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Abstract: The objective of this work is to conduct numerical simulations and analyses to 

derive the equations of motion of a non-torque pendulum. For the sake of obtaining pendulum 

motion equations under various circumstances, such as with and without a drag force, Taylor 

expansion, second-order differentiation, defined differential equation and other mathematic 

methods are employed. Moreover, Python is utilised for the calculation of precise values and 

the generation of graphs, thereby facilitating a more comprehensive understanding of the 

object's motion law and the interrelationship between its constituent elements. The article will 

predict the position of the ball in different conditions when there is a change of length, initial 

velocity or derivative angle. In this paper we first show the basic theory deduction and divided 

into two cases which are without drag and with drag. When there is no drag force, two 

conditions are discussed. One is Simple Harmonic Motion, and the other one is Regular 

Pendulum Motion. For both two cases, numerical and analytical solutions will be deduced. 

Furthermore, the paper is required to use control variable method to change certain elements 

and investigate the changes. Besides, when there is drag force, the conditions will be more 

complicated. For methodology part, there are defined differentiate equations, Largent 

Equation, Taylor Expansion and second-order derivation. 

Keywords: pendulum motion, Python, numerical solution, analytical solution 

1. Introduction 

A device in which a small object is suspended from one end of an in inelastic slight rope is defined 

as a pendulum. When a pendulum is released, the restoring force combined the mass of it so it can 

oscillate about the equilibrium position. Single pendulum is one of the most basic physical 

phenomena for observing resonant oscillation motion. 

Besides, with the development of the artificial intelligent, computer can make sketching and 

drawing trajectory of objects easier. Using programming language and graphics software, complex 

physical models and motion processes can be showed directly, thus it can show the non-linear motion 

of pendulum easily. As a general programming language, Python is widely used and learned because 

of its free and open source, flexible and easy to learn, powerful and other advantages. 

In this work, we starting from the perspective of Newton's second law, using mathematical 

methods such as Taylor expansion to solve the numerical solution and analytical solution in the case 
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of changing different variables, and using Python to draw pictures comparison, so as to carry out a 

detailed study of the motion of a simple pendulum in general. 

2. Theoretical deduction  

 

Figure 1: Elements in pendulum motion[1] 

As shown in figure 1, a simple pendulum system consists of a pendulum ball with mass m and a thin 

rod with negligible mass. The pendulum length l, and angle θ at time t. For the convenience of 

calculation, we set the length of the string(𝑙 ) is 1𝑐𝑚  and initial velocity equals to 0 rad/s, and 

acceleration of gravity 𝑔 is 9.8 𝑚 𝑠2⁄ . 
A right-angle coordinate system should be set up along the direction of the string pulls, after which 

the force of gravity can be decomposed. The force provided by the string and the force of the y-axis 

component of gravity can be contracted. Let us now consider the scenario in which the experimenter 

manually pulls the ball to the right, as illustrated in the figure. Given that the ball is in decelerated 

motion, the displacements and accelerations are in opposite directions, consequently, the force 

towards the left half-axis of the x-axis in the diagram is negative 𝑚𝑔𝑠𝑖𝑛𝜃[1]. 

Tangential acceleration of the ball can be expressed by[2] 

 𝛼𝑇 = 𝑙
𝑑2𝜃

𝑑𝑡2  (1) 

drag force 

 𝐹𝑇 = −𝛾𝑣 = −𝛾𝑙
𝑑𝜃

𝑑𝑡
 (2) 

according to Newton’s Second Law 

 −𝑚𝑔𝑠𝑖𝑛𝜃 + 𝛾𝑙
𝑑𝜃

𝑑𝑡
= 𝑚𝑙

𝑑2𝜃

𝑑𝑡2  (3) 

Equation (3) describes the dynamic equilibrium of a pendulum considering damping effects. 

