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Abstract: One of the main topics in classical mechanics is the study of pendulum motion, 

which makes it possible for us to know how objects move and swing. In this study, two 

approaches—numerical and analytical—for simulating pendulum motion under various 

beginning conditions are compared. It also looks at more intricate situations.  Pendulum 

research was first developed in the late 16th century by Galileo Galilei and further advanced 

by Christiaan Huygens, the man who invented the pendulum clock. With the passage of time, 

scientists were able to describe pendulum motion with much greater accuracy because of 

developments in mathematics, such as the differential calculus created by Leibniz and 

Newton. The development of digital computers and numerical techniques made it possible to 

solve difficult issues, such as pendulum motion. This research investigates the motion of the 

fundamental pendulum by assuming only modest oscillations and eliminating air resistance. 

Analytical procedures construct mathematical equations using Newton's principles when 

numerical processes divide motion into tiny steps for approximative solutions. The research 

investigates and assesses the advantages and disadvantages of various approaches.  The 

results show that for real-world scenarios such as air resistance, numerical methods perform 

better than purely analytical methods. This comparison highlights the need to use both 

approaches to fully understand mechanical systems and may be useful for future motion 

research.  

Keywords: single pendulum, air resistance, double pendulum, numerical methods and 

analytical methods. 

1. Introduction 

Pendulum motion has been a basic component of classical mechanics, providing a lot of research 

opportunities as an effective teaching tool. Since the late 16th century, pendulums have captivated 

the attention of scientists. This research is important for its historical background as its potential 

applications in a different field, including robotics, aerospace engineering, and seismology. 

The two ways we use to modelling the motion of a pendulum are the analytical and numerical 

methods. The analytical method uses Newton's law to create equations that can explain the pendulums 

under ideal conditions motion, while the numerical method uses computer technology to find 

solutions in harder scenarios, such as air resistance and wider angles of oscillation. In Section 2, the 

strengths and disadvantages of the numerical and analytical approaches will be compared and 
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contrasted. Section 3 will examine the relationship between angle and time in pendulum motion. The 

addition of air resistance to pendulum dynamics will be covered in Section 4. Section 5 presents the 

double pendulum system.   The last sections will compare our findings and conclusions. 

2. Numerical methods and analytical methods 

The pendulum is made of one mass 𝑚 is suspended on a massless string of length l, and the Angle 

change is an essential research factor in the process of exploring the motion of the pendulum. In order 

to study the close relationship between numerical and analytical methods, this research use the 

relationship between the change of research Angle (𝜃) and time (𝑡) to make an intuitive comparison. 

Assuming that the pendulum oscillates at a small angle and ignores the air resistance, so the study 

constructs a harmonic motion model. Newton's laws are shown in Eq. 1 [1,2], 

∑ 𝜏 = 𝐼𝛼 (1) 

where 𝜏 is torque, 𝐼 is moment of inertia, and 𝛼 is angular acceleration [3]. Torque can be expressed 

as 𝜏 = 𝐹𝑟, and r is the distance from F to the axis point. The moment of inertia can be likened to the 

mass m, and the moment of inertia of a particle is 𝐼 = 𝑚𝑟2. Angular acceleration measures the change 

in angular velocity 𝜔. 

According to 𝜏 = 𝐹𝑟, in this case 𝑟 = 𝑙, 𝐹 = 𝑚𝑔 sin 𝜃, derived from the decomposition of forces. 

Then substitute 𝐼 = 𝑚𝑟2 by equal quantity, and combine Eq. 1 to get the equivalent expression. 

−𝑙𝑚𝑔 𝑠𝑖𝑛 𝜃 = 𝑚𝑙2𝛼 (2) 

To simplify and rearrange, 

−
𝑔

𝑙
𝑠𝑖𝑛 𝜃 = 𝛼 (3) 

For simplicity, it uses 𝜔 = √
𝑔

𝑙
[3]. Since angular acceleration is the second derivative with respect 

to time, 𝛼 =
𝑑2𝜃

𝑑𝑡2 . Then get the differential equation of simple pendulum motion, 

𝑑2𝜃

𝑑𝑡2
= −𝜔2 𝑠𝑖𝑛 𝜃 . (4) 

