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Abstract: In this paper, we give an introduction to the compact space under Constructive 

Mathematics, ultimately showing that there exist no computer programs that can always 

determine if a fundamental group of a constructive compact topological space is trivial or not. 

We will begin with the non-halting case of the programs, which shows that the fundamental 

group of our selected set is trivial. From here, we will explore the halting case of the programs, 

which can be solved by arbitrarily picking a nontrivial subset of our selected set. The main 

result of this section is that we can show that the algorithm is decidable due to our initial 

construction, while realizing its contradiction with our input. We want to show that such an 

algorithm doesn’t exist by employing the proof-by-contradiction method. 
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1. Introduction 

The concept of a trivial set is fundamental in topology and set theory. It is the base for many theorems 

such as the Zermelo-Fraenkel Set Theory. In classical topology, various techniques and theorems 

allow our research group to unravel and compute fundamental groups for various spaces. However, 

when considering constructive mathematics, where the existence of a concept requires the 

construction of a corresponding algorithm, the tools become significantly limited. This paper focuses 

on the triviality of fundamental groups of constructive compact topological spaces and will further 

explore the existence of computer algorithms mentioned above. 

2. Definition 

Definition 1 (Metric Space). Let (X, d) be an ordered pair of a set X, which is the basic formation of 

metric space. A metric function 𝑑: 𝑋 × 𝑋 → 𝑅 satisfies the axioms below for arbitrary 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

1. d(x, y) equals to zero precisely when x = y; 

2. d(x, y) equals to  d(y, x), and note that their values are both non-negative; 

3. d(x, z) ≤ d(x, y) + d(y, z), which satisfies the so alleged Triangular Inequality. 
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4. Definition 2 (Homotopy). Given 2 continuous maps 𝑓 𝑎𝑛𝑑 𝑔: 𝑋 ↦ 𝑌 continuous 𝐻: 𝑋 × [0,1] ↦
𝑌 is called a homotopy between 𝑓 and g if 𝐻(𝑥, 0) = 𝑓(𝑥) while 𝐻(𝑥, 1) = 𝑔(𝑥). 

Definition 3 (Fundamental Group). A fundamental group, denoted as  𝜋1(𝑥), of a 

manifold(specifically, topological space) is a group of equivalence classes of based loops in basis X 

considering homotopy. 

Definition 4 (ϵ-net). Let M = (X, d) be a metric space, thus we pick ϵ ∈ 𝑅+. Accordingly, an 𝜖- net 

for M, denoted Nϵ, is a set of vertices S ∈ X that satisfies 𝑋 ⊆ ⋃ 𝐵(𝑥, ϵ)𝑥∈𝑆 , where B(x, ϵ) represents 

the open ball of x with a radius ϵ in M. 

Definition 5 (Closure). The closure of a subset 𝑆 ⊂ 𝑋  a topological space X, denoted  𝑆̅, is an 

intersection of all closed subsets of X that contain S, i.e. ⋂ 𝐶𝑆⊆𝐶  where C is closed in X. 

Definition 6 (Interior). The interior of  𝑆 ⊂ 𝑋 (denoted as 𝑖𝑛𝑡(𝑆)), a subset of a topological space 

X, is the union of all open subsets of X that are contained in S, i.e. ⋃ 𝑂𝑂⊆𝑆  where O is open in X. 

Definition 7 (Boundary). The boundary of a subset 𝑆 ⊂ 𝑋 in a topological space X 

is the closure of S minus the interior of S, i.e. 𝑆̅ ∖ 𝑖𝑛𝑡(𝑆). 

Definition 8 (Constructive Compact Topology Space). A Constructive Compact Topological space 

is the collection of algorithmically generated epsilon nets for all rational epsilons. One can think of 

the resulting set as the closure of the union of the epsilon nets described above.  

Definition 9 (Deformation Retract). Given an abstract topological space X and its subset 𝑆 ⊂ 𝑋, S 

is a deformation retract of X if there is a retraction r: 𝑋 ↦ 𝑆, i.e. r restricted to S is the identity map 

idS, and that r is homotopic to idX when r is viewed as a map from X into itself. 

Definition 10 (Turing Machines). A Turing machine is a conceptual machine proposed by Turing. 

Its memory is stored in an infinite tape. Beginning with an input, the tape is surrounded by infinitely 

many blank cells, which keeps on running until it halts. 