−𝑚𝑔𝑠𝑖𝑛𝜃 + 𝛾𝑙
𝑑𝜃

𝑑𝑡
 represent the total external forces acting on the system, while 𝑚𝑙

𝑑2𝜃

𝑑𝑡2
 represents 

how the motion state of the pendulum changes over time. When the two parts are equal, the system 

reaches dynamic equilibrium. 

3. Numerical solutions and graphs 

3.1. Simple harmonic motion 

To prove the equation of the free oscillation of a simple pendulum, we can use the Taylor expansion 

to approximate the solution[3]. 
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First, we expand the Angle 𝜃 to the second order term. The general form of Taylor expansion is 

as follows: 

 𝑓(𝑥) = 𝑓(𝑎)+𝑓′(𝑎)(𝑥 − 𝑎) +
1

2!
𝑓′′(𝑎)(𝑥 − 𝑎)2 + ⋯ +

𝑓𝑛(𝑎)

𝑛!
(𝑋 − 𝑎)𝑛 + 𝑅𝑛(𝑥) (4) 

In this case, we only need to expand to the quadratic term. For the Angle 𝜃, we can choose to 

expand with 𝜃 = 0 as the center. According to Taylor's definition of expansion, we have: 

 𝜃 = 𝜃(0)𝑡+𝜃′(0)𝑡 +
1

2
𝜃′′(0)(𝑡)2 (5) 

Where 𝜃(0) represents the initial angle, 𝜃’(0) represents the initial angular velocity, and 𝜃’(0) 

represents the initial angular acceleration. 

Since we are concerned with the equation of motion in the case of free vibration, assume that the 

initial angle is 0, that is, 𝜃(0) = 0, and the initial angular velocity is 0, that is 𝜃’(0) = 0. Therefore, 

the equation (5) can be simplified to: 

 
𝑑2𝜃

𝑑𝑡
= 𝜃’’(0) (6) 

Now let's consider the equation of motion of a simple pendulum. According to the motion law of 

a simple pendulum, when the swing Angle is small, the 𝑠𝑖𝑛𝜃 can be approximated to 𝜃. Therefore, 

we can approximate 𝜃’’(0) as −
𝑔

𝑙
𝜃(0). Substituting this approximation into the equation (6) gives 

us: 

 
𝑑2𝜃

𝑑𝑡2 = −
𝑔

𝑙
𝜃(0) (7) 

 
𝑑2𝜃

𝑑𝑡2 = −
𝑔

𝑙
𝑠𝑖𝑛𝜃 (8)[4] 

The equation (8) is the approximate formula of motion for the free vibration of a simple pendulum. 

Note that the equation (8) holds if the swing angle is small, that is, if 𝜃 is close enough to 0. 

In summary, by Taylor expansion and approximate solution, we prove that the equation of free 

vibration of a simple pendulum is: 

 
𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝑙
𝜃 (9) 

From the equation (9), it can be seen that under the small angle approximation, the equation is a 

simple harmonic motion equation. This means that the pendulum undergoes simple harmonic motion, 

oscillating back and forth around its equilibrium position with a fixed period and amplitude. 

3.2. Regular pendulum motion 

Without considering damping and torque driving, the torque on the pendulum is[5]: 

 𝑀 = −𝑚𝑔𝑠𝑖𝑛𝜃𝑙 (10) 

According to the law of rotation, we get 

 𝑀 = −𝑚𝑔𝑠𝑖𝑛𝜃𝑙 = 𝑚𝑙2 𝑑2𝜃

𝑑𝑡2
 (11) 

The equation of free vibration of a simple pendulum is obtained as[6,7] 

 
𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝑙
𝜃 (12) 
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It can be seen that the free vibration equation of a simple pendulum can be derived from the above 

two methods. And the initial conditions of this equation can be expressed as: 

 
𝑑𝜃(𝑡=0)

𝑑𝑡
= 0 (13) 

We can also express the equation (13) in another form. We typically use discretization methods to 

convert the differential equations in the time domain into difference equations. 

