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Abstract: This paper explores two systematic approaches for computing determinants of 

structured matrices using Laplace Expansion. The reduction (recursion) method leverages 

recursive expansion to decompose high-order determinants into lower-order counterparts, 

exploiting structural repetition. This method simplifies complex calculations by iteratively 

applying Laplace Expansion. The order-increase (edge) method strategically augments 

matrices with auxiliary rows and columns to transform them into solvable forms. Examples 

include converting a 3-order determinant into an upper triangular matrix and extending a 4-

order matrix into a Vandermonde determinant, enabling direct evaluation via established 

formulas. Both methods highlight how Laplace Expansion, combined with matrix structure 

insights, streamlines determinant computation. The reduction method is ideal for matrices 

with recursive patterns, while the edge method benefits determinants missing key 

rows/columns but amenable to structural augmentation. Practical applications span linear 

algebra, physics, and cryptography, where efficient determinant evaluation is critical. The 

paper underscores the pedagogical and computational value of these techniques, offering 

educators and researchers accessible strategies for tackling high-order determinants. Future 

directions include integrating these methods with computational tools and exploring broader 

interdisciplinary applications. 

Keywords: Determinant, Laplace Expansion, Recursion Method, Order-increase Method, 

Vandermonde Determinant. 

1. Introduction  

Determinant is a basic and important concept in mathematics. Determinant is defined as function, or 

a scalar value that is associated with a matrix shaped like 

𝐷𝑛 = |

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

| . (1) 

The calculation of determinants is a critical problem in linear algebra. Afterwards, the function of 

the introduction of the determinant concept is not only to solve systems of linear equations but also 

to apply determinant theory to other mathematics fields, including matrices discussion, coordinate 

transformation, variable substitution for multiple integrals, differential equation systems, and 

quadratic models. In addition, determinants are also applied in variable crossing fields, like the 
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calculation in quantum physics, materials science, and cryptography. Determinant theory and 

calculation are very useful mathematical tools nowadays. In the future, with the innovation of 

computing technology and the growth of interdisciplinary demand, determinants will continue to play 

a key role in both theory and application. 

Nowadays, researchers have developed many methods to calculate the value of determinants. Most 

of the latest research to calculate determinants combined some important mathematical idea with 

computer science and technology. According to Philip D. Powell, a method for expressing the 

determinant of block matrices and providing a systematic method for evaluating determinants that 

might otherwise be analytically intractable in 2011 [1]. There is another method to calculate 

determinants, with computer algorithm interpretation, by Armend Salihu in 2018 [2]. In addition, 

Lugen M. Zake Sheet created a method to calculate the determinant of a matrix by a permutation 

algorithm by fixing two components by computer in 2020 [3]. Furthermore, there are also some 

papers that utilized some special structures to calculate determinants, including the derivative method 

by Shi & Jiang and some comparison of mathematics thoughts made by Fang [4,5]. Another article 

by Bernard shows a method to calculate a special case of Vandermonde determinant in 2018 [6]. 

These researchers all made great progress in this field.  

This paper aims to explain two methods to calculate two classes of special determinants with 

similar mathematics thought based on Laplace expansion. One is the reduction method, or the 

recursion method, and the other is the order-increase method, or edge method. This paper also 

presents some examples that are suitable to calculate with these two methods. 

2. Reduction method 

2.1. Theory of reduction method 

In algebra, researchers always need to calculate high-order determinants. There are many basic rules 

to calculate some low-order determinants. For a 2-order determinant, shown as 

𝐴2 = |
𝑎11 𝑎12

𝑎21 𝑎22
| . (2) 

It can be calculated following the diagonal rule, or Sarrus rule, shown as 𝐴2 = 𝑎11 · 𝑎22 −
𝑎12 · 𝑎21. For high-order determinants, among which a prominent example is 

𝐷𝑛 = |

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

| . (3) 

For this determinant, one can solve by using the basic formula shown as 

𝐷𝑛 = ∑ (−1)
𝑁(𝑗

1
𝑗

2
…𝑗𝑛)

𝑎1𝑗1
𝑎2𝑗2

··· 𝑎𝑛𝑗𝑛

𝑗1𝑗2…𝑗𝑛

, (4) 

where 𝑁(𝑗1𝑗2 ··· 𝑗𝑛) is the number of inversions of the number serie 𝑗1𝑗2 ··· 𝑗𝑛, and 𝑎𝑛𝑗𝑛
 is the element 

on the nth row and the 𝑗𝑛-th column. Obviously, when 𝑛 is very large, the procedures of calculation 

will be complicated. To calculate the value of a determinant in an easier way, researchers have 

developed a lot of methods and rules to simplify it. To solve a class of high-order determinants that 

contain some special structures in their expressions, the reduction method, or recursion method, can 

be used to simplify this kind of determinants during calculation. 

