
 

 

Option Pricing Based on Several Monte Carlo Techniques 

Zihan Mo1*, Boxu He2, Tian Qin3 

1Robotics Engineering, South China University of Technology, Guangzhou, China 
2Accounting and Finance, The University of Edinburgh, Edinburgh, United Kingdom 

3Mathematics and Applied Mathematics, Shanghai Jiao Tong University, Shanghai, China 

*Corresponding Author. Email: 18922221231@163.com 

Abstract: The Monte Carlo method is broadly used in financial technology and engineering 

for pricing complex derivatives and managing risk due to its flexibility and adaptability. 

However, Monte Carlo simulation may suffer from high variance problems, impacting 

accuracy and effectiveness. Control and antithetic variates are two main variance-reduction 

techniques to optimize the simulation. This paper compares the performance of normal Monte 

Carlo, and Monte Carlo optimized with control variates or antithetic variates in four different 

European options. In the work, the Monte Carlo optimization based on antithetic variates 

generally performs well, but in power options, the control variable method has a better effect 

on Monte Carlo optimization. By leveraging these variance reduction techniques, the 

accuracy and effectiveness of Monte Carlo simulations can be significantly enhanced, leading 

to more reliable option pricing. The results not only demonstrate the important role of 

variance-reduction techniques in the Monte Carlo method but also offer practical methods to 

improve option pricing strategy. 
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1. Introduction 

The Monte Carlo method is an instrument that has been proven to be flexible in many applications 

within the financial field. For example, Frey and McNeil [1] demonstrate the technique's power in 

assessing credit risk by simulating Value at Risk and expected loss for credit portfolios in different 

economic scenarios. Similarly, Brigo and Mercurio [2] apply the Monte Carlo method to interest rate 

modelling, demonstrating its usefulness in complex derivative pricing and risk management 

assessment. In financial engineering, Glasserman [3] applies the Monte Carlo method widely in 

derivative pricing and hedging, where analytical solutions take time to come by. In different types of 

options, Boyle, Phelim, and Emanuel [4] explored the method's application in option pricing, where 

it was used to evaluate the values of American and European options, demonstrating its robustness 

across different financial instruments. Finally, Tilley [5] explored the valuation of American options 

using the Monte Carlo method. It offers a path-dependent method to make the valuation of options 

more accurate. These previous studies have shown that the applicability of the Monte Carlo method 

in research in the financial field is broad and valid, thus making it a significant tool for modern 

financial analyses. 

Options are financial tools that give their holders the right but not the obligation to sell or buy an 

underlying asset on a certain future date at a predetermined price [6]. In our study, pricing for four 
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forms of European options was taken into consideration. An option's value depends on several 

elements, including strike price, remaining time until expiration and interest rates. Accuracy is always 

significant in the pricing. The Monte Carlo method is coupled with financial mathematics and 

computer analysis. It has become an indispensable numerical tool for option pricing due to its ability 

to handle different options elements and wide application in complex financial models [3]. The Monte 

Carlo method needs several estimation processes based on many potential price paths for an option 

to estimate its approximate price [7]. Nevertheless, Monte Carlo simulations often require numerous 

samples to achieve accuracy, which needs significant computational resources [7]. To overcome these 

challenges, researchers have developed variance-decreasing tools, such as antithetic and control 

variables, that increase efficiency without compromising accuracy [8]. 

The Central Limit Theorem provides compelling evidence of their effectiveness in decreasing 

variance in work. Given a collection of independently distributed stochastic variables, this theory 

states that their means will resemble a normal distribution [9]. Depending on the theory, antithetic 

variates and control variates are often employed to reduce variance. The control variates method 

reduces estimates' variance by adding an auxiliary variable related to its target variable and a known 

expected value. Option pricing involves selecting a control variable with known relations and 

expectations in order to help correct estimates, thus decreasing variance. Antithetic variates is another 

method that reduces variance by producing negative correlation samples with symmetric properties 

[10]. According to the Central Limit Theorem, these samples tend to have normal distributions [9]. 

Antithetic variates create pairs of samples to reduce the variance and achieve accuracy with a small 

number of samples. Efficiency and reliability can both be achieved through these two methods. 

This research explores the roles of antithetic and control variates used in Monte Carlo simulations 

to increase option pricing accuracy while decreasing computational time. In reality, economic 

benefits may come from small variance reductions. Knowledge of these methods and their usage is 

vital to risk management and investment decision-making within financial markets. Specifically, this 

research elaborates on theoretical effects related to control variates and antithetic variates for Monte 

Carlo simulations while conducting numerical experiments to test impacts and provide practical 

guidelines that may assist both theoretical research and real-world operations. 

