
Proceedings	of	the	4th	International	Conference	on	Computing	Innovation	and	Applied	Physics
DOI:	10.54254/2753-8818/2025.22638

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

171

Gradient Descent Optimization for A Quartic Polynomial

Shiyun Xia1, Yuming Cai2, Xuanting Wang3*, Shengjie Lin4, Libiao Ling5

1Colby College, Maine, USA
2University of California Santa Barbara, California, USA

3Shandong University, Jinan, China
4Rosedale Global High School, Fuzhou, China

5Guangdong Experimental High School, Guangzhou, China

*Corresponding Author. Email: 27263892@qq.com

Abstract: In this paper, we aim to minimize the function g(𝑤) =
1

50
(𝑤4 + 𝑤2 + 10𝑤) via

gradient descent. However, the study involves many variables that play an important role in

how the algorithm performs, such as step size, number of iterations, tolerance for the stopping

criterion, and the starting value. To improve these drawbacks, this research proposes adding

momentum to increase the convergence rate and gain more stability for this algorithm. This

can be fixed by properly tuning the momentum parameters. This paper provides a thorough

analysis of the choice of parameters and suggests guidelines for choosing an optimal

configuration that can provide valuable insights into the optimization problem as a whole and

practical advice for other application domains.

Keywords: Gradient Descent Optimization, Quartic Polynomial, Momentum, Convergence,

Variable Tuning

1. Introduction

When trying to minimize g(𝑤) =
1

50
(𝑤4 + 𝑤2 + 10𝑤), crucial aspects consist of the starting point,

step magnitudes, number of iterations, and stopping criterion. High starting points like 100 or -100

usually make the algorithm diverge, underscoring the necessity of picking proper initial values that

are much closer to the actual minimum of g(w).

The assessment of how well the gradient descent algorithm minimizes the function, in other words,

pinpoints the w value at which g(w) gets minimized, relied on looking at w at which g(w) attained its

global minimum. The information available is that by tweaking the number of iterations, the perfect

g(w) value at this point is realized at around 1827, while the same result can equally be approached

with 1500 iterations. Just to put this into perspective, after 100 iterations, w in the best case

approaches -0.194, which is far away from the real minimum.

In the case of tolerance less than 1e - 6, there is a gradual increase in the execution time, but the

optimum value is within a reasonable frame. For example, with a tolerance of e -12, convergence is

achieved at w-1.2347 after 2960 iterations.

Furthermore, the momentum technique is studied for application regarding augmentation and

improvement. Keeping iterations, step sizes, tolerance levels, and the value of momentum at 0.9 for

Proceedings	of	the	4th	International	Conference	on	Computing	Innovation	and	Applied	Physics
DOI:	10.54254/2753-8818/2025.22638

172

the first three points reduces the execution time to 1423, which is even less than that in the case of a

conventional gradient descent approach.

In addition, the momentum factor allows bigger step sizes to be used while keeping the process of

optimization stable. For instance, with α 10 and momentum on, the algorithm converged at the 135th

iteration with <-0.169969, and the w value that is desired is -1.2349.

Conversely, in the absence of momentum, convergence occurs at w near -1.2345 after 22 iterations

using a comparable g(w).

A multitude of algorithms in machine learning utilize techniques based on gradients to optimize

parameters. Nonetheless, the inherent characteristics of this function make its direct optimization

through gradient descent a complex task. This document focuses on employing gradient descent

optimization to reduce the specified function. We carefully evaluate elements like the size of the step,

iteration count, tolerance, and initial point in our method.[1]

Moreover, our goal is to reduce the function's smooth approximation through gradient descent,

akin to current techniques. The unique aspects of our method set it apart:

1. Our in-depth examination focuses on how varying step sizes, iterations, tolerances, and initial

points influence the algorithm's convergence, as demonstrated by the data we have.

2. It is crucial to meticulously choose these parameters to attain the best outcomes. As an

illustration, a step size that is excessively large or too small may result in either non?convergence or

less than ideal convergence.