Since the condition this study sets before is a small Angle pendulum, sin 𝜃 ≈ 𝜃, the error in the 

middle is negligible. Using the first important limit theorem [4], 

𝑙𝑖𝑚
𝜃→0

𝑠𝑖𝑛 𝜃

𝜃
= 1 (5) 

Get, 

𝑑2𝜃

𝑑𝑡2
≈ −𝜔2𝜃. (6) 

Therefore, reducing Eq. 4 to Eq. 6. To solve this differential equation, this study notes that the 

second order differential equation satisfies the form of the second order linear homogeneous 

differential equation [5], so this study sets 𝜃 = 𝑒𝑖𝜔𝑡 to find the first and second derivatives [3], 

𝜃 = 𝑒𝑖𝜔𝑡 (7) 

𝑑𝜃

𝑑𝑡
= 𝑖𝜔𝑒𝑖𝜔𝑡 (8) 
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𝑑2𝜃

𝑑𝑡2
= −𝜔2𝑒𝑖𝜔𝑡 = −𝜔2𝜃. (9) 

So, the study indicates that 𝜃 = 𝑒𝑖𝜔𝑡 is the solution to the second order differential equation in Eq. 

6, so it uses 𝜃1 = 𝐶1𝑒𝑖𝜔𝑡, 𝜃2 = 𝐶2𝑒−𝑖𝜔𝑡, 𝐶1𝐶2 ∈ 𝐶[3], 

𝜃 = 𝐶1𝑒𝑖𝜔𝑡 + 𝐶2𝑒−𝑖𝜔𝑡 (10) 

Take one derivation and it gets, 

𝑑𝜃

𝑑𝑡
= 𝐶1𝑖𝜔𝑒𝑖𝜔𝑡 − 𝐶2𝑖𝜔𝑒−𝑖𝜔𝑡 (11) 

And then taking the derivative again and getting, 

𝑑2𝜃

𝑑𝑡2
= −𝐶1𝜔2𝑒𝑖𝜔𝑡 + 𝐶2𝜔2𝑒−𝑖𝜔𝑡 

= −𝜔2(𝐶1𝑒𝑖𝜔𝑡 + 𝐶2𝑒−𝑖𝜔𝑡) 

= −𝜔2𝜃. (12) 

Thus, Eq. 12 satisfies Eq. 6 and contains all possible solutions. Applying Euler's formula 𝑒𝑖𝑥 =
cos 𝑥 + 𝑖 sin 𝑥 to this general solution [3], get, 

𝜃 = 𝐶1 𝑐𝑜𝑠 𝜔𝑡 + 𝐶1𝑖 𝑠𝑖𝑛 𝜔𝑡 + 𝐶2 𝑐𝑜𝑠(−𝜔𝑡) + 𝐶2𝑖 𝑠𝑖𝑛(−𝜔𝑡). (13) 

Since sin(−𝜃) = − sin 𝜃, cos(−𝜃) = − cos 𝜃, 

𝜃 = 𝐶1 𝑐𝑜𝑠 𝜔𝑡 + 𝐶1𝑖 𝑠𝑖𝑛 𝜔𝑡 + 𝐶2 𝑐𝑜𝑠(𝜔𝑡) − 𝐶2𝑖 𝑠𝑖𝑛(𝜔𝑡). (14) 

After rearranging, 

𝜃 = (𝐶1 + 𝐶2) 𝑐𝑜𝑠 𝜔𝑡 + 𝑖 (𝐶1 − 𝐶2)𝑠𝑖𝑛 𝜔𝑡 (15) 

Then let 𝐴 = 𝐶1 + 𝐶2,𝐵 = 𝑖(𝐶1 − 𝐶2)[3], 

𝜃 = 𝐴 𝑐𝑜𝑠 𝜔𝑡 + 𝐵 𝑠𝑖𝑛 𝜔𝑡 (16) 

This formula is a continuous function to study the relationship between Angle change and time in 

simple pendulum motion, in which analytical method is used. In this formula, 𝐴, 𝐵 ∈ 𝑅 is the constant 

of the initial condition of a simple pendulum. Now thinking about the approximation equation. 

