
Proceedings	of	the	4th	International	Conference	on	Computing	Innovation	and	Applied	Physics
DOI:	10.54254/2753-8818/2025.22647

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

88

 

 

Proof of the Nonexistence of an Algorithm That Tells If a 
Point Is on a Closed Set’s Boundary or Exterior  

Jiale Fan1*, Jincan Li2 

1Valley Christian High School, San Jose, USA 
2University of Leeds, Leeds, UK 

*Corresponding Author. Email: jerryfan5433@gmail.com 

Abstract: This study investigates the connection between the undecidability of certain sets 

and the problem of determining the position of a point relative to the boundary or exterior of 

a closed set. We introduce a new algorithm, referred to as Algorithm A, which generates a 

closed set at regular intervals. By employing a reductio ad absurdum argument, we 

demonstrate that no algorithm exists that can consistently determine whether a point lies on 

the boundary or in the exterior of a closed set. This finding highlights the limitations of 

algorithmic approaches in the context of constructive mathematics.  
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1. Introduction 

Constructive mathematics deals with strict use of constructive proofs and axioms which are used to 

form more intricate proofs. Contrary to classical mathematics, which seeks to prove theorems and 

conjectures without generally considering its complement, constructive mathematics requires 

mathematicians to not only use a certain way of thinking to formulate a path to the proof but also 

create certain assumptions that make sense among them (thus the existence of axioms). Instead of 

dealing with abstract ideas, this area of mathematics utilizes intuitive, mathematical understanding to 

make a better sense of our world.  

Proofs in constructive mathematics include systematic processes that can be used to support the 

validity of its arguments in a realistic way. This algorithmic way of thinking enables mathematicians 

to not utterly reject past proofs but to reconsider them in a different point of view. Constructive 

mathematics is popular within the realms of computer science where algorithms and logical thinking 

is crucial to its development.  

The US school of mathematics was founded by Bishop[1] and the Russian school of mathematics 

was founded by Markov and Shanin. While these schools studied constructive mathematics, each 

school have different rules and guidelines for forming proofs and ideas. One example of such relates 

to Markov’s principle[2], which states that if the inapplicability of an algorithm U to some input x 

has been refuted, then the algorithm is applicable to that input x. The Russian school permitted the 

use of Markov’s principle, also known as constructive choice, which sometimes allows 

mathematicians to argue by contradiction. On the other hand, the US school generally does not accept 

Markov’s principle, with one reason being that it does not tell how long it would take for an algorithm 

to terminate successfully given some inputs. 
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A Constructive Sequence of Rational Numbers (CSRN) is an algorithm that transforms every 

natural number into its respective rational number. Constructive Real Numbers can be defined as a 

set of two programs: A computer-generated Cauchy sequence of numbers and a convergence 

regulator, which ensures the convergence of the sequence of numbers. The reason that we have the 

convergence regulator is because we can never truly predict what the next values of the Cauchy 

sequence will be, which is like how we can never know whether a flipped coin will be heads or tails 

despite the preconceived knowledge that the theoretical chance is 50 percent for each outcome. 

Therefore, the convergence regulator is used to ensure the predictability of the values of the generated 

Cauchy sequence. A constructive separable metric space is defined as a set of points where the 

distances between them can be described as a constructive real number within a topological space. 

This research explores the ideas of boundaries and open sets while applying the knowledge of 

undecidability, topological spaces, and mathematical programs. Our general approach to proving 

whether a given point is outside or on its boundary is to find the undecidability of such program, 

meaning that it realistically cannot halt in a finite amount of time. Building on the ideas that Alan 

Turing had developed in 1936, we construct such theoretical program and test whether it can uphold 

the presented conditions.  

2. Definition  

Computable function: A function 𝑓 with natural arguments and values is called computable if there 

exists an algorithm that computes 𝑓, that is, an algorithm 𝐴 such that[3]:  

If 𝑓(𝑛) is defined for a certain natural 𝑛, then the algorithm 𝐴 halts on the input 𝑛 and prints 𝑓(𝑛) 

If 𝑓(𝑛) is undefined, then the algorithm 𝐴 does not halt on the input 𝑛.  

Decidability: A set 𝑋 of natural numbers is called decidable if there exists an algorithm that 

determines whether an arbitrarily given natural number n belongs to the set 𝑋. Such an algorithm 

must terminate for any 𝑛 and give one of the two answers “yes” or “no”.  

Topology: A family 𝜉 of sets where the intersection of any two members of 𝜉 is a member of 𝜉 and 

the union of any collection of members of 𝜉 is a member of 𝜉.  

Union of the collection of the member sets is a member of 𝜉.  

Intersection of finitely many elements of 𝜉 is a member of 𝜉.  

Empty set and the whole space are members of 𝜉.  

Topological space: Defined as a pair (𝑋, 𝜉) where 𝜉 is a topology for set 𝑋.  

Closed set: A subset 𝐴 of a topological space (𝑋, 𝜉) is closed if and only if its relative complement 

𝑋\𝐴 is open, implying that a set is open if and only if its complement is closed[4].  

Open set: A subset 𝐴 of X of a topological space (𝑋, 𝜉) is an open set of 𝑋 if and only if 𝐴 belongs 

to X.  

Neighborhood: The neighborhood of a point is an open set containing it.   

Interior point: A point 𝑥 of a subset 𝐴 of a topological space is an interior point of 𝐴 if and only if 

there is an open subset of A containing x. The set of all interior points of 𝐴 is the interior of 𝐴, denoted 

𝐴°  

Boundary: The boundary of subset 𝐴 of a topological space 𝑋 is the set of all points x which are 

interior to neither 𝐴 nor 𝑋 ~ 𝐴.  