3. It's also observed that the solution's precision is greatly affected by the iteration count and the

level of tolerance.

In the following parts of this document, we aim to showcase detailed experimental outcomes

derived from in-depth data analysis and explore the consequences of our discoveries.

Additionally, we intend to juxtapose our method with other current techniques to underscore its

strengths and weaknesses.

2. Methodology

2.1. Objective function

The specific function we aim to minimize is given by:

g(𝑤) =
1

50
(𝑤4 + 𝑤2 + 10𝑤)

This function combines both polynomial terms (𝑤4,𝑤2) and a linear term (10w). The function g(w)

is convex for certain regions and non-convex for others, making it an interesting target for testing the

performance of gradient descent. The goal of the gradient descent algorithm is to find the value of w

that minimizes this function.

2.2. Batch gradient descent optimization

In this project, Batch gradient descent optimization and momentum are used as the main numerical

model. This optimization is illustrated through the equation below:

𝑤 = 𝑤0 − 𝛼 × 𝑓′(𝑤0)

In this equation, 𝑤 represents the output, which is the optimizing value of the objective function.

𝑤0 stands for the initial point, the point that the calculation starts. 𝛼 is the step size, which

determines the speed of descent in the direction of the gradient contribution. Finally, 𝑓′(𝑤0) is the

gradient contribution, and it ensures the function converges at the minimum value.[2]

Proceedings	of	the	4th	International	Conference	on	Computing	Innovation	and	Applied	Physics
DOI:	10.54254/2753-8818/2025.22638

173

2.3. Numerical gradient approximation

In this implementation, the gradient ▽g(w) is approximated using the central difference method for

numerical differentiation. The gradient of a function g(w) is computed using a small perturbation h,

as follows:

▽ 𝑔(𝑥) =
𝑔(𝑤 + ℎ) − 𝑔(𝑤 − ℎ)

2ℎ

Where h is a small number (in this case, h=𝑒−5). This approach is useful when the exact analytical

gradient is difficult to derive or compute. The central difference method provides a more accurate

approximation compared to the forward or backward difference methods, as it averages the function's

slope from both sides of the point.[3]

2.4. Convergence criteria

The gradient descent algorithm in this study employs a stopping condition based on the change in the

function value. If the absolute difference between g(wnew)and g(wold) falls below a given tolerance ϵ,

the algorithm is considered to have converged:

|g(wnew) − g(wold)| < ϵ

Where ϵ is a small positive value (e.g., 𝑒−8) that defines how precise the solution needs to be

before the algorithm halts. This ensures that the solution is sufficiently close to the true minimum.

2.5. Momentum

In addition, momentum is used as an optimizing model for the gradient descent optimization.

Momentum is a technique that helps improve both the convergence speed and stability of gradient-

based optimization algorithms.

The most significant advantage of using momentum is its ability to accelerate convergence. In

traditional gradient descent, the update at each step is proportional to the gradient of the function at

that point, which can lead to slow progress in certain regions of the function’s landscape.

Momentum builds upon past gradients to create more significant updates in directions where the

gradient consistently points in the same direction. This reduces the number of iterations required to

reach the optimal solution. As a result, gradient descent with momentum tends to converge more

quickly compared to the standard approach.[4]

Mathematically, the update rule for gradient descent with momentum is given by:

vt+1 = βvt + (1 − β)∇g(wt)

wt+1 = wt − αvt+1

In this function, vt represents the velocity or the exponentially weighted average of past gradients,

α is the step size, and β is the momentum factor, typically set between 0.8 and 0.9. This formulation

allows the updates to accumulate speed in the directions where the gradient continues to point in the

same direction, thus accelerating convergence.

3. Result

We systematically varied the following variables:

Step Size (α): Values of 100,10,1,0.1,0.01,0.001,0.0001.

Number of Iterations: Between 100 and 1,000,000.