2. Methodology 

2.1. Introduction  

In the following part, two optimized methods will be introduced: the control variates method and 

the antithetic variable method. The control variates method decreases the variance by adding an 

auxiliary variable, while the antithetic variable method decreases the variance by creating pairs of 

samples. In the final part, the parameters l and m will be introduced, indicating the optimized effect 

of the two methods above. 

2.2. Optimized method of Monte-Carlo methods  

According to the Black-Scholes Model, S(T), which indicates the stock price at time T, is given as 

follows: 

 𝑆(𝑇) = 𝑆(0)𝑒𝑥𝑝((𝑟 −
𝜎2

2
)𝑇 + 𝜎√𝑇𝑍), (1) 

where Z has the standard normal distribution and σ is a parameter representing the stock’s ’volatility’. 

Suppose the result is to calculate the price of a European call whose payoff is (𝑆(𝑇) − 𝐾)+. Then, 

a random variable can be defined. 
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 𝑋 = 𝑒−𝑟𝑇(𝑆(𝑇) − 𝐾)+. (2) 

Since 𝐸[𝑒−𝑟𝑇𝑆(𝑇)] = 𝑆(0). This yields 𝐸[𝑆(𝑇)] = 𝑒−𝑟𝑇𝑆(0). Then, the price 𝑉(0) of a call 

option with strike K can be computed as 

 𝑉(0) = 𝑒−𝑟𝑇𝐸[(𝑆(𝑇) − 𝐾)+] (3) 

A row of i.i.d random numbers, 𝑋𝑖, would be created, whose distribution equals the distribution 

of 𝑋. Then, according to the strong law of large numbers, 𝐸[(𝑆(𝑇) − 𝐾)+] can be estimated as  
1

𝑛
∑ 𝑋𝑗

𝑛
𝑗=1 . This method is called the Monte Carlo method. 

In this essay, the work is to compare the rate of convergence of original Monte-Carlo methods 

with the rate of optimized Monte-Carlo methods. 

2.2.1. Control variates method 

The idea of using control variates 

A sequence(𝑋𝑖,  𝑌𝑖)of i.i.d. random vectors from the joint distribution of (𝑋, 𝑌) (where we know 

𝐸[𝑌]) can be defined as: 

 𝑋𝑖(𝑏) = 𝑋𝑖 − 𝑏(𝑌𝑖 − 𝐸[𝑌]), 𝑓𝑜𝑟 𝑖 = 1,2, . . ., (4) 

where 𝑏 ∈ 𝑅 is a constant (R stands for the real numbers). 

Whatever value b takes, (𝑋𝑖(𝑏))is a sequence of random variables such that 

𝐸[𝑋𝑖(𝑏)] = 𝐸[𝑋𝑖] − 𝑏(𝐸[𝑌𝑖] − 𝐸[𝑌]) = 𝐸[𝑋]; 

 𝑉𝑎𝑟(𝑋𝑖(𝑏)) = 𝑉𝑎𝑟(𝑋𝑖 − 𝑏𝑌𝑖) (5) 

= 𝑉𝑎𝑟(𝑥) − 2𝑏𝐶𝑜𝑣(𝑋, 𝑌) + 𝑏2𝑉𝑎𝑟(𝑌). 

Note that 𝑌𝑛
̅̅̅ − 𝐸[𝑌] is used to control the estimation of 𝐸[𝑋]. 

The mean of the control-variates estimator is 

 𝐸[𝑋𝑛
̅̅̅̅ (𝑏)] =

1

𝑛
∑ 𝐸[𝑋𝑖(𝑏)] = 𝐸[𝑋],𝑛

𝑖=1
 (6) 

so it is unbiased. 

The control-variates estimator's variance is 

 𝑉𝑎𝑟(𝑋𝑛
̅̅̅̅ (𝑏)) =

1

𝑛2
∑ 𝑉𝑎𝑟(𝑋𝑖(𝑏)) 𝑛

𝑖=1
 (7) 

 =
1

𝑛
𝑉𝑎𝑟(𝑋𝑖(𝑏) (8) 

 =
1

𝑛
(𝑉𝑎𝑟(𝑋) − 2𝑏𝐶𝑜𝑣(𝑋, 𝑌) + 𝑏2𝑉𝑎𝑟(𝑌)) (9) 

This variance is a function in 𝑏, and we want to minimize it with respect to 𝑏. 

