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Abstract: In 1736, the famous Swiss mathematician Euler proposed graph theory. Graph 

theory was originally developed to solve the difficult Konigsberg Bridge problem in eastern 

Germany. Twenty years later, Arthur Cayley(1821-1895) also used the concept of trees to 

describe the chemical problem of hydrocarbons (Heri Sukarno). Nowadays, graph theory is 

used in geography, physics, electronics, information processing, architectural design, and 

other fields. Recently, the atomic track and the Hamiltonian path have been particularly 

prominent in applications.  
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1. Introduction 

A group is an ordered pair (Z, ∗) where Z is a set and ∗ is a binary operation on Z satisfying the 

following axioms: 

(i) (p ∗ q) ∗ r = p ∗ (q ∗ r), for all a, b, c ∈ Z  

(ii) all e ∈ Z such that for all p ∈ Z we have p ∗ e = e ∗ p = p 

(iii) for each p ∈ Z, p−1∈ Z such that p ∗ p−1 = p −1 ∗ p = e 

Given a group Z of Z and a subset S of Z, the Cayley graph Cay (Z, S) is an undirected graph 

where the set of vertices Z and the set of edges contain an edge from Z to sz and an edge from Z to s-

1z. When z ∈ Z and s ∈ S, the edges from Z → sz and S→ s-1z are the same if | z | = 2, that 

gives us an edge. An undirected, linked, acyclic graph is called a tree. In Z, every pair of vertices has 

a different path. E(Z) = V(Z) -1 represents the (N−1) edges that make up a tree with N vertices [1-3]. 

Group actions are shown geometrically in Cayley graphs. We will review the essential basic 

knowledge of group and graph theory to investigate this fully. Although Cayley graphs are commonly 

employed to depict the abstract structure of a group in graph form, we will mainly concentrate on 

Cayley graphs rather than Cayley digraphs with directed edges. A Cayley graph is an illustration of 

a group that is created with a collection of generators that specify the composition and functions of 

the group. Using these generators illustrates how the group's members interact. Cayley graphs show 

the group structure and the relationships between the members under group operations. The Cayley 

type of graphic is the source of Cayley graphs. Cayley color diagrams, first introduced by Arthur 

Cayley in 1878, are the source of Cayley graphs. Its formulation is based on the Cayley theorem, 

which states that every group G is isomorphic to a subgroup of the symmetric group acting on Z, Sym 

(Z). Finds a directed graph, also known as a Cayley graph, for each finite group G and generating set 
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Φ. In essence, the generator set selection determines its structure. The Cayley graph is a key tool for 

fusing group theory and graph theory because it can turn abstract groups into visible graphs. They 

visually capture the essence of a group by mapping its structure and relationships based on its 

generators. Cayley graphs are a powerful tool for understanding and analyzing group properties in 

various mathematical and scientific contexts. Take into consideration the Z6 group of integers under 

addition, modulo 6. The elements of this group are {0,1,2,3,4,5}. The Cayley graph for 𝑍6 would 

have 6 vertices, each labeled by these integers. An edge between vertices g and h would be labeled 

by ℎ−𝑔 mod 6 [4-6]. 

2. Symmetry and regularity of graphs 

Let Γ be a simple finite graph (V, E). If each vertex of a graph Γ has a degree of k, it is considered a 

k-regular graph. Otherwise, it is considered a regular graph of degree k. When a regular graph has 

degree 3, it is called a cubic graph. The automorphism expressed by σ is a permutation of the set of 

vertices of the graph Γ, such that if and only if {σ(u), σ(v)} is an edge of Γ, then {u, v} is an edge of 

Γ. If an automorphism σ(u) = v exists for any two vertices u and v of Γ, the graph Γ is marked as a 

vertex-transitive graph. Each vertex-transitive graph is a regular graph. However, it is important to 

note the distinction between regular and transitive graphs. As Figure 1 shows, Frucht graphs, for 

example, are not transitive. An automorphism σ(Γ) mapping x to y occurs for any pair of edges x and 

y of Γ. In this case, Γ is a transitive edge graph. The two qualities are not interchangeable because 

these symmetry properties show that every vertex and edge on the Γ graph looks the same. As the 

edges {u, v} and {u’, v’} are not automorphic, Γ in Figure 2 is transitive instead of transitive. An 

example of a non-vertex-transitive edge graph is a complete bipartite graph Kp,q, where p ≠ q. [5,7-

10]. 