Tolerance: Ranging from 1 × 10−1 to 1 × 10−15

Proceedings	of	the	4th	International	Conference	on	Computing	Innovation	and	Applied	Physics
DOI:	10.54254/2753-8818/2025.22638

174

Starting Point: Values of w=100,10,0,−10,−100

The convergence criterion was defined as the change in g(w) being less than the tolerance. The

results were recorded for each configuration.

3.1. Experimental output

3.1.1. Effect of step size

Large Step Size (100, 10): The algorithm failed to converge when using large step sizes. For example,

with α=100, the optimization failed after 2 iterations, indicating that the step size was too large to

navigate the function’s curvature. And with α=100, converged at iteration 2 with g(w) = 0.0 and the

optimal value of w is 0.0, It is imprecise.

Figure 1: Relationship between step size from 0 to 10 and optimum value

Medium Step Size (1, 0.1, 0.01): A step size of 1 produced reliable results, converging at

w=−1.2345 after 22 iterations, with g(w)≈−0.169969. Smaller step sizes, such as 0.01, also showed

stable convergence, with convergence taking longer but achieving similarly accurate results.

Small Step Size (0.0001): While accurate, smaller step sizes resulted in significantly slower

convergence, requiring up to 125,230 iterations to reach an optimal w.

Figure 2: Relationship between step size from 0 to 1 and optimum value

The two figures show the relationship between step size and the optimum value. Distinctively, in

Figure 1, the step size between 0 and 1 varies too slowly, so we use Figure 2 as a supplement.

Proceedings	of	the	4th	International	Conference	on	Computing	Innovation	and	Applied	Physics
DOI:	10.54254/2753-8818/2025.22638

175

3.1.2. Effect of iterations

Few Iterations (100, 500): When limiting the number of iterations, the algorithm failed to reach the

optimal solution. With 100 iterations, the optimal w was approximately −0.194, far from the true

minimum.

Many Iterations (up to 1,000,000): Increasing the iteration count allowed the algorithm to refine

its approximation of w, especially when paired with smaller step sizes and tight tolerances. However,

diminishing returns were observed beyond 10,000 iterations for many parameter settings.

3.1.3. Effect of tolerance

Large Tolerance (𝑒−1 ,𝑒−2 ,𝑒−3): The algorithm quickly converged to suboptimal values. For

example, with tolerance=𝑒−2, convergence occurred after 2 iterations with w=0.0, which is not the

true minimum.

Small Tolerance (𝑒−8,𝑒−10,𝑒−12): Smaller tolerances yielded more accurate results, but at the

cost of increased computation. For tolerance=𝑒−12, convergence occurred at w≈−1.2347 after 2960

iterations.

The following Figure 3 intuitively shows the varies of optimum value.

Figure 3: Relationship between tolerance from 0 to 0.15 and optimum value

3.1.4. Effect of starting point

Large Positive and Negative Starting Points: Starting at large positive values of w=100 and

w=−100, the algorithm failed to converge, signaling that the gradient was misdirected at these points.

However, starting at smaller values such as w=10 or w=−10, the algorithm was able to find the

optimal solution.

Zero Starting Point: With w=0, the algorithm converged to w≈−1.232 after 1827 iterations.

Our results demonstrate the significant impact of variables tuning on the performance of gradient

descent. The step size and tolerance, in particular, are critical in balancing the trade-off between

convergence speed and accuracy.

Step Size: The experiments confirm that step sizes that are too large or too small can impede

convergence. A moderate step size (0.01 to 1) provides the best balance between speed and accuracy.

Iterations and Tolerance: A higher iteration limit and smaller tolerance generally improve accuracy

but may lead to diminishing returns in practical applications. Interestingly, the choice of the starting

point influences the number of iterations required for convergence, particularly for larger initial

values of w.

Proceedings	of	the	4th	International	Conference	on	Computing	Innovation	and	Applied	Physics
DOI:	10.54254/2753-8818/2025.22638

176

Furthermore, we use momentum as an optimization model for the gradient descent optimization.

After applying this model, convergence occurs at w≈−1.232 after 1792 iterations.

