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Abstract: This paper delves into the numerical simulation of pendulum motion, focusing on 

the second-order linear ordinary differential equation that models pendulum swings. The 

study addresses the non-uniqueness of solutions and the dependence on initial conditions, 

which are crucial for accurate system modeling. The paper discusses the implications of non-

uniqueness in moving average models and their resolution strategies. Through stability 

analysis and empirical testing with Python, we validate our numerical solutions and observe 

the effects of different parameters on pendulum motion. The research aims to enhance 

understanding of pendulum dynamics, which has applications in engineering, robotics, and 

aerospace. 

Keywords: Pendulum Motion, Numerical Simulation, Dynamic Behavior, Stability Analysis, 

Non-uniqueness 

1. Introduction 

The motion of the pendulum is one of the most fundamental problems in physics, involving many 

important physical concepts such as dynamics, conservation of energy, and nonlinear dynamics. 

Specifically, we are concerned with second-order linear ordinary differential equations that describe 

the swings: 𝜃′′ = 𝑔 sin 𝜃, where θ is the swing angle, and g is the acceleration due to gravity. In our 

study, the initial conditions mean that at time t = 0, the initial velocity is zero at a relatively large 

angle. 

1.1. Related work 

1.1.1. Case study 

In the field of pendulum motion research, scholars have carried out a lot of theoretical and 

experimental work, and the following are some specific research cases: 

1). Theoretical Modeling and Numerical Simulation of Cyclic Pendulum Motion 

The research team of Shaanxi Normal University carried out an in-depth analysis of the motion 

process of the cyclic pendulum (a swinging system composed of a heavy object and a light object 

connected by a rope). They constructed a theoretical model to describe the motion of the entire cyclic 

pendulum system and deduced differential equation sets for the motion of the light and heavy objects. 

Based on 
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Using the Euler algorithm, the numerical solution was done through MATLAB software, and thus, 

the dynamic behavior of the cyclic pendulum was simulated. Besides, the influence brought by the 

counterweight ratio to the motion characteristics of the cyclic pendulum was discussed, and the 

validity of the theoretical model established in the paper was experimentally verified. This research 

provides an important reference for the design of cyclic pendulum experiments and is capable of 

theoretically predicting the impact of variations in different parameters on the motion state of this 

system [1]. 

2). Equation of motion, numerical simulation and experimental verification of spherical pendulum 

Researchers from Sun Yat-sen University discussed the equation of motion for a spherical 

pendulum and examined the periodicity of its motion. Numerical simulation and experiment verified 

that the motion of the pendulum ball in a particular direction is periodic. This research is useful for 

further understanding of spherical surface behaviors related to physics experiments or engineering 

applications [2]. 

3). Study of spring pendulum motion 

In this paper, the differential recurrence method is used to simulate the movement of spring 

pendulums, and the two-way division of movement of the ball is realized, namely the transverse and 

radial directions. It is found that the increase of initial swing Angle will affect the radial periodic 

motion, while the change of stiffness coefficient will affect the lateral periodic motion. With the 

proper choice of the swing angle and stiffness coefficient, the ball can move periodically in either 

direction; the coupling effect in the two directions will be small [3]. 

4). Kinematic behavior of coupled pendulum 

It considers the kinematic behavior of a coupled pendulum system (two oscillations coupled by 

one spring) and derives the equations of motion by constructing the system's Lagrangian. The authors 

found the analytical solution of these equations and applied the multistep differential transformation 

method to get numerical solutions, proving the latter's efficiency as a predictive tool for the system's 

long-term behavior [4]. 

Understanding pendulum motion is important not only for basic physics education but also in 

regard to practical significance in many fields of application, like engineering, robotics, and aerospace. 

Numerical simulations will provide further details on the pendulums' behavior, particularly in 

complex systems, and deliver quantitative results. The precise construction of a model and numerical 

simulation of pendulum movement is crucial for a deeper understanding of phenomena such as 

vibration or fluctuation. 