Using linear approximation to define the first derivative, 

𝑑𝜃

𝑑𝑡
≈

𝜃𝑖 − 𝜃𝑖−1

∆𝑡
(17) 

By analogy, applied to the second derivative approximation, 

𝑑2𝜃

𝑑𝑡2
≈

𝜃𝑖 − 𝜃𝑖−1

∆𝑡
|𝑖+1 −

𝜃𝑖 − 𝜃𝑖−1

∆𝑡
|𝑖 

≈
1

∆𝑡
(

𝜃𝑖+1 − 𝜃𝑖

∆𝑡
−

𝜃𝑖 − 𝜃𝑖−1

∆𝑡
) 

=
𝜃𝑖+1 − 2𝜃𝑖 + 𝜃𝑖−1

∆𝑡2
(18) 

According to Eq. 3, 
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𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝑙
𝑠𝑖𝑛 𝜃𝑖 (19) 

Therefore, the approximate equation can be obtained according to Eq. 18 and Eq. 19. 

𝜃𝑖+1 − 2𝜃𝑖 + 𝜃𝑖−1

∆𝑡2
= −

𝑔

𝑙
𝑠𝑖𝑛 𝜃𝑖 (20) 

Now let us consider the air resistance conditions; first of all, only one resistance----the air 

resistance 𝐹1 applied to the ball. Since the resistance 𝐹1 is opposite to the direction of motion and 

proportional to the velocity of motion, this research defines the resistance as a function of velocity. 

𝐹1 = −𝑘𝑣 (21) 

In the rotation motion, the angular velocity 𝜔 =
𝑣

𝑟
, 𝑣 = 𝑟𝜔, where r is the distance from the 

moving particle to the axis point, 𝑟 = 𝑙. So, this study gets, on the basis of Eq. 21, 

𝐹1 = −𝑘𝑙𝜔 (22) 

Next, the study applies Newton's laws, 

∑ 𝐹 = 𝑚𝑎 (23) 

Where 𝑎 is the linear acceleration, and in the rotation motion, 𝑎 = 𝑟𝛼, so this study can get, 

𝑚𝑙𝛼 = −𝑚𝑔 sin 𝜃 − 𝑘𝑙𝜔 

= −𝑚𝑔𝜃 − 𝑘𝑙𝜔 (24) 

Because 𝛼 =
𝑑2𝜃

𝑑𝑡2 , this research gets,  

𝑚𝑙
𝑑2𝜃

𝑑𝑡2
= −𝑚𝑔𝜃 − 𝑘𝑙

𝑑𝜃

𝑑𝑡
(25) 

For simplify, 

𝑑2𝜃

𝑑𝑡2
+

𝑘

𝑚𝑙

𝑑𝜃

𝑑𝑡
+

𝑔

𝑙
𝜃 = 0 (26) 

Now it defines a constant 𝛾 =
𝑘

𝑚𝑙
, 

𝑑2𝜃

𝑑𝑡2
+ 𝛾

𝑑𝜃

𝑑𝑡
+

𝑔

𝑙
𝜃 = 0 (27) 

This research indicates that Eq. 27 satisfies homogeneous second order linear differential equation 

with constant coefficient, so this research can get the general solution [6], 

𝜃 = 𝑒−𝛾𝑡(𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡) (28) 

Where 𝛾 is constant, 𝜔 = 𝜔0
2 − 𝛾2. This gives us a continuous function of a simple pendulum 

motion with air resistance. 

Next, to consider the definition of the approximate equation, this study once again starts from the 

equation of Newton's law Eq. 1 of rotational motion and Eq. 24,  

−𝑚𝑔𝑙 sin 𝜃 − 𝑘𝑙𝑣 = 𝑚𝑙2𝛼 (29) 

To simplify, 
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𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝑙
sin 𝜃 +

𝑘

𝑚𝑙
𝑣 

= −
𝑔

𝑙
sin 𝜃 +

𝑘

𝑚
𝜔 (30) 

For simplicity, the research defines a constant 𝛽 =
𝑘

𝑚
, and since 𝜔 =

𝑑𝜃

𝑑𝑡
, it gets, 

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝑙
sin 𝜃 + 𝛽

𝑑𝜃

𝑑𝑡
(31) 

According to Eq. 17 and Eq. 18, the study therefore obtains the approximate equation, 

𝜃𝑖+1 − 2𝜃𝑖 + 𝜃𝑖−1

∆𝑡2
= −

𝑔

𝑙
sin 𝜃𝑖 + 𝛽

𝜃𝑖 − 𝜃𝑖−1

∆𝑡
(32) 

3. The relationship between angle change and time 

To further investigate the close connection between the pendulum Angle change and the time change, 

considering a slightly more complicated case: on the basis of the air resistance 𝐹1, this study considers 

the air resistance 𝐹2 applied to the rope. 