Exterior: The exterior of a set 𝐵, denoted by 𝐸𝑥𝑡 𝐵, is the interior of the complement of the set 𝐵.  

3. Main theorem  

For a General Constructive Topological space and a closed set S in it and a point 𝑝, it is not possible 

to algorithmically tell if the point 𝑝 is in the exterior of S or on the boundary.  
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3.1. Construction of algorithm Y and X  

We let Y be an unextendible algorithm where it cannot necessarily cover all integer inputs and we 

first assume that this algorithm certainly exists. The fact that this algorithm is unextendible implies 

that the domain of this program is undecidable, meaning that there exists no algorithm such that it 

can make decisions through this domain. 

We also let X be an algorithm such that it has domain Z. For every second, this algorithm will 

produce a closed set Fs, where s is the respective second that the closed set was produced from. 

Throughout the run of this algorithm, we will define Fs depending on whether Y(n) had stopped. We 

also define the number of seconds passed as t and choose the number 1 as an arbitrary number for 

this proof (though any number could be chosen like 0). 

Construction of our program: 

Let us run program Y: 

1. If algorithm Y(n) did not stop at t seconds, then let Fs = [1, s + 1], (s < t) 

2. If algorithm Y(n) does stop at t seconds, then let Fs be: 

a. [1.5, s+1] for (s ≥ t) 

b. [1, s + 1] for (s < t) 

Let us concurrently run X: 

1. If X detects program Y as never terminating, then X will return the intersection of the sets that 

are outputted so far: ([1, 2] ∩ [1, 3] ∩ [1, 4] ∩ … ∩ [1, t]) 

2 If X detects program Y as terminated, then X will return the intersection of the sets that are 

outputted by Y: [1, 2] ∩ [1, 3] ∩ [1, 4] ∩ … ∩ [1, t] ∩ [1.5, 2] ∩ [1.5, 3] … 

Given the executions of these two programs we can deduce that: 

 If Y never stops, then ∩t
s=1 Fs = [1, 2] 

 If Y stops at some point, then ∩t
s=1 Fs = [1.5, 2] 

Note: these intersections done above are closed sets since intersection of closed sets are closed. 

Therefore, by definition, our arbitrary number 1 is on the boundary of [1, 2] and exterior of [1.5, 

2]. We can say that if the program never stops, then our arbitrary number 1 is on the boundary of the 

intersection generated by X, and if the program stops, then the arbitrary number is on the exterior 

(namely, not part of the set) of the set generated by X. 

3.2. Proof of our final result  

In this section, we employ a reductio ad absurdum argument to establish the nonexistence of the 

algorithm A(S, p), which purportedly determines whether a point p lies on the boundary or in the 

exterior of a closed set S . 

To illustrate the contradiction inherent in this assumption, we consider the previously defined 

algorithms Y and X. The algorithm Y operates on integer inputs and is characterized as unextendible, 

while the algorithm X concurrently generates closed sets based on the behavior of  Y. Specifically, 

we define the closed sets produced by X as follows: 

1. If Y(n) does not terminate after t seconds, then X will return the intersection of the sets generated 

up to that point:  ∩t
s=1[1, s + 1] = [1, 2]. 

2. Conversely, if Y(n) terminates at t seconds, then X will return the intersection of the sets 

generated by Y up to that moment: ∩t
s=1[1, s + 1] ∩ ∩∞

s=t+1[1.5,  s + 1] = [1.5,  2]. 

Thus, we arrive at two distinct scenarios based on the behavior of  Y: 

- In the case where Y does not halt, the intersection yields [1, 2]. 

- In the event that Y halts, the intersection yields [1.5, 2]. 

It is noteworthy that these intersections are closed sets, as the intersection of closed sets remains 

closed. Consequently, we can deduce that if Y does not terminate, the point 1 is situated on the 
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boundary of the set [1, 2]. Conversely, if Y does terminate, the point 1 resides in the exterior of the 

set [1.5, 2]. 

This leads us to a contradiction: if the algorithm A(S, p) were to exist, it would imply a consistent 

method to ascertain the position of p relative to the closed set S. However, our construction 

demonstrates that the behavior of Y engenders an undecidable scenario, thereby proving that no such 

algorithm A(S, p) can exist.  

4. Conclusion  

This paper has rigorously established the nonexistence of a universal algorithm capable of 

determining whether a point lies on the boundary or in the exterior of a closed set within the 

framework of constructive separable metric spaces. A constructive separable metric space is defined 

as an algorithmically given set of points with the distances between them being computable real 

numbers (CRNs) and with a countable, algorithmically given topological base. Importantly, the real 

line of constructive real numbers serves as an example of such a space.  

Building on the undecidability of the Halting Problem[5,6] , we have shown that for a vast class 

of constructive separable topological metric spaces[7], including the real line of constructive real 

numbers, it is not possible to algorithmically determine whether a given point is on the boundary of 

a set or in its exterior. This finding underscores the profound connections between computability 

theory and topology, particularly within the realm of constructive mathematics.  

Moreover, while there may be specific subclasses of closed constructive sets where algorithmic 

methods are effective[8], this study concludes that such methods cannot be universally applied. The 

inherent undecidability of these problems invites further theoretical exploration into the boundaries 

of computability in this context, potentially leading to the development of more advanced frameworks 

or identifying conditions that allow for decidable cases. 
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