When α = 10, converged at iteration 135 with g(w)≈−0.169969 and the optimal value of w is

−1.2349. Momentum allows for the use of larger step sizes without compromising the stability of the

optimization process. In standard gradient descent, large step sizes can cause the algorithm to

overshoot the minimum, leading to divergent or imprecise behavior. However, by incorporating

momentum, the updates become smoother, and the algorithm can handle larger step sizes without

overshooting.

4. Discussion

In this project, we evaluate how the optimum values of a gradient descent optimization change when

the starting point, step size, number of iterations, and tolerance change. Firstly, we find that different

starting points result in different outputs. If the values of starting points are too large or too small,

then the function optimization function won’t converge. Secondly, the number of iterations affects

the results. If the function is repeated for less than 1827 times, it is not going to converge. Thirdly,

different step sizes lead to different results. If the step size is too large, the function will not converge.

Fourthly, we investigate the effect of tolerance on the outputs. When the tolerance is too small, the

results are not going to be effective.

In addition, we also explore the effect of applying the momentum algorithm on gradient descent

optimization. Our computational results show that importing momentum can increase the efficiency

of optimization, making the updates smoother.

In short, our paper explores how the optimum value of our objective function g(𝑤) =
1

50
(𝑤4 + 𝑤2 + 10𝑤) can change based on different starting points, step size, number of iterations,

and tolerance. We also investigate in what ways does applying momentum algorithm makes the

computation more efficient.

5. Conclusion

5.1. Outcome

In machine learning, the gradient descent algorithm is a common optimization algorithm used to solve

the minimum value of the objective function.

5.2. Significance

It gradually approximates the optimal solution by constantly updating the parameters along the

negative gradient direction of the objective function.

5.3. Broader implication

Stochastic gradient descent is widely used in deep learning, and the well-known deep neural networks

use stochastic gradient descent as an optimization algorithm to iterate to approximate the optimal

point. In addition, stochastic gradient descent is widely used in kernel methods and linear regression,

two types of algorithms that play an important role in machine learning.

5.4. Future prospects

Gradient descent and its variants are widely used in machine learning and deep learning. The

convergence analysis of gradient descent algorithms for convex optimization problems has been well

discussed, but the convergence analysis of non-convex problems, such as deep neural networks, is

Proceedings	of	the	4th	International	Conference	on	Computing	Innovation	and	Applied	Physics
DOI:	10.54254/2753-8818/2025.22638

177

currently the focus of attention in the academic community, and we hope to be able to have a more

in-depth study and discussion of such problems in the future.[5]

References

[1] Abdallah, C., Lauvaux, T., Lian, J., Breon, F., Ramonet, M., Laurent, O., Ciais, P., Van Der Gon, H. D., Dellaert,

S., Perrussel, O., Baudic, A., Utard, H., & Gros, V. (2023). A Gradient-Descent Optimization of CO2–CO–NOx

Emissions over the Paris Megacity─The Case of the First SARS-CoV-2 Lockdown. Environmental Science

Technology.https://doi.org/10.1021/acs.est.3c00566

[2] Andrychowicz, M., Denil, M., Gómez Colmenarejo, S., Hoffman, M. W., Pfau, D., Schaul, T., Google DeepMind,

University of Oxford, & Canadian Institute for Advanced Research. (2016). Learning to learn by gradient

descent[Journal-article].

[3] Ruder, S., Insight Centre for Data Analytics, NUI Galway, & Aylien Ltd. (2017). [An overview of gradient descent

optimization algorithms] [Article].arXiv, 2–15.http://arxiv.org/abs/1609.04747v2

[4] Peng Xianlun. (2020).Convergence of the momentum gradient descent method

[5] Yuan Wenbo, Chen Qingyu, Gao Hongbing, & Wang Qinruo. (2018). An operation of gradient descent method in

binocular vision navigation. In ELECTRONICS WORLD, ELECTRONICS WORLD (pp. 127–128) [Journal-article].

https://doi.org/10.19353/j.cnki.dzsj. (2018)