             

Figure 1: Frucht graph 1           Figure 2: Frucht graph 2 

The Frucht graph: A cubic graph with 12 vertices, 18 edges, and no nontrivial symmetries is known 

as a Frucht graph in graph theory. Frucht graphs are regular but not vertex-transitive; A graph Γ in 

which vertices pass but not edges [11]. 

 

Figure 3: The petersen graph 
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An undirected graph with ten vertices and fifteen edges is known as a Petersen graph in graph 

theory. The graph Γ for passing neither vertices nor edges and the Petersen graph for passing both 

vertices and edges are depicted in Figure 3 [8]. 

3. Atom tracking using cayley graphs 

Cayley graphs can represent molecules where vertices correspond to atoms and edges represent bonds 

between them. By analyzing these graphs, one can track how atoms are connected and how these 

connections change in various chemical reactions or structural transformations. 

Directed and undirected graphs can have labels on either vertices or edges. From a chemical 

perspective, referring to undirected labeled graphs as molecules is often more intuitive. In this case, 

the vertex represents the atom and the label represents the atom type. Edges represent keys, and labels 

distinguish single, double, triple, and aromatic keys. Despite this chemical framework, using standard 

graph terminology in mathematical descriptions is more accurate. 

The structure of molecules can be likened to undirected labeled graphs, which allows us to view 

chemical reactions as transformations of these graphs. This approach involves transforming a set of 

initial graphics (educts) into a new set of graphs (products) using the double pushout (DPO) method. 

To fully understand the DPO approach and its variations. In this case, the DPO will specifically 

outline how chemical reactions can be modeled as rules within the framework of the DPO. This 

involves considering a rule, expressed as p, which describes the transformation of graph Z to graph 

H, expressed as Z  
𝑝
⇒ H. In our setup, p represents the chemical mechanism, Z 

𝑝
⇒ H represents the 

reaction, and G and H linking components represent the molecules that are converted from reactants 

to products in the reaction. The number of atoms in the starting material (extract) and the reaction 

product must be the same. This means that the number of vertices in the graph representing the starting 

material (Z) must be the same as the number of vertices in the graph representing the product (H), 

expressed as |V(Z)| = |V(H)|. We can create a one-to-one mapping or bijection, denoted φ: 

V(Z)→V(H), to show where the vertices of Z can be found in H after a graph transformation Z 
𝑝
⇒ H. 

It is important to note that only vertices with the same label can map to each other. The mapping φ is 

not unique, and there can be several different mappings for a given graph transformation. We use tr(Z 
𝑝
⇒ H) to represent all such mappings. Each edge (e+, e-) is a pair of subsets of vertices in a directed 

hypergraph. We represent it by letting Ye = e+ ∪ e-, which is the set of vertices contained in the starting 

vertex e+ and the ending vertex e- of the edge e. A chemical network (CN) is a hypergraph where each 

vertex represents a molecule, and each super edge represents a chemical reaction. In this case, each 

hyperedge e of CN corresponds to a set of direct transformations that convert the input vertices of the 

hyperedge to the output vertices. For a given set of sides E of CN, D is the set of all direct Sp 

derivatives obtained by E. Then, 𝑡𝑟(E) = ⋃ 𝑡𝑟(𝑍
𝑝
⇒

𝑍
𝑝
⇒𝐻∈𝐷

𝐻) and 𝑡𝑟(CN) = 𝑡𝑟(E(CN) [7,12,13] 