 

Figure 1: Force analysis of simple pendulum with resistance on rope [6] 

Figure 1 is a force analysis of a simple pendulum that experiences resistance not only from itself, 

but also from the rope. Considering an element of the pendulum string with length 𝑑𝑟, located at a 

distance 𝑟 from the support point and moving with velocity 𝑣[6]. The magnitude of the drag force on 

this element of the string is 𝑑𝐹𝑠 [6] which is 𝑑𝐹2 in the following page. 

According to Figure 1, it can be known the cross-section is proportional to the resistance [6] and 

Eq. 21, the study gets, 

𝑑𝐹2 = 𝑐(𝐷𝑑𝑟)𝑣 (33) 

Where 𝐷 is the diameter of the string and 𝑐 is a constant. According to 𝑣 = 𝑟𝜔, it gets, 

𝑑𝐹2 = 𝑐𝐷𝜔𝑟𝑑𝑟 (34) 

According to Eq. 1, 

𝑑𝜏2 = 𝑟𝑑𝐹2 = 𝑐𝐷𝜔𝑟2𝑑𝑟 (35) 

To solve this equation, the study takes the integral on both sides of the equal sign [6], and it gets, 
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𝜏2 = 𝑐𝐷𝜔 ∫ 𝑟2𝑑𝑟
𝑙

0

 

=
𝑐𝑙3𝐷

3
𝜔 (36) 

According to Eq. 1 and Eq. 22,  

𝑚𝑙2𝛼 = −𝑚𝑔𝑙 sin 𝜃 −
𝑐𝑙3𝐷

3
𝜔 − 𝑘𝑙2𝜔 (37) 

So, this simplifies to, 

𝛼 + (
𝑐𝑙𝐷

3𝑚
+

𝑘

𝑚
) 𝜔 +

𝑔

𝑙
sin 𝜃 = 0 (38) 

Assuming a constant 𝜑 =
𝑐𝑙𝐷

3𝑚
+

𝑘

𝑚
[6], the equation is derived, 

𝛼 + 𝜑𝜔 +
𝑔

𝑙
sin 𝜃 = 0 (39) 

Eq. 39 satisfies the form of homogeneous second order linear differential equation with constant 

coefficient [6], so this research can get the general solution, 

𝜃 = 𝑒−𝜑𝑡 2⁄ [𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡] (40) 

 

Figure 2: The relationship between angle and time of pendulum with friction on its rope 

In Figure 2, the horizontal coordinate represents the time in seconds. The vertical coordinate 

represents the radian Angle, perpendicular to the horizontal line represents the Angle of 0, the vertical 

line right represents the positive Angle value, the vertical line left represents the negative Angle value. 

Figure 2 represents the change of angle according to time when there exists friction on the rope of 

the pendulum. Because friction impedes the motion of the pendulum, the mechanical energy of the 

system consisting of the pendulum is getting smaller and smaller under the influence of friction [2]. 

The biggest angle it can achieve during each period is also getting smaller and smaller, which is 

represented by Figure 2. 
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4. The relationship between initial angle and period(T) 

In order to explore the motion model of the periodic pendulum, the oscillation period is an 

indispensable research direction. To clarify the relationship between the initial angle and period(T), 

this study still starts with the simplest condition - a small-angle pendulum without air resistance. 

It continues its previous research on the relationship between Angle (θ) change and time (t) by 

using the formula, 

𝑇 =
2𝜋

𝜔
(41) 

So, with 𝜔 = √
𝑔

𝑙
, this study has a very simple formula for the period, 

𝑇 = 2𝜋√
𝑙

𝑔
(42) 

= 𝑚𝑔𝑙(1 − cos 𝜃0) (43) 

According to Eq. 42 [3], it can intuitively see that 𝑇 is constant and is independent of the initial 

Angle (𝜃). In order to further explore the relationship between the two variables, this study changes 

the condition to large-angle pendulum without air resistance. 