 
𝑑𝜃

𝑑𝑡
≈

𝜃𝑖−𝜃𝑖−1

𝛥𝑡
 (14) 

 
𝑑2𝜃

𝑑𝑡
≈

1

𝛥𝑡
(

𝜃𝑖+1−𝜃𝑖

𝛥𝑡
−

𝜃𝑖−𝜃𝑖−1

𝛥𝑡
) =

𝜃𝑖+1−2𝜃𝑖+𝜃𝑖−1

𝛥𝑡2  (15) 

 
𝜃𝑖+1−2𝜃𝑖+𝜃𝑖−1

𝛥𝑡2
=

−𝑔

𝐿
𝑠𝑖𝑛𝜃𝑖 (16) 

The equation (16) indicates that at each time step (i), the change in angular displacement is 

proportional to the sine of the current angle, thereby illustrating the dynamic behavior of the 

pendulum during small-angle oscillations. 

Moreover, the graph of the numerical solution is presented below for illustrative purposes. 

 

Figure 2: Numerical approximation of pendulum motion[8] 

From figure 2 we can know that, in the absence of damping or external forces, the total mechanical 

energy of the pendulum should be conserved, which is reflected in the consistent maximum angle 

(amplitude) in each period shown in the graph. That is, the amplitude of each peak and trough is equal. 

Figure 2 displayed a periodic curve. A pendulum, under ideal conditions without damping forces, 

exhibits periodic motion, with its angle varying over time in the form of a sine or cosine curve. This 

indicates that the pendulum is a periodic system, with its period (T) being influenced by the pendulum 

length (l) and gravitational acceleration (g). 

3.3. Analytical solutions and graphs 

In addition to the numerical solution, which includes the approximation, we are now attempting to 

identify the analytical solution[9]. This entails reformulating the problem in a well-understood form 

and calculating the exact solution. We have: 

 
𝑑2𝜃

𝑑𝑡2 +
𝑔

𝑙
𝜃 = 0 (17) 

This is a second order linear homogeneous differential equation with constant coefficients. 
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To understand the equation (17), we can first find its characteristic equation. Assuming the solution 

is of the form 𝜃(𝑡) = 𝑒𝑟𝑡, plug it into the differential equation: 

 𝑟2𝑒𝑟𝑡 +
𝑔

𝑙
𝑒𝑟𝑡 = 0 (18) 

By solving the second order linear homogeneous differential equation with the eigen equation 

method, we derive the solution of the simple pendulum under the small angle approximation: 

 𝜃(𝑡) = 𝑐1𝑐𝑜𝑠√
𝑔

𝑙
+ 𝑐2𝑠𝑖𝑛√

𝑔

𝑙
 (19) 

Where 𝑐1 and 𝑐2 are constants determined by the initial conditions. 

The structure of equation (19) is similar to the solution of a simple harmonic oscillator, which 

contains sine and cosine components. 

√
𝑔

𝑙
 is the angular frequency 𝜔 of the system. For a simple pendulum, the angular frequency 𝜔 =

√
𝑔

𝑙
. 𝑐𝑜𝑠 (𝜔𝑡) and 𝑠𝑖𝑛 (𝜔𝑡) are sine and cosine functions that describe simple harmonic motion. The 

final formula of analytical solution can be understood as: 

 𝜃 = 𝑐1𝑐𝑜𝑠(𝜔𝑡) + 𝑐2 𝑠𝑖𝑛(𝜔𝑡) (20) 

Equation (20) shows that the change of angle θ with time t is a simple harmonic motion. The values 

of 𝑐1and 𝑐2 depend on the initial conditions of the system at t=0. 

As a result, the graph of analytical solution is shown below. 

 

Figure 3: Analytical solution of pendulum motion 

As expected, the curve of figure 3 exhibits a very similar trend to the curve of figure 2. Next we 

will proceed with a comparative analysis of the two figures. 