4. Hamiltonian path in cayley graphs 

A path in Γ that visits each vertex precisely once is called a Hamiltonian path, and a closed 

Hamiltonian path is called a Hamiltonian cycle. It has been conjectured that every Cayley graph is 

Hamiltonian. Interest in this and other closely related questions has grown in recent years. Finding 

Hamiltonian cycles in graphs is a challenging task. We surveyed several results and then found three 

theories about the specific conditions under which the Cayley graph is Hamiltonian [9]. 
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Figure 4: Cayley graph with vertices and directed edges (corresponding to elements of a group and 

their generators) 

 

Figure 5: Another example 

Figure 4 represents a Cayley graph with vertices and directed edges corresponding to elements of 

a group and their generators. The red arrows denote one generator (labeled “1”), and the green arrows 

denote another generator (labeled “8”). This graph illustrates the relationships between group 

elements when acted on by these generators.  

Figure 5 is similar but simpler, with fewer vertices and arrows representing a different group or 

generating set. Here, the generators appear to be “1” (red) and “4” (green), and it shows how elements 

of the group are connected through these generators. 

4.1. Theorem 1  

As Pak and Radoičić mentioned, a Hamiltonian cycle can be found in the appropriate Cayley graph 

Γ (Z, S) for every finite group Z of size |Z| ≥ 3 if its generating set S has a size of |S| < log2|𝑍|. 
The claim that most, if not all, Cayley graphs of finite groups are Hamiltonian graphs cannot be 

proven. Nevertheless, Theorem 1 establishes the existence of a Hamilton Cayley graph with a 

generated set of modest dimensions for any finite group G. This demonstration is based on a corollary 

to the classification of finite simple groups and an explicit combinatorial construction. 

For the other results, if Z is allowed to be a finite group and S to be a symmetrical generating set, 

a Cayley graph γ = γ (Z, S) is defined as a graph with vertices z ∈ Z, and edges (Z, zs), (Z, z𝑠−1)) ∈ 

Z 2, where s ∈ S. Obviously, γ is d-regular, where d = |𝑆|. And then we can only consider Cayley's 

graphs. For a finite group G, let n(Z) be the number of constituent factors of G. h(Z) and k(Z) represent, 

respectively, the number of Abelian and non-abelian constituent factors. Obviously, n(Z) = h(Z) + 

k(Z) [8,14-17]. 

4.2. Theorem 2   

According to Pak and Radoičić, in the finite group Z, n(Z), and l(Z), as defined above, there exists a 

generator set S, |S| ≤ n(Z) + 2l(Z). The set S corresponds to a Cayley graph Γ (Z, S) containing a 

Hamiltonian path. 
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We label ∂X as the set of vertices v ∈ Z−X connected to X by an edge, for any subset of vertices 

X∧Z. If the total number of vertices in a subset X is half or less of the total number of vertices in Z, 

then the graph is considered an ε-expander. We have the property that for some fixed ε > 0 the 

magnitude of the boundary of X (denoted by |∂X|) is greater than ε times the magnitude of X (denoted 

by |X|). 

Let's consider a prime number p, which has the property of being congruent to 1 modulo 4. We 

have a finite field, denoted as Fp, which contains p elements. In this field, an element 'a' exists such 

that a2 = -1. 

We can look at the group SL(2,p), which consists of 2×2 matrices over Fp with determinant equal 

to 1. Additionally, we have the quotient group denoted as PSL (2,p), obtained by dividing SL(2,p) by 

the subgroup of diagonal matrices {±1}. For the elements α, β, γ in PSL (2,p), we can represent them 

using matrices: α= 









− a

a

0

0

, β=









− 01

10

, γ=









− aa

a 0

  

These elements form group Z: PSL (2, p) = < α, β, γ >. We can verify that α²= β²= γ²= 1. Now 

consider the Cayley graph Γp =Γ(PSL (2, p),{α, β, γ}) [8,14,15]. 