1.1.2. Commonly used numerical methods 

Pendulum motion study makes rich progress in the world. In recent years, with the improvement of 

computing power, more and more researchers began using a numerical approach to analyze 

oscillation further. These methods are the Euler Method, Runge-Kutta Method, Finite Difference 

Method, Finite Element Method, and so on. 

The Euler method is a simple numerical approach that solves a differential equation initial value 

problem using linear approximation. It is calculated as follows: 𝑦𝑛+1 = 𝑦𝑛 + ℎ ⋅ 𝑓(𝑡𝑛, 𝑦𝑛), where h 

denotes the step size and 𝑓(𝑡𝑛, 𝑦𝑛) is the derivative of the current point [5]. 

Runge-Kutta is a generic term for a group of techniques, the fourth-order Runge-Kutta (RK4) 

being the most commonly used. It predicts the value of the next step by evaluating several slopes and 

taking their weighted average [6]. 

This finite difference method solves the differential equations by replacing the derivative with a 

difference approximation and is suitable for boundary value problems [7]. 

The finite element method solves discretized small elements by approximating them with locally 

simplified equations within each element in a continuous region [8].  
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Each of these methods has its own characteristics and applicable scenarios. In simulating a 

pendulum's movement, the right method can be chosen based on the specific needs and conditions. 

For instance, a simple pendulum simulation may just be handled by the Euler method, but more 

complex pendulum systems or situations with very high accuracy probably require the Runge-Kuta 

method or the finite element method. 

1.2. Non-uniqueness 

Mathematical problems are expected to have unique solutions in many respects to comply with 

intuition and certainty. However, in some cases, a problem's solution is not unique, and this fact 

creates different points of view on the theoretical development of mathematics and its applications. 

Solution non-uniqueness has its place not only in the study of pure mathematics but also plays an 

important role in engineering, economics, and natural sciences. 

2. Literature review 

The pendulum is one of the basic and significant problems in the study of dynamics, and simulation 

in this area is very important for several reasons: comprehension of complex systems, better 

engineering design, education, and scientific research. The development of computing technology 

has turned the numerical method into an important means to research the pendulum's motion 

trajectory. This paper reviewed the main numerical methods: the finite element method, the finite 

difference method, the Runge-Kutta method, and the Euler method. In this paper, the application of 

several numerical methods in the simulation of the pendulum motion trajectory is reviewed. Each 

approach has its own strengths and weaknesses. The finite element method and Runge-Kutta method 

are more effective for dealing with complex problems, while the Euler method and finite difference 

law are more commonly used in education and preliminary research because of their simplicity. The 

study of coupled pendulums illustrates the potential of multistep differential transformation methods 

in the prediction of systems' behavior. By implication, the focus of future research lies in the 

development of more efficient algorithms, as well as the extension to more complex physical systems. 

3. Methods 

3.1. Non-uniqueness 

Non-uniqueness of the solution means that there exist at least two different solutions of a given 

mathematical problem. In general, this effect may appear in more branches of mathematics, for 

example, in the theory of systems of linear equations, nonlinear equations, and optimization problems. 

For example, in linear algebra, a system of chi-square linear equations may have an infinite number 

of solutions; in calculus, the derivatives of certain functions may not be unique [9]. 

3.2. Numerical solution 

The non-linearity of the second-order pendulum equation presents a difficulty in solving it 

analytically. To circumvent this problem, we decided to solve the equation numerically. By 

discretizing time and using a suitably small timestep, we are able to obtain a stable and accurate 

numerical solution that closely resembles the analytical solution. 

In our approach, we first conducted a stability analysis on the timestep 𝛥𝑡 to find suitable values 

that yield a stable solution. We used Euler’s method to generate a stability criterion for 𝛥𝑡 using 

small angle approximation, then proceeded to empirically test our results by varying parameters such 

as 𝛥𝑡 
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and the initial angle 𝜃. This was achieved by making multiple plots using Python code. Lastly, we 

drew conclusions and highlighted interesting observations from our results. 