Where 𝐸𝑘 is kinetic energy, 𝐸𝑝 is potential energy, 𝐸 is initial mechanical energy, and 𝜃0 is initial 

Angle. According to Eq. 43, the equation is solved. 

1

2
𝑚𝑙2𝜔2 = 𝑚𝑔𝑙(cos 𝜃 − cos 𝜃0) (44) 

Using this formula to solve for the angular velocity, 

𝜔 = √
2𝑔

𝑙
(cos 𝜃 − cos 𝜃0) (45) 

Replace 𝜔 with 
𝑑𝜃

𝑑𝑡
, and separate the variables, 

√
2𝑔

𝑙
𝑑𝑡 =

𝑑𝜃

√(cos 𝜃 − cos 𝜃0)
(46) 

Integrating both sides: Notice the symmetry of the four phases of motion in a complete period 

(swing angle: from 𝜃0 → 0 → −𝜃0 → 0 → 𝜃0). This is why the research employed the coefficient 4 

here. 

∫ √
2𝑔

𝑙
𝑑𝑡

𝑇

0

= 4 ∫
𝑑𝜃

√(cos 𝜃 − cos 𝜃0)

𝜃0

0

(47) 

Applying the following trigonometric identities, 

cos 𝜃 = 1 − 2 sin2
𝜃

2
(48) 

Substitute this identity into Eq. 47, 
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𝑇 = 2√2
2

√
𝑙

𝑔
∫

𝑑𝜃

√(2 sin2 𝜃
2 − 2 sin2 𝜃0

2 )

𝜃0

0

(49) 

Now, try to substitute 𝜃 by 𝑏, 𝑏 is an angle, assuming the relationship is, 

sin
𝜃

2
= sin

𝜃0

2
sin 𝑏 (50) 

Then the study takes the derivative of b with respect to theta on both sides, employ the skill 

differential implicitly, 

1

2
cos

𝜃

2
= sin

𝜃0

2
cos 𝑏

𝑑𝑏

𝑑𝜃
(51) 

Moving the numerators and denominator and represent 𝑑𝜃 in terms of 𝑑𝑏, 

𝑑𝜃 =
2 sin

𝜃0

2 cos 𝑏

cos
𝜃
2

𝑑𝑏 (52) 

Then finding the boundary values by considering the points when the swing angle, 𝜃 , is at its 

minimum and maximum point ( 0and 𝜃0,respectively): When 𝜃 = 0, 𝑏 = 0. When 𝜃 =  𝜃0, 𝑏 =
𝜋

2
.  

And according to Eq. 50, this study gets, 

2 sin2
𝜃

2
= 2 sin2

𝜃0

2
sin2 𝑏 (53) 

After all the substitution and simplification, it has, 

𝑇 = 4√
𝑙

𝑔
∫

𝑑𝑏

cos
𝜃
2

𝜋
2

0

(54) 

Notice that, 

cos
𝜃

2
= √1 − sin2

𝜃0

2
sin2 𝑏 (55) 

So, 

𝑇 = 4√
𝑙

𝑔
∫

𝑑𝑏

√1 − sin2 𝜃0

2 sin2 𝑏

𝜋
2

0

(56) 

To simplify the equation, the research assumes that 𝑦 = sin2 𝜃0

2
, Substituting 𝑎 into Eq. 56 [3], and 

define a 𝑌(𝑦) function, 𝑌(𝑦) = ∫
𝑑𝑏

√1−𝑦2 sin2 𝑏

𝜋

2
0

, it gets, 

𝑇 = 4√
𝑙

𝑔
𝑌(𝑦) (57) 
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Expanding 𝑌(𝑦)into a Maclaurin Series. This study first expands the integrated function in 𝑌(𝑦) 

(called 𝑓(𝑦), 𝑓(𝑦) =
1

√1−𝑦2 sin2 𝑏
 ), into a Maclaurin series and then does integration on each term. 