3.4. Comparison of numerical and analytical solutions 

Following an investigation of the numerical and analytical solutions, the new problem is to ascertain 

the difference between the two solutions. The objective here is to identify the relationship between 

error and time and to consider why the numerical solution is not as exact as the analytical one. 
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Figure 4: Difference between analytical and numerical solutions 

Figure 4 depicts a comparison between the numerical and analytical solutions. The blue line 

represents the analytical method, while the red line illustrates the numerical solution. It is evident that 

the discrepancy between the two waves is progressively increasing. However, it remains unclear 

whether the relationship is linear, exponential, or otherwise. It is therefore necessary to calculate the 

value of each gap and plot a graph in order to directly demonstrate the relationship. 

𝐸𝑟𝑟𝑜𝑟 = 𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 

The equation above is employed to ascertain the disparity between the numerical and analytical 

solutions at varying points in time.  

 

Figure 5: Relationship between gap and time 

From figure 5, at the beginning, the gap is nearly zero, which signifies that the two waves are 

approximately superimposed, consequently, the value of the difference is 0.0, evidenced in the data 

collection as index 0 on the left. The final stage of the process is to collect all the data and create a 

graph to illustrate the discrepancy between the two waves. Figure 5 illustrates an exponential growth 

trend, indicating that the rate of change in the gap will increase over time. As a result, the longer the 

unit period, the greater the degree of inaccuracy in the numerical solution. 
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3.5. Change in variables 

In this section, the objective is to utilize the control variable method to modify specific elements and 

subsequently analyze the resulting alterations in the graphs. Consequently, it is possible to ascertain 

which elements exert an influence on the position of the mass suspended at the end of the string. 

3.5.1. Initial angle 

The first variable changed is initial angle which is the theta in the equation. First, we set the 45º to be 

the default value which is shown as black and pick other degree to compare with the default value. 

The following graphs illustrate three different comparisons between the default value and 

correspondently 30º, 60º and 75º. 

 

Figure 6: Analytical solution of pendulum (initial angle=30) 

 

Figure 7: Analytical solution of pendulum (initial angle=60) 
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Figure 8: Analytical solution of pendulum (initial angle=75) 

From figure 6-8, it is evident that the peak of the red wave (Figure 6) is lower than that of the 

default graph. However, the second graph indicates that the peak of the green wave (Figure 7) is 

higher. Furthermore, the peak of the purple wave (Figure 8) is considerably higher. Considering these 

observations, it can be posited that the initial angle exerts an influence on the amplitude of the wave, 

which represents the maximum angle that the ball can reach. Also, the distances between two adjacent 

peak, the unit time periods, are different in each graph, indicating that the initial angle has impact on 

unit period. To facilitate a more comprehensive analysis, the three graphs have now been 

superimposed in the same coordination system. 

 

Figure 9: Comparison of different angle with default value 

As shown in figure 9, as the increasing in initial angle, the motion period of the pendulum also 

increases, and the amplitude of the change in pendulum angle increases. 

The initial stage of the investigation entails establishing the relationship between the initial angle 

and the maximum angle that the ball can reach. Figure 10, created by Python programming language, 

illustrates how max angle depends on initial angle. Obviously, the relationship is linear related and 

positive proportional. 
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Figure 10: Relationship between maximum angle and initial angle 

Moreover, it is anticipated that a discussion will be held regarding the correlation between the 

initial angle and the unit period.  

 

Figure 11: Relationship between unit period and initial angle 

As can be observed in the figure 11, the relationship is not linear; however, it is evident that the 

trend is increasing based on the plotted points. Therefore, the larger the initial angle, the longer the 

unit period. 