4.3. Theorem 3   

As Pak and Radoičić (2009) said, the diagram of Cayleys Γp is an ε-expander for ε > 0, and by 

definition, it has a Hamiltonian cycle, regardless of the prime p 1 mod 4 [14]. 

4.4. Proof of theorem 1 

Assuming that G is a complicated series, let n = n(Z) and l= l(Z). Make use of Kr, L₁, and... The 

Abelian and non-Abelian parts of G are represented by Lm. Observe that |Lj| ≥ 60 > 4. We've got: 

2n+2l= 2n4l  ∏ |𝑛
𝑖=1 Ki|∙ ∏ |𝑙

𝑗=1 Lj| = |Z|. Therefore, n(Z)+2l(Z)≤log 2 |Z|, only when. In the case of n 

greater than or equal to 2, a simple inductive argument can help us find the Hamiltonian cycle. In 

other cases, the construct set can have an extra group element that joins the Hamiltonian path's ends. 

The proof is finished with this addition, which supplies the necessary Hamiltonian cycle. 

4.5. Proof of theorem 2 

The property that arises from categorizing finite simple groups is that two components, at least one 

of which is involutory, can construct any non-abelian finite simple group. For any simple non-abelian 

finite group for the Cayley graph corresponding to a Hamiltonian cycle, a set of S generation is created. 

In the case where group G is cyclical (Z = Zp), a generator suffices. The subsequent fundamental 

reduction is necessary [15]. 

4.6. Proof of theorem 3 

For matrices A and B belonging to SL (2, p), we denote A =±B to represent that these elements map 

to the same elements in PSL (2, p). For matrices α, β, and γ, note the following: 

α²= γ²=













2

2

0

0

a

a

= ±









10

01

,      β² = ±









10

01

 

α β=









0

0

a

a

,     β α=









−

−

0

0

a

a

= ±α β, 
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γ α=













22

2 0

aa

a

= ±









11

01

,     β γ α β= ±







 −

10

11

. 

The initial line indicates that in PSL(2, p), α, β, and γ are directed downwards. The second line 

demonstrates how PSL(2, p) modifies α and β. Therefore, lemma 1 implies that the Cayley graph Γp 

= Γ (PSL(2, p), {α, β, γ}) contains a Hamiltonian cycle. Finally, the third line suggests a basic 

transition.  









=

10

11
E

,  







 −
=−

10

11
E 1

,  








=

11

01
F

,  









−
=−

11

01
F 1

 

You can get words of up to 4 lengths in α, β, γ. It is shown that Γep = Γ in the Cayley diagram 

[14,15,18]. 

5. Derivative process of structure of alkane 

To demonstrate that a molecule with the structure CnH2n+2 (alkane) can be represented as a tree, we 

can use the following approach: 

The number of vertices in a CnH2n+2 molecule is given by n + (2n+2), which simplifies to 3n+2. 

For alkanes, where each carbon atom has 4 bonds and each hydrogen atom forms 1 bond, we can 

consider a graph G to represent the alkane molecule. This graph, G, will have 3n + 2 vertices and 3n 

+ 1 edges.  

V(Z) = 3n+2 

E(Z) = ½ ∑n(Vi) 

= ½ (n(C) + n(H)) 

= ½ (n.4 + (2n+2).1) 

= (4n + 2n + 2)/2 

= 3n + 1 

Thus, V (Z) -1 = E (Z). In graph theory, trees can be used to depict the structure of the alkane 

CnH2n+2. Chemical parameters can be disregarded for determining the number of isomers since they 

have no bearing on the outcome. Chemical problems can be successfully solved using graph theory, 

particularly tree theory, which is particularly useful for identifying the isomers of alkanes. 

Compounds with distinct structures but the same molecular formula are known as isomers. As only 

structural factors are taken into account in graph theory, counting the number of alkane isomers is 

made simpler. It's not easy to describe or simulate chemicals, particularly alkanes [19,20]. 