Definition 11 (Halting problem). Representing one of the decision problems in computability 

theory, the halting problem questions if a given Turing machine T will be eventually capable of  

halting (stopping running) when offered a specific input or keep on executing indefinitely. As early 

as 1936, such a problem was studied by Alan Turing that no universal algorithm can crack the halting 

problem for every feasible Turing machines and inputs [1,2]. 

3. Literature review  

There are two main schools of constructive analysis [3]. A A. Markov Jr., as introduced in Kushner’s 

1966 paper has made great contributions to constructive mathematics and was the representative for 

one of those schools [4]. In this paper, Kushner outlines the main features of Markov’s constructive 

mathematics (MCM), emphasizing the study of constructive processes and objects, the use of a 

special constructive logic, and the rejection of actual infinity in favor of potential realizability [4]. He 

also compares Markov’s approach with Bishop’s Constructivism and Brouwer’s Intuitionism and 

concludes that Markov’s focus on algorithms and computability distinguished his work from others 

[4]. Other works from Markov include the Markov Algorithm in theoretical computer science and the 

proof for undecidability of an algorithm that determines if two given polyhedra are Homeomorphic 

[5]. Despite works from Markov, we have also reviewed works from American mathematician - Errett 

Bishop. In his 1967 book and a later revision, Bishop not only aimed to provide proofs of important 

theory but also proved to other mathematicians like Hermann Weyl, that a constructive approach is 

feasible also for real analysis [6,7]. 

Other works we have reviewed include Kushner’s [8] textbook on constructive mathematical 

analysis which provides a general overview of important concepts in constructive mathematics. 

Waaldijk [9] links constructive mathematics with recursive mathematics and intuitionism and 

provides new definitions, such as that of” locally compact,” which align more closely with classical 
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and intuitionistic mathematics. Poincaré’s work, originally published in 1895 and compiled in” 

Papers on Topology” [10], laid the groundwork for the concept of the fundamental group, which has 

become a crucial tool in algebraic topology. The initial version of algebraic topology by Poincaré is 

characterized by the fact that topological concepts can be expressed and interpreted through algebratic 

relations and operations, which fosters an impressive integration of Geometry and Algebra. [10]. This 

concept connects algebra with the topology of spaces, allowing for the classification of topological 

spaces based on their properties under continuous transformations. 

The halting problem is a central topic in the theory of computation and this research project. 

Turing’s seminal 1937 paper established the definition of Turing Machines and proved the 

undecidability of the halting problem, which remains a foundational result in computability theory 

[1,2]. Studies like those by Bienvenu et al.[11] and Köhler et al. [12] explore the possibility of solving 

the halting problem for “most” inputs, despite its undecidability, discussing optimal machines and 

approximations within real-world programming languages. 

The literature covers a broad spectrum from the theoretical underpinnings of computability with 

Turing Machines and the halting problem to the foundations of constructive mathematics and 

algebraic topology. These works collectively contribute to a deeper understanding of the limitations 

and possibilities within mathematics and computation. 

To explore the limitations and possibilities of solving topological problems via theoretical 

computation methods, we plug in a canonical problem on the computation of the fundamental group 

of a given set, unveiling the thinking process in a computer’s” brain”. By employing computational 

methods like Turing machine and ϵ-net to grind the problem, we finally reveal that it is impossible 

(with today’s computational methods) to solve our problem. This result points out that we should 

develop another computational method of thinking in a different way to be capable of solving 

topological problems related to fundamental groups. With modern computational methods, we are 

only capable of seeing the tip of the island of Topology World. Still, it can be a promising assistant 

tool for us to explore topology problems. 

4. Main theorem and Its proof  

4.1. Theorem 

There is no decision program that, given a constructive compact topological space K, can always 

determine whether 𝜋1(𝐾) is trivial or not. 

4.2. Proof 

For the sake of contradiction, assume that we ha a decision program D, that given any computer 

program that generates a constructive compact topological space K, can determine whether π1(K) is 

trivial. 

Let G denote the computer program that generates a metric subspace inside. B = [0, 1]2 ⊂ ℝ2 for 

our decision program to determine. Since a computer program is finite, it can be fed as a proper input 

to decision algorithm D. 

