝑥 cot 𝜋𝑥) = ∑ 𝜁(2𝑘)𝑥2𝑘

∞

𝑘=1

 

Now consider another series which 

𝑥 cot 𝑥 = ∑ 𝑎𝑘𝑥
2𝑘

∞

𝑘=1

 

Where 𝑎𝑘 is any real valued function 
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⇒ cos 𝑥 =
sin 𝑥

𝑥
∑ 𝑎𝑘𝑥

2𝑘

∞

𝑘=0

 

⇒ ∑
(−1)

𝑛
𝑥2𝑛

(2𝑛)!

∞

𝑛=0

= ∑
(−1)

𝑛+1
𝑥2𝑛

(2𝑛 + 1)!

∞

𝑛=0

∑ 𝑎𝑘𝑥
2𝑘

∞

𝑘=0

 

= ∑ (∑(−1)
𝑘 𝑎𝑛−𝑘

(2𝑘 + 1)!

𝑛

𝑘=0

)𝑥2𝑛

∞

𝑛=0

 

By equating the coefficients of 𝑥2𝑛 therefore obtain: 

(−1)
𝑛

(2𝑛)!
= ∑(−1)

𝑘 𝑎𝑛−𝑘

(2𝑘 + 1)!

𝑛

𝑘=0

 

⇒ 𝑎𝑛 =
(−1)

𝑛

(2𝑛)!
− ∑(−1)

𝑘 𝑎𝑛−𝑘

(2𝑘 + 1)!

𝑛

𝑘=1

 

=
2𝑛(−1)

𝑛

(2𝑛 + 1)!
− ∑(−1)

𝑘 𝑎𝑛−𝑘

(2𝑘 + 1)!

𝑛−1

𝑘=1

 

From (3), it can be deduced that 

𝑎𝑛 = −
2𝜁(2𝑛)

𝜋2𝑛
 

Therefore, 

−
2𝜁(2𝑛)

𝜋2𝑛
=

2𝑛(−1)
𝑛

(2𝑛 + 1)!
− ∑(−1)

𝑘 2𝜁 (2(𝑛 − 𝑘))

(2𝑘 + 1)! 𝜋2(𝑛−𝑘)

𝑛−1

𝑘=1

 

⇒ 𝜁(2𝑛) =
𝑛𝜋2𝑛(−1)

𝑛−1

(2𝑛 + 1)!
− ∑(−1)

𝑘 𝜁 (2(𝑛 − 𝑘))

(2𝑘 + 1)!

𝑛−1

𝑘=1

 

= (−1)
𝑛−1

(

 
𝑛𝜋2𝑛

(2𝑛 + 1)!
+ ∑(−1)

𝑘

𝑛−1

𝑘=1

𝜋2𝑘

(2(𝑛 − 𝑘) + 1)!
𝜁(2𝑘)

)

  

Which corresponds to the recursive formula of 𝜁(2𝑛) 

Therefore, it has been successfully proven the equivalent relationship between the recursive 

formula and the explicit formula for Riemann zeta function at even positive integers. 
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5. Conclusion 

By associating the coefficients of the terms of Taylor’s expansion and Euler’s product of 
sin𝑥

𝑥
 with 

the essential properties of elementary symmetric polynomials (Newton’s identities), the recursive 

formula of Riemann zeta function at natural even numbers can be expressed by the previous values 

of it. This method of evaluating the values of zeta function at large even numbers, can be helpful in 

particular occasion than applying the explicit formula since it is difficult to calculate the values of 

large Bernoulli numbers. 
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