By setting the derivative in 𝑏 equal to zero, we can get the value b∗ , which minimizes the variance 

𝑉𝑎𝑟(𝑋𝑛
̅̅̅̅ (𝑏)). This value is given by 

 𝑏∗ =
𝐶𝑜𝑣(𝑋,𝑌)

𝑉𝑎𝑟(𝑌)
  (10) 

Substituting 𝑏∗ for 𝑏 in (9) 

 𝑉𝑎𝑟(𝑋𝑛
̅̅̅̅ (𝑏∗)) =

1

𝑛
(𝑉𝑎𝑟(𝑋) −

𝐶𝑜𝑣(𝑋,𝑌)2

𝑉𝑎𝑟(𝑌)
). (11) 
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This expression and the fact that 

 𝑉𝑎𝑟(𝑋𝑛
̅̅̅̅ ) =

1

𝑛
𝑉𝑎𝑟(𝑋) (12) 

Imply that 

 
𝑉𝑎𝑟(𝑋𝑛̅̅ ̅̅ (𝑏∗))

𝑉𝑎𝑟(𝑋𝑛̅̅ ̅̅ )
= 1 −

𝐶𝑜𝑣(𝑋,𝑌)2

𝑉𝑎𝑟(𝑌)
= 1 − 2𝜌

𝑋𝑌, (13) 

where 𝜌𝑋𝑌  is the correlation coefficient between 𝑋 and 𝑌. 

When the squared correlation 2𝜌
𝑋𝑌

 of 𝑋 and Y is large, and it is easy to generate the samples , 

Yi, the control-variates method is useful. 

If 𝐸[𝑋]  is unknown and we need Monte Carlo to estimate it, then it is quite possible that 

𝐶𝑜𝑣(𝑋, 𝑌) is unknown. 

To continue to estimate, an unbiased estimator 𝑛∗
�̂�   of 𝑏∗ can be used. 

In particular, set 

 ∗𝑏
�̂� =

∑ (𝑋𝑖−𝑋𝑛̅̅ ̅̅ )(𝑌𝑖−𝑌𝑛̅̅ ̅)𝑛
𝑖=1

∑ (𝑌𝑖−𝑌𝑛̅̅ ̅)2𝑛
𝑖=1

 . (14) 

The control-variates estimator mentioned above is given by 
1

𝑛
∑ 𝑋𝑖(∗𝑏

�̂� )𝑛
𝑖=1 , where 

 𝑋𝑖(∗𝑏
�̂�) = 𝑋𝑖 −

∑ (𝑋𝑖−𝑋𝑛̅̅ ̅̅ )(𝑌𝑖−𝑌𝑛̅̅ ̅)𝑛
𝑖=1

∑ (𝑌𝑖−𝑌𝑛̅̅ ̅)2𝑛
𝑖=1

 (𝑌𝑖 − 𝐸[𝑌]). (15) 

𝑌 in the call price estimator equals to 𝑆(𝑇) , and 𝑋  in the call price estimator equals to 

𝑒−𝑟𝑇(𝑆(𝑇) − 𝐾)+. 

2.2.2. Antithetic variable method 

To decrease the variance of the estimate, we can use the 
1

2
(ℎ(𝑥1) + ℎ(−𝑥1))  to replace the 

1

2
(ℎ(𝑥1) + ℎ(𝑥2)). 

𝑆𝑖𝑛𝑐𝑒 𝑉𝑎𝑟(
1

2
(ℎ(𝑥1) + ℎ(−𝑥1)) − 𝑉𝑎𝑟(

1

2
(ℎ(𝑥1) + ℎ(𝑥2)) = 𝐶𝑜𝑣(ℎ(𝑥1), ℎ(−𝑥1)),

𝑖𝑓 𝐶𝑜𝑣(ℎ(𝑥1), ℎ(−𝑥1)) < 0, the rate of convergence can be improved by using the antithetic variable. 

2.3. connection between the rate of convergence and K 

Let 𝑙 = 2𝜌
𝑋𝑌 

𝑙 is a parameter indicating the effect of control variates, which shows that the effect is better when 

𝑙 is bigger. By plotting the image with K as the x-axis and 𝑙 as the y-axis, a conclusion can be got 

that the effect of improvement of control-variates decreases by the increase of K. It is really hard to 

prove the conclusion above directly by math, but it may be proved intuitively. According to: 

 𝑌 = 𝑆(𝑇), 𝑋 = 𝑒−𝑟𝑇(𝑆(𝑇) − 𝐾)+ (16) 

When 𝐾 = 0, 𝑋 = 𝑒−𝑟𝑇𝑆(𝑇), which is highly correlated with 𝑌. Then 𝑙 can reach the maximal 

1. With 𝐾 increasing, the correlation between X and Y is lower and lower. Thus, l will go down 

meanwhile. Next, let 

 𝑚 = 1 −
𝑉𝑎𝑟(

1

2𝑛
∑ ℎ(𝑥𝑖)+ℎ(−𝑥𝑖)𝑛

𝑖=1
)

𝑉𝑎𝑟(
1

2𝑛
∑ ℎ(𝑥𝑖)𝑛

𝑖=1
)

 (17) 
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m is a parameter indicating the effect of the antithetic variable, which shows that the effect is better 

when 𝑙 is bigger. 