The reduction method, or recursion method, is a strategy to reduce the number of orders of the 

determinants by using Laplace Expansion combined with the recursion idea. According to Pak, K. & 
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Trybulec, Laplace Expansion, a high-order determinant shown in Eq. (2) can be expanded according 

to row 𝑖, which is 

𝐷𝑛 = 𝑎𝑖1𝐴𝑖1 + 𝑎𝑖2𝐴𝑖2 +··· +𝑎𝑖𝑛𝐴𝑖𝑛(𝑖 = 1,2,···, 𝑛), (5) 

or expanded according to column 𝑗, which is  

𝐷𝑛 = 𝑎1𝑗𝐴1𝑗 + 𝑎2𝑗𝐴2𝑗 +··· +𝑎𝑛𝑗𝐴𝑛𝑗(𝑗 = 1,2,···, 𝑛), (6) 

where 𝑎𝑖𝑗 is the element on the ith row and the jth column, and 𝐴𝑖𝑗 is the cofactor of the element 𝑎𝑖𝑗 

[7]. The cofactor of an element 𝑎𝑖𝑗 is 𝐴𝑖𝑗 = (−1)
𝑖+𝑗

𝑀, where 𝑀 is the minor of 𝑎𝑖𝑗, which is the 

determinant obtained by deleting its 𝑖th row and 𝑗th column in which element 𝑎𝑖𝑗 lies.  

For some high-order determinants, several-time edge reduction can be used directly to calculate 

the final value. However, for some complicated cases, the direct reduction method is not enough. 

Based on Laplace Expansion, recursion idea can be combined and used to calculate the value of a 

high-order determinant that has the similar structure in both of its original expression and a cofactor 

of it. Combined with the idea of recursion, researchers can apply Laplace Expansion to this class of 

determinants mechanically until the original determinant is simplified into the calculation of several 

2 or 3 order determinants or some other special determinants. This method is extremely suitable to 

use in order to solve a determinant that contains a large number of zeros in the same row or column 

because the expanded expression according to a row or column that contains only a few non-zero 

elements will be very simple. 

2.2. Application instances of reduction method 

To explain this method specifically, there are two examples to show the basic steps of this method. 

The direct reduction method can be used to solve a determinant such as 

𝐷4 = |
|

−1 2 −2 1

2 3 1 −1

2 0 0 3

4 1 0 1

|
| . (7) 

This determinant can be expanded according to the 3 rd row as 𝐷4 = 𝑎31𝐴31 + 𝑎32𝐴32 +
𝑎33𝐴33 + 𝑎34𝐴34, where 𝑎𝑖𝑗 is the element on the 𝑖th row and the 𝑗th column, 𝐴𝑖𝑗 is the cofactor of 

the element 𝑎𝑖𝑗. According to the definition of cofactor, in this case, 

𝐷4 = 2(−1)
3+1

|

2 −2 1

3 1 −1

1 0 1

| + 0 + 0 + 3(−1)
3+4

|

−1 2 −2

2 3 1

4 1 0

| . (8) 

By this step, a 4-order determinant can be rewritten into the calculation of several 3-order 

determinants. However, the typical calculation method of 3 -order determinants is still very 

inconvenient in this case. The direct reduction method can be used continuously to simplify this 

determinant, such as 
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𝐷4 = 2 (1 · (−1)
3+1

|
−2 1

1 −1
| + 0 + 1 · (−1)

3+3
|
2 −2

3 1
|)

−3 (4 · (−1)
3+1

|
2 −2

3 1
| + 1 · (−1)

3+2
|
−1 −2

2 1
|) . (9)

 

After these steps, a 4-order determinant is simplified into the calculation of several 2-order 

determinants so that the final value which is −69 can be calculated out easily. 