4. Results and discussion 

4.1. Causes and manifestations of non-uniqueness 

4.1.1. Complexity of mathematical structure 

Due to their intrinsic complexity, many mathematical problems lead to a diversity of solutions. For 

example, in a dynamic system, a small change in the initial conditions may lead to completely 

different system behavior. 

4.1.2. Flexibility of constraints 

Due to the flexibility of the constraints, multiple optimal solutions may exist in some optimization 

problems. For example, in an integer programming problem, several different combinations of 

variables may all achieve the optimal objective value. 

4.2. Application and significance of non-uniqueness 

4.2.1. Role in algorithm design 

When designing algorithms, utilizing solution uniqueness can improve the robustness and 

adaptability of the algorithm. A genetic algorithm, for instance, is a population-based algorithm that 

relies on the diversity of solution space to find near-optimal solutions.  

4.2.2. Value in model selection 

Such considerations of non-uniqueness in solutions assist in the building of a mathematical model 

and in selecting models that are more appropriate to an actual situation. For instance, different pricing 

models may be called upon in financial mathematics depending on market conditions. 

4.2.3. Dependence on initial conditions 

Non-uniqueness, in general, is an important concept in the analysis of dynamic systems, particularly 

in view of system responses to external driving forces. The essence is that for a fixed driving function, 

a system may support several solutions. It is this non-uniqueness that results in problems with testing, 

where one cannot be guaranteed to have found all possible solutions. 

1). Impact of Non-uniqueness 

Non-uniqueness states that there may be several stable states or behavioral patterns of a system, 

possibly implying uncertainty in practical applications. For instance, in control system design, if a 

system has multiple responses to the same input, predicting and controlling the system's behavior 

becomes complex. 

2). Testing Methods 

To solve this problem, the following testing methods can be used: 

For small devices, testing can be done by holding and then releasing them. This method can 

observe if the device returns to the same response. The repeat test several times attempts to enter 

domains that may attract different solutions. This is helpful in showing multiple solutions to a system. 

3). Phase Change 

It does not need to stop the device every time because it needs to change the phase between the 

driving term and the response. After changing the phase, it has come to an understanding of the 
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behavior the system will undergo under different phase conditions and thus gets a grasp of the 

dynamic characteristics of the system. 

4). Harmonic Driving Test 

In another technique, impact the object under harmonic forcing and see if it returns to the preimpact 

level of response. This will further elucidate whether the system would take back to its original state 

or it could enter into a new stable state of the system. 

5). Impact Testing 

Testing should be done at different levels of impact and different impact locations. It helps to 

understand the sensitivity of the system to impacts according to various intensities and locations and 

the behavior of the system when being impacted. [10] 

4.2.4. Non-uniqueness of moving average models 

Moving average models are essential tools in time series analysis. In general, MA models model 

current observations as a linear combination of past error terms, with crucial properties of the model 

being non-uniqueness. That is, for a given data set, there may exist several different MA models that 

possess identical statistical properties. 

In practice, the non-uniqueness or unidentifiability may be a problem since it implies there exist 

multiple "correct" models. A common way to overcome this problem is to select models where the 

magnitude of moving average coefficients is less than 1. The selection is easier in this way, and one 

can immediately check that the chosen model is statistically reasonable. 

For general MA(q) models, one can impose conditions on the MA parameters so that identifiability 

is ensured. For example, we may insist that the sum of the coefficients be less than 1 or that the 

coefficients satisfy appropriate inequalities. By imposing appropriate conditions, we ensure 

uniqueness, hence identification, of the model. 

For any stationary series, a mean and autocovariance function provide a complete description of 

the series in time series analysis. Any two series having the same mean and autocovariance function 

are equal descriptions of the series. This property is very useful for understanding the relationships 

between different models and selecting the appropriate model. 