Start executing arbitrary Turing machine 𝑇 with input 0 for 1 second per iteration, after iteration 

𝑛, 𝐺 does the following: 

If 𝑇 does not halt after iteration n,  

𝐾 = ⋃ 𝑁 1

2𝑖
𝑖≤𝑛 ,  

where we take 𝑁 1

2𝑖
= { (

𝑝

2𝑖 ,
𝑞

2𝑖) ∣
∣ 0 ≤ 𝑝, 𝑞 ≤ 2𝑖 }. (𝑝, 𝑞 non-negative integers).  
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That is, 𝐾 = ⋃ { (
𝑝

2𝑖 ,
𝑞

2𝑖) ∣
∣ 0 ≤ 𝑝, 𝑞 ≤ 2𝑖 }𝑖≤𝑛 , 

Observe that ⋃ 𝑁 1

2𝑛
𝑛∈𝑁 = [0,1]2 since the union set is dense in [0,1]2. So when 𝑇 never halts, 𝐾 

= [0,1]2, which has a trivial fundamental group (due to linear homotopy).  

If 𝑇 has halted after n seconds, if this is the first iteration after which 𝑇 has halted, adopt and fix 

𝐵′ = 𝐵 ∖ (0,
1

2𝑛)
2

, and denote this n as n’.  That is, after this point all 𝑁ϵ are taken in 𝐵′ instead of 𝐵 

for all future iterations. Note all the previous 𝑛 − 1 ϵ-nets, when viewed as subsets of 𝐵′, also satisfy 

the conditions that the ϵ balls with the vertices as centers cover  𝐵′ hence they are also ϵ − 𝑛𝑒𝑡𝑠 𝑜𝑓 𝐵′ 
for ϵ ≥ 1/2𝑛.  

Take 𝐾 = ⋃ 𝑁 1

2𝑖
𝑖≤𝑛 , , where 

𝑁 1

2𝑖

= { (
𝑝
2𝑖 ,

𝑞
2𝑖) ∣∣

∣ 0 ≤ 𝑝, 𝑞 ≤ 2𝑖 and (
𝑝
2𝑖 ,

𝑞
2𝑖) ∈ 𝐵′ } 

That is  𝐾 = ⋃ { (
𝑝

2𝑖 ,
𝑞

2𝑖) ∣
∣ 0 ≤ 𝑝, 𝑞 ≤ 2𝑖 and (

𝑝

2𝑖 ,
𝑞

2𝑖) ∈ 𝐵′ }𝑖≤𝑛  

In the halting case, the union set is also dense in 𝐵′, which is simply a solid square but without the 

part (0,
1

2𝑛′)
2

, Hence 𝐾 = 𝐵′ . Note the hollow square of side length 
1

2𝑛′, that is the boundary of 

[0,
1

2𝑛′]
2

 which resides inside of B' is a deformation retract of 𝐵′ in an obvious way: for each 𝑏 ∈ 𝐵′, 

shrink it, in a continuous fashion towards (0,0) along the straight line connecting (0,0) and 𝑏 until 

getting to the desired hollow square. Since fundamental groups of a topological space and its 

deformation retract are isomorphic, π1(𝐾) is isomorphic to the fundamental group of the hollow 

square (homeomorphic to 𝑆1), which is isomorphic to (𝑍, +). 

Now 𝐺 is defined in a way such that the resultant space it generates has a fundamental group which 

is trivial precisely when 𝑇 belongs to non-halting case. Thus 𝐷 also serves as a decision problem for 

the halting problem for arbitrary Turing Machine 𝑇, contradicting that the halting set is undecidable. 

So such 𝐷 cannot possibly exist. 

5. Conclusion 

A generating program is constructed in our study in such a way that effectively relates the halting 

problem to deciding whether the fundamental group of a constructive compact topological space is 

trivial, showing that such a decision program for our problem cannot possibly exist. In fact, through 

similar constructions, the undecidability of other properties about the fundamental group of a 

constructive compact topological space can be concluded as well. 

One such property would be the presentation of the fundamental group. If we puncture n hollow 

squares in the interior of the original square and proceed on the remaining space, the resultant space 

would have a deformation retract of a wedge of n squares, which would have a fundamental group of 

free products of n copies of (Z, +). Note both (Z, +) and the trivial group have only one generator, but 

such a free product has more than one generator. This would allow us to conclude that there is no 

decision program for telling whether the fundamental group of a constructive compact topological 

space has more than one generator. 

By exploring the existence and limitations of these algorithms, this research contributes to a deeper 

understanding of the computational aspects of topology and set theory. It also provides a foundation 

for future studies that seek to develop or refine algorithms capable of operating within the constraints 
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of constructive mathematics, thereby expanding the scope and applicability of these mathematical 

frameworks. 
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