3.5.2. Length of string 

The second variable that undergoes a change is the length of the string, which is represented by the 

letter 𝑙 . Additionally, the 1𝑚  value was designated as the default, indicated in black, and the 

remaining lengths were selected for comparison with the default value. The following graphs 

illustrate four distinct comparisons between the default value and the corresponding values of 0.5𝑚,  

5𝑚, 10𝑚 and 50𝑚. 
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Figure 12: Analytical solution of pendulum (length =0.5) 

 

Figure 13: Analytical solution of pendulum (length =5) 

 

Figure 14: Analytical solution of pendulum (length =10) 

 

Figure 15: Analytical solution of pendulum (length =50) 

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/107/2025.22663 

92 



 

 

From the figure 12-15, it can be observed that as the length of the wave increases, the wave appears 

to be stretched. Consequently, the unit period is dependent on the value of length. In the absence of 

any frictional forces and with the initial conditions held constant, the amplitude which represents the 

max angle the ball can reach remains unaltered. Similarly, to produce a much clearer analysis, the 

four graphs have now been superimposed in the same coordination system shown below. 

 

Figure 16: Comparison of different length with default value 

A cursory examination of the figure 16 reveals that the wave in question is elongated from the 

yellow to the purple segment. In particular, the distance between two adjacent peaks can be calculated 

to obtain the unit period under each condition. To gain a more comprehensive understanding, a best-

fit line has been drawn using the five points.  

 

Figure 17: Relationship between period and length 

According to figure 17, although not linear related, it is evident that the trend displays an increase 

as the length increases. 

3.5.3. Initial velocity 

The final section concerns the alteration of the initial velocity while maintaining the initial angle and 

length of string consistent with the preceding assumption. The initial velocity is modified from 0 
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radian per second, which represents the default value, to 5 radian per second, and a graph is generated 

using the Python programming language.  

 

Figure 18: Comparison of various initial velocity with default value 

From an examination of the figure 18, it can be discerned that the wave is stretched in both the 

horizontal and vertical dimensions, in accordance with the parameters of the default graph. It can thus 

be inferred that there is a relationship between the initial velocity, the maximum angle and the unit 

period.  

The objective of this investigation is to ascertain the relationship between the unit period and the 

initial velocity.  

 

Figure 19: Relationship between unit period and initial velocity 

From the figure 19, there is an exponential relationship between the two variables. It can therefore 

be concluded that, in addition to the inverse relationship between initial velocity and unit period, there 

is also an inverse relationship between the rate of change of unit period and initial velocity. 

Subsequently, focusing on how the max angle depends on the initial velocity in figure 20, it can 

be demonstrated that the relationship between these two variables is also increasing.  
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Figure 20: Relationship between max angle and initial velocity 

4. With drag force 

4.1. Analytical solutions 

In the case of small pendulum angles, assume the mass of the pendulum bob is 𝑚=1kg, and the length 

of the pendulum string is 𝑙=1m. The tangential acceleration of the pendulum bob is given by: 

 𝑎 = 𝑙
𝑑2𝜃

𝑑𝑡2
 (21) 

During its motion, the simple pendulum is subject to the forces of gravity, drag, and tension from 

the string. The drag force primarily comes from air resistance, which is proportional to the velocity 

when the speed is not too high[10,11]. The drag force acts in the direction tangent to the motion as 

follows: 

 𝐹 = −𝛾𝑣 = −𝛾𝑙
𝑑𝜃

𝑑𝑡
 (22) 

where γ is the proportionality constant in the tangential direction. According to Newton's second law, 

we obtain[2] 

 −𝑚𝑔𝑠𝑖𝑛𝜃 + 𝛾𝑙
𝑑𝜃

𝑑𝑡
= 𝑚𝑙

𝑑2𝜃

𝑑𝑡2  (23) 

The equation (23) is a second-order linear differential equation describing the motion of 

pendulum[12]. We rearrange the equation into standard form, which is the  auxiliary equation then 

set 
𝑑𝜃

𝑑𝑡
 is 𝑟 so the original equation can be converted into 

 𝑚𝑙𝑟2 − 𝑙𝛾𝑟 + 𝑚𝑔𝑠𝑖𝑛𝜃 = 0 (24) 

In this case we can use quadratic equation formula to get the equation of 𝑟. 