White noise is a basic building block in time series analysis. It denotes a series whose mean is zero 

and whose autocovariance function is nonzero only at lag 0. White noise is often used to model the 

error in MA models because it provides one of the simplest statistically reasonable models for the 

error. 

In summary, MA models are useful in time series analysis, but their non-uniqueness needs to be 

addressed by imposing appropriate conditions to ensure identifiability. Thus, a basic understanding 

of concepts of mean, autocovariance, and white noise helps us in selecting and interpreting MA 

models. [11] 

4.3. Numerical solution 

Before we applied Euler’s method, we broke the second-order derivative down into two separate first-

order derivatives then converted each of them into a forward difference expression: 

𝑑𝜃

𝑑𝑡
= 𝜔 

⇒  
𝜃𝑖+1 − 𝜃𝑖

𝛥𝑡
= 𝜔𝑖

  

𝑑2𝜃

𝑑𝑡2
=

𝑑𝜔

𝑑𝑡
=  −

𝑔

𝐿
𝑠𝑖𝑛 𝜃   
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⇒  
𝜔𝑖+1−𝜔𝑖

𝛥𝑡
 = −

𝑔

𝐿
𝑠𝑖𝑛 𝜃𝑖 

After we obtained the two forward difference expressions, we then rearranged the equation such 

that the variable at timestep 𝑖 + 1 becomes the subject. This is to facilitate the iterative loop of 

Euler’s method. 

𝜃𝑖+1
 = 𝜔𝑖

 𝛥𝑡 + 𝜃𝑖   

𝜔 
𝑖+1 = 𝜔 

𝑖 − (𝛥𝑡)
𝑔

𝐿
𝑠𝑖𝑛 𝜃𝑖 

Euler’s method entails the iteration of these equations until we obtain a final equation that directly 

relates 𝜃𝑖+1 and 𝜔 
𝑖+1 to  𝜃0 and 𝜔 

0 (the initial conditions) respectively. In doing so, we will 

obtain a function of 𝛥𝑡 as the coefficient, and we can set the inequality | 𝑓(𝛥𝑡) | < 1 to obtain a 

stability criterion for 𝛥𝑡 . By having the absolute value of the function be less than 1, we can ensure 

that the values of 𝜃𝑖+1 do not diverge as 𝑖 increases. 

However, upon inspection, we realized that it was difficult and unfeasible to apply Euler’s method 

on the equations as they were, due to the non-linearity of the sin term. Applying Euler’s method on 

the current equations would render us unable to obtain a direct relationship between our two required 

variables. Thus, we set a limitation on our equations by using a small angle approximation. Doing so 

simplified our equations into one where Euler’s method can be effectively applied. 

Under small angle approximation, two terms in our equations can be simplified. Firstly, 𝑠𝑖𝑛 𝜃 

can be approximated by 𝜃. By observing the MacLaurin’s Series expansion of 𝑠𝑖𝑛 𝜃, we can safely 

ignore terms beyond the order of magnitude of 𝜃3 when 𝜃 is sufficiently small, as the value of 𝜃 

will decrease exponentially when raised to higher orders of magnitude and become negligible. 

𝑠𝑖𝑛 𝜃 = 𝜃 −
𝜃3

3!
+

𝜃5

5!
−

𝜃7

7!
 . .. 

𝑠𝑖𝑛 𝜃 ≈ 𝜃 (when 𝜃 is small) 

Further building on that, the angular velocity 𝜔 can be approximated by −
𝑔

𝐿
𝜃. This is because 

the motion of a simple pendulum follows simple harmonic motion. The above approximation 

elucidates the relationship between angular velocity 𝜔 and angular displacement 𝜃. The angular 

velocity is negatively related to the angular displacement as the motion of the pendulum acts as a 

restoring force, trying to return the pendulum to its equilibrium position where it hangs vertically 

downwards. We can visualize this as the velocity decreases to zero when the pendulum is at its 

maximum angular displacement before it moves in the opposite direction. This creates an oscillatory 

motion, where the angular displacement changes according to the angular velocity by a factor of −
𝑔

𝐿
. 