The study lets 𝑦2=𝑋, and expands 𝑓(𝑋) into the Maclaurin series, it has (by definition), 

𝑓(𝑋) = ∑
𝑓(𝑖)(0)

𝑖!
𝑋𝑖

∞

𝑖=0

 

= 𝑓(𝑦) ≈ 𝑓(0) +
𝑓′(0)𝑋

1!
+

𝑓′′(0)𝑋2

2!
+

𝑓′′′(0)𝑋3

3!
+ ⋯ (58) 

Now substitute 𝑘2 back into the Eq. 58 and find the derivative of each term with respect to 𝑓, it 

obtains, 

𝑓(𝑦) ≈ 1 +
1

2
sin2 𝑏 𝑦2 +

3

8
sin4 𝑏 𝑦4 +

5

16
sin6 𝑏 𝑦6 + ⋯ (59) 

The research then substitutes Eq. 59 into Eq. 57 and gets, 

𝑇 = 4√
𝑙

𝑔
𝑌(𝑦) 

= 4√
𝑙

𝑔
∫ 𝑓(𝑦)𝑑𝑏

𝜋 2⁄

0

 

= 4√
𝑙

𝑔
∫ (1 +

1

2
sin2 𝑏𝑦2 +

3

8
sin4 𝑏𝑦4 +

5

16
sin6 𝑏𝑦6 + ⋯ ) 𝑑𝑏 

𝜋 2⁄

0

(60) 

Solving the integration of 𝑠𝑖𝑛𝑛𝜑 with boundary values 0 and 
𝜋

2
 using integration by parts, 

∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 (61) 

Convert the ∫ 𝑠𝑖𝑛𝑛𝜑𝑑𝜑
𝜋

2
0

 to the form of Eq. 61, 

∫ 𝑠𝑖𝑛𝑛−1𝜑 sin 𝜑 𝑑𝜑

𝜋
2

0

= ∫ 𝑢𝑑𝑣 (62) 

So, 

∫ 𝑠𝑖𝑛𝑛−1𝜑 sin 𝜑 𝑑𝜑

𝜋
2

0

 

= (− sin𝑛−1 𝜑 cos 𝜑)
(𝜑=

𝜋
2

)
− (− sin𝑛−1 𝜑 cos 𝜑)(𝜑=0) + ∫ (𝑛 − 1) sin𝑛−2 𝜑 cos2 𝜑 𝑑𝜑

𝜋
2

0

(63) 

Using Eq. 63, the study rewrites Eq. 60, 

𝑇 = 2𝜋√
𝑙

𝑔
(1 + (

1

2
)

2

𝑘2 + (
3

8
)

2

𝑘4 + (
5

16
)

2

𝑘6 + ⋯ ) (64)  
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Using simple mathematical induction, it obtains the indicial form of T, getting the final form of 

the equation of T Eq. 65. 

𝑇 = 2𝜋√
𝑙

𝑔
[1 + ∑ (∏

2𝑟 − 1

2𝑟
𝑘

𝑚

𝑟=1

)

2∞

𝑚=1

] (65) 

 

Figure 3: The relationship between T and very small initial angle 

 

Figure 4: The relationship between T and very initial angle in whole range 

In Figure 3 and Figure 4, the horizontal coordinate represents the angle in the degree system, the 

angle value is 0 in the direction perpendicular to the horizontal line, the positive angle value to the 

right of the vertical line is the initial angle value, and the vertical coordinate represents the time in 

seconds 

Figure 3 represents the relationship between initial angle and period when pendulum starts with 

small angle. The study indicates that there is no relationship between period and the initial angle when 

pendulum starts with very small initial angle. 

Figure 4 represents the relationship between initial angle and period when pendulum starts with 

big angle. It indicates that there exists a completely positive relationship between period T and the 

initial angle of pendulum. 

5. Double pendulum system 

 

Figure 5: The physical setting of the double pendulum 
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From a historical perspective, Newton’s Second Law is fundamental [7]. Also, it is widely recognized 

that physical systems can be effectively characterized by their Lagrangian, and the Lagrangian 

function enables the derivation of second-order differential equations governing the dynamics of such 

systems [8]. So next, the study will explain the Lagrangian equation of motion for a 2D double spring-

pendulum [9]. 

Figure 5 is the physical diagram of the double pendulum system. When the radius of the two balls 

is ignored, 𝑙1 is the pendulum length of the motion of ball 1, 𝑙2 is the pendulum length of the motion 

of ball 2, and 𝜃1 and 𝜃2 are the initial angles of the motion of the two balls. From the above definition, 

the study lists expressions for the positions of the two balls. 