 𝑟 =
𝑙𝛾±√4𝑚2𝑙𝑔𝑠𝑖𝑛𝜃−𝑙2𝛾2𝑖

2𝑚𝑙
 (25) 

In theory, there are three situations for the solution of equation (25) (when 𝑙2𝛾2 − 4𝑚2𝑙𝑔𝑠𝑖𝑛𝜃 is 

greater than zero, equal to zero and less than zero), but due to the the actual situation analysis, the 

first two cases must be dropped, so we can get 
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 𝜃 = 𝑒
𝑙𝛾𝜃

2𝑚𝑙 (𝑐1 cos
√4𝑚2𝑙𝑔𝑠𝑖𝑛𝜃−𝑙2𝛾2

2𝑚𝑙
𝜃 + 𝑐2 sin

√4m2𝑙𝑔𝑠𝑖𝑛𝜃−𝑙2𝛾2

2𝑚𝑙
𝜃) (26) 

Now we have the expression of 𝜃. Where 𝑐1 and 𝑐2 are arbitrary constants.  

Then we use Python to draw the graph of it. In figure 21, it illustrates how the damped pendulum 

changes over time, showing the process of energy loss due to the effect of damping. 

 

Figure 21: Analytical solution for pendulum motion with drag 

4.2. Numerical solutions 

We assume 𝜃1 = 𝜃 and 𝜃2 =
𝑑𝜃

𝑑𝑡
, so the original equation can be rearranged as follows: 

 
𝑑𝜃1

𝑑𝑡
= 𝜃2 (27) 

 
𝑑𝜃2

𝑑𝑡
= −

𝑔

𝑙
𝑠𝑖𝑛𝜃1 +

𝛾

𝑚
𝜃2 (28) 

We used the integration method to solve the above linear differential equation. So equation 28 can 

be expressed as: 

 
𝑑𝜃2

𝑑𝑡
+

𝛾

𝑚
𝜃2 = −

𝑔

𝑙
𝑠𝑖𝑛𝜃1 (29) 

Assuming we know the change in 𝜃1, we can define an integrating factor: 

 𝑒∫ (
𝛾

𝑚
)𝑑𝑡 = 𝑒

𝛾

𝑚
𝑡
 (30) 

By simplifying and solving equation (30), we substitute 𝜃1 back into the equation to solve for 𝜃 

and 𝜃1 , thereby obtaining the numerical solution. Based on this approach, we have derived the 

numerical solution of the equation, and subsequently, we plotted the graph based on this solution 
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Figure 22: Numerical solution for pendulum motion with drag 

From figure 22, it has a similar trend with figure 21; however, there is a certain discrepancy in the 

time points represented by the peaks of the two figures. Additionally, within the same period, the 

wave height in figure 22 is significantly greater than that in figure 21. 

 

Figure 23: Comparison of analytical and numerical solution 

As shown in the figure 23, the error between the analytical solution and the numerical solution 

gradually decreases over time, which indicates that the adopted mathematical model and assumptions 

can adequately describe the actual behavior of the pendulum motion. 

5. Conclusion 

In the study of pendulum motion, a larger initial angle results in both a greater maximum angle and 

an increased unit period of oscillation. Additionally, as the length of the string increases, the 

wavelength of the oscillation graph also enlarges, which suggests that, assuming the initial angle 

remains unchanged and air drag is neglected, the time taken for each swing per period increases with 

the length of the string. Furthermore, both the initial velocity and the maximum angle exhibit 

exponential growth concerning the unit period. Lastly, the amplitude of the curve decreases 

continuously, illustrating that when air drag is considered, both the swing angle and the displacement 

of the pendulum reduce over time. 
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