When 𝜃 is small, we can approximate this oscillatory motion by 𝜔 ≈ −
𝑔

𝐿
𝜃. 

Using these two approximations, we can now simplify our equation as such: 

𝜃𝑖+1
 = 𝜔𝑖

 𝛥𝑡 + 𝜃𝑖 

Substituting 𝜔 ≈ −
𝑔

𝐿
𝜃 into the equation, we get 

𝜃𝑖+1
 = −

𝑔

𝐿
𝜃𝑖

 
𝛥𝑡 + 𝜃𝑖 

= (1 −
𝑔

𝐿  
𝛥𝑡) 𝜃𝑖 
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With the equation in this form, we can finally apply Euler’s method and solve for the stability 

criterion. Iterating the above equation for timestep 𝑖, we get: 

𝜃𝑖
 = −

𝑔

𝐿
𝜃𝑖−1

 
𝛥𝑡 + 𝜃𝑖−1 

= (1 −
𝑔

𝐿  
𝛥𝑡) 𝜃𝑖−1 

Substituting this equation for 𝜃𝑖 into the original equation: 

𝜃𝑖+1
 = (1 −

𝑔

𝐿  
𝛥𝑡)(1 −

𝑔

𝐿  
𝛥𝑡) 𝜃𝑖−1  

= (1 −
𝑔

𝐿  
𝛥𝑡)2 𝜃𝑖−1 

We then iterated this equation for every timestep from 𝑖 until 0 in a similar manner, allowing us 

to obtain the final equation: 

𝜃𝑖+1
 = (1 −

𝑔

𝐿  
𝛥𝑡)𝑖+1 𝜃0  

Here, we observed a direct relationship between 𝜃𝑖+1  and  𝜃0  with the coefficient being 

(1 −
𝑔

𝐿 
𝛥𝑡), a function of 𝛥𝑡. Thus, this equation can allow us to solve for the stability criterion. We 

do so as follows: 

| 1 −
𝑔

𝐿  
𝛥𝑡 | < 1 

−1 <  1 −
𝑔

𝐿  
𝛥𝑡 < 1 

0 <  
𝑔

𝐿  
𝛥𝑡 < 2 

𝛥𝑡 <  
2𝐿

𝑔
 

Assuming a pendulum length of one meter, 
2𝐿

𝑔
≈ 0.20387, to five significant figures. Hence, 

given a sufficiently small angle, any timestep under this value will yield a stable solution. 

Next, we empirically tested different parameters to observe their effects on pendulum motion using 

Python code. We first tested different values of 𝛥𝑡 and compared it to the analytical solution. Fig 1 

shows the code used, and Fig 2 shows the resulting plot. The default parameters for the plots are as 

such: 

𝐿 = 1.0 𝑚 

𝑔 = 9.81 𝑚/𝑠2 

𝜃0 = 

𝜋

4
 𝑟𝑎𝑑 

𝜔0 = 0 𝑚/𝑠 

𝛥𝑡 = 0.0001 𝑠 
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Figure 1: Code for varying 𝛥𝑡 

 

Figure 2: Plot of numerical vs analytical solution with varying 𝛥𝑡 

From this plot, we can observe that all the numerical solutions are relatively accurate at first but 

begin to diverge from the analytical solution as time increases. This is due to the amplification of 

errors from performing Euler’s method iteratively over a longer time period. We can also observe 

that the error is greater for greater values of 𝛥𝑡, illustrating the lower degree of accuracy when using 

bigger timesteps. We also observe a special case in 𝛥𝑡 = 0.01, where the angular displacement 

increases along with time. This is impossible due to the conservation of energy. As such, we can 

deduce that the numerical solution is unstable when 𝛥𝑡 = 0.01. We can see that this is not the case 

when 𝛥𝑡 = 0.001 𝑜𝑟 0.0001 , where the amplitude of the plot remains constant. This may be 

empirical evidence that the stability criterion for 𝛥𝑡 lies within 0.001 and 0.0001. 
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Next, we varied the initial angular displacement. Fig 3 shows the code used and Fig 4 shows the 

resulting plot.  