Assume 1. Point masses 2. Massless rigid rods 3. Gravity is present, with a bunch of equations [7], 

𝑥1 = 𝑙1 sin 𝜃1 (66) 

𝑦1 = −𝑙1𝑐𝑜𝑠𝜃1 (67) 

𝑥2 = 𝑙1𝑠𝑖𝑛𝜃1 + 𝑙2𝑠𝑖𝑛𝜃2 (68) 

𝑦2 = −𝑙1𝑐𝑜𝑠𝜃1 − 𝑙2𝑐𝑜𝑠𝜃2 (69) 

𝑑𝑥1

𝑑𝑡
= 𝜔1𝑙1 cos 𝜃1 (70) 

𝑑𝑦1

𝑑𝑡
= 𝜔1𝑙1 sin 𝜃1 (71) 

𝑑𝑥2

𝑑𝑡
= 𝜔1𝑙1 cos 𝜃1 + 𝜔2𝑙2 cos 𝜃2 (72) 

𝑑𝑦2

𝑑𝑡
= 𝜔1𝑙1𝑠𝑖𝑛𝜃1 + 𝜔2𝑙2𝑠𝑖𝑛𝜃2 (73) 

And the research gets the equation which 𝑉 represents the potential energy of the system [10], 

𝑉 = 𝑚1𝑔𝑦1 + 𝑚2𝑔𝑦2. (74) 

Substitute Eq. 67 and Eq. 69 into Eq. 74, it gets, 

𝑉 = −(𝑚1 + 𝑚2)𝑔𝑙1 cos 𝜃1 − 𝑚2𝑔𝑙2 cos 𝜃2 . (75) 

Then, there is an equation which 𝑇 represents the kinetic energy of the system [10], 

𝑇 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 

=
1

2
𝑚1 (

𝑑𝑥1

𝑑𝑡

2

+
𝑑𝑦1

𝑑𝑡

2

) +
1

2
𝑚1 (

𝑑𝑥2

𝑑𝑡

2

+
𝑑𝑦2

𝑑𝑡

2

) (76) 

Substitute Eq. 71, Eq. 72, Eq. 73 and Eq. 74 into Eq. 76, this study gets, 

𝑇 =
1

2
𝑚1𝜔1

2 +
1

2
𝑚2(𝑙1

2𝜔1
2 + 𝑙2

2𝜃2
2 + 2𝑙1𝑙2𝜔1𝜔2 cos(𝜃1 − 𝜃2)) (77) 

So, the Lagrangian [7], 

𝐿 = 𝑇 − 𝑉 

=
1

2
𝑚1𝜔1

2 +
1

2
𝑚2(𝑙1

2𝜔1
2 + 𝑙2

2𝜃2
2 + 2𝑙1𝑙2𝜔1𝜔2 cos(𝜃1 − 𝜃2)) 

+(𝑚1 + 𝑚2)𝑔𝑙1 cos 𝜃1 + 𝑚2𝑔𝑙2 cos 𝜃2 (78) 
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Using the Lagrange’s Equation [11-13], 

𝑑

𝑑𝑡
(

𝑑𝐿

𝑑𝜔𝑗
) −

𝑑𝐿

𝑑𝜃𝑗
= 0     (𝑗 = 1,2,3, … … , 𝑛) (79) 

The study can get the final solution, 

(𝑚1 + 𝑚2)𝑙1𝛼1 + 𝑚2𝑙2𝛼2 cos(𝜃1 − 𝜃2)

+𝑚2𝑙2𝜔2
2 sin(𝜃1 − 𝜃2) + (𝑚1 + 𝑚2)𝑔 sin 𝜃1 = 0. (80)

 

Then, 

𝑚2𝑙2𝛼2 + 𝑚2𝑙1𝛼2 cos(𝜃1 − 𝜃2) − 𝑚2𝑙1𝜔2
2 sin(𝜃1 − 𝜃2) + 𝑚2𝑔 sin 𝜃2 = 0 (81) 

To solve Eq. 80[7] and Eq. 81[7], first, it uses the small angle approximation to simplify the two 

equations, let,  

𝑢 =
𝑚1

𝑚2
+ 1 (82) 

sin(𝜃1 − 𝜃2) ≈ 𝜃1 − 𝜃2 (83) 

cos(𝜃1 − 𝜃2) ≈ cos 0 = 1 (84) 

Then, 

𝛼1 =
𝑔𝜃2 − 𝑢𝑔𝜃1

𝑙1(𝑢 − 1)
(85) 

𝛼2 =
𝑢𝑔𝜃1 − 𝑢𝑔𝜃2

𝑙2(𝑢 − 1)
(86) 

Note that Eq. 85[14] and Eq. 86[14] are applicable only when two balls both start with small angles. 