There is also an example which is suitable to use the reduction or recursion method, combined 

with recursion idea during the calculation process. There is a 2𝑛-order determinant shown as 

𝐷2𝑛 =

|

|

|

𝑎 0 0 0 0 0 0 𝑏

0 ⋱ 0 0 0 0 ⋰ 0

0 0 𝑎 0 0 𝑏 0 0

0 0 0 𝑎 𝑏 0 0 0

0 0 0 𝑐 𝑑 0 0 0

0 0 𝑐 0 0 𝑑 0 0

0 ⋰ 0 0 0 0 ⋱ 0

𝑐 0 0 0 0 0 0 𝑑

|

|

|

. (10) 

According to Laplace Expansion, 𝐷2𝑛 can be expanded according to the 1st row as  

𝐷2𝑛 = 𝑎

|

|

|

𝑎 0 0 0 0 𝑏 0

0 ⋱ 0 0 ⋰ 0 0

0 0 𝑎 𝑏 0 0 0

0 0 𝑐 𝑑 0 0 0

0 ⋰ 0 0 ⋱ 0 0

𝑐 0 0 0 0 𝑑 0

0 0 0 0 0 0 𝑑

|

|

|

− 𝑏

|

|

|

0 𝑎 0 0 0 0 𝑏

0 0 ⋱ 0 0 ⋰ 0

0 0 0 𝑎 𝑏 0 0

0 0 0 𝑐 𝑑 0 0

0 0 ⋰ 0 0 ⋱ 0

0 𝑐 0 0 0 0 𝑑

𝑐 0 0 0 0 0 0

|

|

|

. (11) 

These two 2𝑛 − 1-order determinants are still difficult to calculate directly. However, obviously, 

there is the same structure in these two determinants as that in the original determinant 𝐷2𝑛  . In 

another point of view, there is only one element in the redundant row and column and this element 

lies on the intersection of these two lines in each determinant. Hence, the first 2𝑛 − 1 -order 

determinant can be expanded according to the 2𝑛 − 1th row or column; at the same time, the second 

2𝑛 − 1-order determinant can be expanded according to the element on the 2𝑛 − 1th row or column 

as 
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𝐷2𝑛 = 𝑎𝑑

|

|

|

𝑎 0 0 0 0 0 0 𝑏

0 ⋱ 0 0 0 0 ⋰ 0

0 0 𝑎 0 0 𝑏 0 0

0 0 0 𝑎 𝑏 0 0 0

0 0 0 𝑐 𝑑 0 0 0

0 0 𝑐 0 0 𝑑 0 0

0 ⋰ 0 0 0 0 ⋱ 0

𝑐 0 0 0 0 0 0 𝑑

|

|

|

− 𝑏𝑐

|

|

|

𝑎 0 0 0 0 0 0 𝑏

0 ⋱ 0 0 0 0 ⋰ 0

0 0 𝑎 0 0 𝑏 0 0

0 0 0 𝑎 𝑏 0 0 0

0 0 0 𝑐 𝑑 0 0 0

0 0 𝑐 0 0 𝑑 0 0

0 ⋰ 0 0 0 0 ⋱ 0

𝑐 0 0 0 0 0 0 𝑑

|

|

|

. (12) 

Notice that the structure of this 2𝑛 − 2-order determinant is similar to the 2𝑛-order determinant 

𝐷2𝑛  after this re-expansion. Based on the recursion idea, determinant 𝐷2𝑛  can be expanded 

continuously as 𝐷2𝑛 = (𝑎𝑑 − 𝑏𝑐)𝐷2𝑛−2 = (𝑎𝑑 − 𝑏𝑐)2𝐷2𝑛−4 =···.  In this process, determinant 

𝐷2𝑛−2𝑘, where 𝑘 is natural number and 𝑘 < 𝑛, has the similar structure to 𝐷2𝑛. After (n − 1) times 

expansion, the original determinant is rewritten into 𝐷2𝑛 = (𝑎𝑑 − 𝑏𝑐)𝑛−1𝐷2  where 𝐷2 = |
𝑎 𝑏
𝑐 𝑑

|. 

Finally, this determinant can be calculated by the diagonal rule, or Sarrus rule, shown as 

𝐷2𝑛 = (𝑎𝑑 − 𝑏𝑐)𝑛. (13) 

In these cases, the reduction method, or recursion method, uses Laplace expansion to expand the 

original high-order determinants into lower-order determinants. The recursion idea is also combined 

to solve the class of determinants that have similar structures during the expansion process. Finally, 

all the high-order determinants can be simplified into 2 or 3-order determinants, or some other special 

determinants. In this way, the calculation of high-order determinants is simplified. 