 

Figure 3: Code for varying 𝜃  

 

Figure 4: Plot of pendulum motion varying 𝜃 

Here, we observe that the amplitude for each plot is different as the initial angular displacement 

varies. However, the period remains the same as it is independent of the angular displacement. The 
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slight phase difference observed is likely due to errors in iterating Euler’s method. The lowest 

timestep is used here to ensure that the solution is as accurate as possible. 

Finally, we varied the pendulum length. Fig 5 shows the Python code and Fig 6 shows the plot. 

 

Figure 5: Code for varying 𝐿  

 

Figure 6: Plot of pendulum motion varying 𝐿 
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Pendulum length is a factor that affects the period of the pendulum by a factor of the square root 

of the length. As such, the different pendulum lengths produce different periods, while the amplitude 

remains the same as the initial angular displacement is constant. In particular, we observe that the 

period is doubled when the length is quadrupled from 0.5 to 2 meters, proving the relationship stated 

above. 

Through the various plots, we can observe the effects of different parameters on the motion of a 

simple pendulum and the effects of different timesteps on the stability and accuracy of a numerical 

solution.  

5. Conclusion 

5.1. Non-uniqueness 

In a word, solution non-uniqueness is a very important phenomenon in mathematical research. It 

enriches not only mathematical theory but also provides more possibilities for practical application. 

The future can further explore the use of solution diversity in different fields and how to manage and 

utilize this diversity effectively. 

5.2. Dependence on initial conditions 

These methods give a larger view of the system's dynamic characteristics and possible solutions. This 

is essential in developing more stable and reliable systems. In practical applications, understanding a 

system's non-uniqueness allows engineers and researchers to design systems that can adapt to a 

variety of conditions or devise strategies that can predict and control multiple behaviors. 

In conducting such tests, detailed data recording and the use of appropriate statistical methods in 

analyzing results are necessary. This will help ensure the accuracy of the test results and provide 

reliable information for system design. 

5.3. Numerical solution 

The pendulum is a fascinating yet deceivingly simple and classical physical problem that elucidates 

many other areas of research. In this research, we only considered the motion of a simple pendulum 

– but such an ideal problem rarely exists in the real world. To further our research and make it more 

applicable in real life, we can introduce other elements, such as air resistance (by adding a damping 

constant to the differential equation), consider that the string has mass, and perhaps even how the 

shape of the pendulum bob may interact with air resistance and drag. These additional factors allow 

the motion of a pendulum to better mimic real-life phenomena, making our research more applicable 

and useful to real-world situations. 

One big limitation in our research is the use of small angle approximation to derive a stability 

criterion. Small angle approximation is usually only applicable to angles smaller than 5 degrees, 

which greatly limits the applicability of our results. As such, our solutions may not be stable and 

accurate when considering larger angles. In the future, perhaps we can use other methods to achieve 

a more accurate numerical solution, such as the Runge-Katta method or von-Neumann stability 

analysis. These methods may be more accurate than Euler’s method in predicting and modeling 

oscillatory motion like that of a simple pendulum. 

Lastly, research in pendulums can have a wide range of real-world applications other than the field 

of numerical modeling. Pendulums are used all over the world for a myriad of purposes – in clocks, 

metronomes, amusement park rides, earthquake detection, and even in astrophysics. The pendulum 

is truly a compelling phenomenon that impacts our world in many meaningful ways. With such a 
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broad range of fields where we can apply our knowledge, we are extremely excited to develop our 

research further and grateful for the opportunity to undertake this project. 
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