6. Examples of representation 

In addition, table 1 shows the representation of the term in the graph and the chemical terms. 

Table 1: The representation of chemical into graph 

Chemical Term The term in Graph 

Atom Vertex 

Isomers Isomorphic 

Structural formula Graph 

Acyclic structure Tree 

Chemical bond Edge 
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Figure 6 and Figure 7 are examples of representations of graphs in butane (C4H10), in which Figure 

6 shows the centered tree graph and Figure 7 shows the bi-centered tree graph. 

 

Figure 6: Centered tree of C4H10             Figure 7: Bi-centered tree of C4H10   

Figure 8, Figure 9, and Figure 10 are examples of representations of the graph in pentane (C5H12); 

Figure 8 and Figure 9 show the 2 possible centered tree graphs, and Figure 10 shows the bi-centered 

tree graph [4]. 

         

Figure 8: Centered tree of C5H12             Figure 9: Another centered tree of C5H12 
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Figure 10: Bi-centered tree of C5H12 

7. Read's contribution 

The combination of Liya's theory with the astounding finding by Harary and Norman (1960) to 

enumerate the stereoisomers and constitutional isomers of alkanes in Read (1976) made Read's study 

unique. The first result that Read uses is the list of alkanes that have only one carbon atom marked. 

Read only considers the potential that constitutional isomers, or the radicals connected to the tagged 

carbon atom, can change through any combination of S4 in the first step. Next, Pólya's theorem is 

used with S4 as the group and A(x) as the figure-counting series. Since the cycle index of the group 

is 
1

24
(s1

4+6s1
2s2+3s2

2+8s1s3+6s4) [19]. 

Additionally, our configuration series has the form because we must multiply by x to account for 

the additional (labeled) carbon atom.     

P(x) = ∑ 𝑃
∞
𝑛=1 nx

n = x Z (S4; A(x)) = 
1

24
x{A4(x) + 6A2(x)A(x2) + 3A2(x2) + 8A(x)A(x3) + 6A(x4)} 

Pn is the number of these compounds that have n carbon atoms. 

Listing alkanes with one tagged carbon-carbon valence electron bond—that is, one that can be 

identified from the others—is the second necessary result. Such labeling is just a means to an end and 

has no direct bearing on a workable chemical process [19]. 

8. Conclusion 

From the results and comments previously presented, the following conclusions are inferred:  

1. A chemical network (CN) is a hypergraph where each hyperedge denotes an application of a 

rule for a chemical reaction and each vertex is a connected graph that represents a molecule. As thus, 

every hyperedge of CN maps to a set of direct derivations that convert each hyperedge's entering 

vertices into its outgoing vertices. Let D be the set of all direct Sp derivations from a given set of 

edges (E) of CN. Then, tr(E) = ⋃ 𝑡𝑟(𝑍
𝑝
⇒

𝑍
𝑝
⇒𝐻∈𝐷

𝐻) and tr (CN) = tr(E(CN). 

2. Hamiltonian routes exist for Cayley graphs under some conditions. One requirement is that each 

finite group Z have a small-sized generating set and a Hamiltonian Cayley graph. The second one is 

a Cayley graph with a generating set that is restricted by composition factors that are both Abelian 
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and non-Abelian. The third one is the ε-expander Cayley graphs Γp = Γ(PSL(2, p),{α, β, γ}) that have 

Hamiltonian cycles. [14] 

3. Because E(Z)=V(Z) - 1, the structure of chemical compounds, particularly alkanes having the 

formula CnH2n +2, is a graph tree. Table 2 displays the number of alkane isomers based on the quantity 

of centered and bi-centered trees [20]. 

Table 2: Number of alkane isomers  

n Centered Bicentered Total 

1 1 0 1 

2 0 1 1 

3 1 0 1 

4 1 1 2 

5 2 1 3 

6 2 3 5 

7 6 3 9 

8 9 9 18 

… … … … 
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