 

Figure 6: The relationship between theta 1 and time 
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Figure 7: The relationship between theta 2 and time 

Figure 6 and Figure 7 represent the relationship between the two angles in the double pendulum 

over time, so that the one perpendicular to the horizontal line represents the 0-angle value, and the 

right side of the vertical line represents the positive Angle value and the left side represents the 

negative angle value. angles are expressed in the degree system. 

Figure 6 and Figure 7 are plotted based on Eq. 85 and Eq. 86.  

From Figure 6, it indicates that within three seconds, the image of Theta 1 has five inflection points 

of the change trend, where the maximum value is the initial value, while the minimum value is 

negative, which appears at about 1.6 seconds. From Figure 7, it indicates that the image of Theta 2 

also has five inflection points of the change trend, reaching the maximum value at about 2.7 seconds 

and the minimum value at about 1.2 seconds. 

6. Comparison and result 

 

Figure 8: The numerical solution of pendulum without resistance 
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Figure 9: The analytical solution of pendulum without resistance 

 
Figure 10: The comparison between analytical solution and numerical solution of pendulum without 

resistance 

Figure 8 is the image of the numerical solution of the pendulum, and Figure 9 is the image of the 

analytical solution of the pendulum. Figure 8 and Figure 9 are plotted under the same initial conditions, 

so this study compares them in one single plot—Figure 10. 

In Figure 10, the horizontal coordinate represents the angle in the radian system, the angle value 

is 0 in the direction perpendicular to the horizontal line, the positive angle value to the right of the 

vertical line is the initial angle value, and the vertical coordinate represents the time in seconds. 

In order to better compare the image of the numerical solution and the image of the analytical 

solution of a simple pendulum without resistance, the research plots them in the same figure, with the 

solid line representing the analytical solution and the dotted line representing the numerical solution. 

Because both the numerical equation and analytical solution are built when there is no resistance on 

the simple pendulum, it doesn’t need to approximate much when building the numerical equation, so 

their images almost overlap over the whole domain. Obviously, Figure 8 represents a good 

approximation. 

Then, look into the images of the numerical solution and analytical solution of a simple pendulum 

with resistance. Because both the numerical equation and analytical solution are built when there is 

resistance on the simple pendulum, the value of the damping coefficient of air friction may have an 

effect on the accuracy of the approximation.  
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Figure 11: The comparison between analytical solution and numerical solution of pendulum with 

resistance 

In Figure 11, the horizontal coordinate represents the angle in the radian system, the angle value 

is 0 in the direction perpendicular to the horizontal line, the positive angle value to the right of the 

vertical line is the initial angle value, and the vertical coordinate represents the time in seconds. 

7. Conclusion 

This study looked at a simple pendulum moves under different initial conditions. By creating a model 

of harmonic motion and using Newton's laws, this study found the differential equations that describe 

the pendulum's motion and analyzed them. The analytical method solved the equations to give a clear 

formula showing how the pendulum's angle changes over time. This strategy highlighted the 

pendulum's periodic character and the impact of its beginning circumstances. The numerical 

technique gave some practical answers and demonstrated its applicability in more complicated 

scenarios. The study also accounted for air resistance by adding a factor to the equations.  This showed 

how air resistance changes the pendulum's amplitude and period. In summary, both methods gave 

valuable insights into the pendulum's behavior. This study also analyzed the motion of a double 

pendulum using Lagrange's equation. The analytical solution offers a more succinct description, even 

though the numerical technique may be modified to accommodate ever more complicated 

circumstances. Together, the study improves the understanding of pendulum dynamics and paves the 

way for future studies on more complex systems. 
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