By plotting the image with K as the x-axis and m as the y-axis, the effect of improvement of the 

antithetic variable first decreases by the increase of K, and when K reach some value, the effect begins 

increasing with K increasing. 

2.4. Using Monte-Carlo technics to predict prices of other options 

(1) For the put option: let 𝑋 = 𝑒𝑟𝑇(𝐾 − 𝑆(𝑇))+  

(2) For the power option: let 𝑋 = 𝑒𝑟𝑇𝑆(𝑇)  

(3) For the log option: let 𝑋 = 𝑒𝑟𝑇𝑙𝑜𝑔𝑆(𝑇)  

3. Results 

This work compared the variance optimization effects of Monte Carlo simulation using control 

variates and antithetic variates in the pricing of call options, put options, power options and log 

options based on the given indicators (see Table 1). 

Table 1: Parameters 

Option r σ T 𝑆0 K 

Call 0.03 0.2 0.25 100 102 

Put 0.03 0.2 0.25 100 98 

Power & Log 0.03 0.2 0.25 100 \ 
Note. r is the risk-free rate 

 

In Fig.1, the green line represents a standard Monte Carlo; the blue line represents Monte Carlo 

simulation based on control variables; the orange line represents Monte Carlo based on antithetic 

variables; and the red line represents the true value. The horizontal and vertical axes represent the 

sample size and option price, respectively. According to the law of large numbers, the more samples 

there are, the closer the probability is to the expected value. In call options, compared to the standard 

Monte Carlo, the optimized Monte Carlo has a faster convergence rate. 

 

Figure 1: Performance of Monte-Carlo in call options 
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This work calculated the variance optimization effects of the control variable and antithetic 

variable on standard Monte Carlo estimation under different strike K values. As Fig.2 shows, when 

K is small, the control variable has a slight advantage over the antithetic variates, while when K is 

large, the antithetic variates have a better optimization effect. 

 

Figure 2: Optimization effect of variance 

These two lines cross at K=106, and the variance reduced at this point is 62%. From the overall 

effect, for call options, Monte Carlo optimized by using antithetic variates reduces the variance by 

about 80% in option pricing compared to ordinary Monte Carlo, outperforming Monte Carlo 

simulations based on control variables. 

Next, we extend our calculations to put options. Fig.3(a) shows that the optimized Monte Carlo 

also has faster convergence rate input options. Moreover, Fig.3(b) illustrates that Monte Carlo based 

on antithetic variables is always better than Monte Carlo based on control variables input options. 

 
(a)                                      (b) 

Figure 3: Performance of Monte-Carlo input options 

As Fig.4(a) shows, Monte Carlo based on antithetic variables performs particularly well in the log 

option, which completely cancels the variance. The green line representing the antithetic variates is a 

straight line. It is because, in this case, the formula changes into 

 𝑌 = 𝑒−𝑟𝑇 (𝑙𝑛𝑆0 + (𝑟 − 0.5𝜎2) 𝑇) (18) 
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Since 𝑟, 𝜎, 𝑇 and 𝑆0 are both known terms, Y is a constant value. The variance of Y is 0. 

 
(a)                                      (b) 

Figure 4: Performance of Monte-Carlo in log & power options 

Table 2: Optimization Effect 

Option Control Variates Antithetic Variates 

Power 0.994 0.979 

Log 0.995 1.000 

 

As Fig.4(b) shows, for power options, control variates seem better. From Table 2, the variance of 

Monte Carlo simulation using Control variates (0.006*𝑉𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑀𝐶) is less than one-third of that 

using antithetic variates (0.021*𝑉𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑀𝐶). 

4. Conclusion 

In most cases, the Monte Carlo optimization based on antithetic variates performs well. Compared to 

standard Monte Carlo, Monte Carlo optimized with antithetic variates effectively reduces the variance 

of option prices and provides more accurate estimates of option prices. However, using control 

variates to optimize Monte Carlo still needs to be considered, as it has shown surprising results in 

certain options, such as power options. 

In the future, we are considering building the model on this basis and extending its perceptual 

capabilities to collect real-time stock and option prices, use different Monte Carlo variants for option 

pricing, and design trading strategies for different options. 
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