3. Order-increase method 

3.1. Theory of order-increase method 

The order-increase method, or edge method, is another strategy to calculate a class of high-order 

determinants. This strategy is also based on Laplace Expansion. However, compared to the reduction 

method, or recursion method above, the order-increase method applies Laplace Expansion inversely. 

For some special 𝑚-order determinants, after adding one suitable row and one suitable column as 

the first row and first column, these 𝑚 + 1-order determinants can be written into determinants with 

special structures that can be calculated directly or can be simplified. In addition, the value of the 

𝑚 + 1-order determinant after adding one row and one column is still equal to the value of original 

𝑚-order determinant. The order-increase method is used to calculate this class of determinants. To 

guarantee the value of the 𝑚 + 1-order determinant, which is 𝐷𝑚+1, unchanged after adding one row 

and one column as the first row and first column, the elements on one of these two added lines, either 

row or column, should be (1, 0, 0 ··· 0). 
For example, for this 𝑚-order determinant 

𝐷2𝑚 = |

𝑎11 ⋯ 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑚

| , (14) 

if the added row is (1, 0, 0 ··· 0) and the added column is (1, 𝑏2,··· 𝑏𝑛+1), 𝐷𝑛 can be rewritten as 
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𝐷𝑚+1 = |
|

1 0 ⋯ 0
𝑏2 𝑎11 ⋯ 𝑎1𝑚

⋮ ⋮ ⋱ ⋮
𝑏𝑚+1 𝑎𝑚1 ⋯ 𝑎𝑚𝑚

|
| . (15) 

According to Laplace expansion, if 𝐷𝑚+1is expanded according to the first line, 𝐷𝑚+1, can be 

simplified into 

𝐷𝑚+1 = 1 · |

𝑎11 ⋯ 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑚

| + 0 · |
|

𝑏2 𝑎12 ⋯ 𝑎1𝑚

𝑏3 𝑎22 ⋯ 𝑎2𝑚

⋮ ⋮ ⋱ ⋮
𝑏𝑚+1 𝑎𝑚2 ⋯ 𝑎𝑚𝑚

|
| 

+ ⋯ + 0 · |
|

𝑏2 𝑎11 ⋯ 𝑎1(𝑚−1)

𝑏3 𝑎21 ⋯ 𝑎2(𝑚−1)

⋮ ⋮ ⋱ ⋮
𝑏𝑚+1 𝑎𝑚1 ⋯ 𝑎𝑚(𝑚−1)

|
| (16) 

which is equal to the original determinant 

𝐷𝑚 = |

𝑎11 ⋯ 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑚

| . (17) 

After adding edge, the new higher-order determinants can be observed to have some special 

structures. Hence, these determinants can be simplified easily.  

3.2.  Application instances of order-increase method 

To explain this method specifically, there are two examples to show the basic steps of this method. 

There is a 4-order determinant, shown as 

𝐷3 = |

𝑏1 𝑎2 𝑎3

𝑎1 𝑏2 𝑎3

𝑎1 𝑎2 𝑏3

| , (18) 

where 𝑎𝑖𝑏𝑖, 𝑖 = 1, 2, 3, 4. Add one row and one column as its first row and first column, where the 

added row is (1, 0, 0, 0, 0) and the added column is (1, 1, 1, 1, 1), the value of this determinant is 

unchanged. Hence, 𝐴3 can be expressed as 

𝐷3 =
|

|

1 0 0 0

1 𝑏1 𝑎2 𝑎3

1 𝑎1 𝑏2 𝑎3

1 𝑎1 𝑎2 𝑏3

|

|
. (19) 

According to MIT OpenCourseWare,adding t times row 𝑖 or column 𝑖 to another row or column 

does not change the value of the determinant [8]. Hence, add −𝑎1 times of corresponding elements 

in the first column to the second column, add −𝑎2 times of corresponding elements in the first column 
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to the third column and add −𝑎3  times of corresponding elements in the first column to the 

corresponding elements in the fourth column, shown as 

𝐷3 =
|

|

1 0 − 𝑎1 0 − 𝑎2 0 − 𝑎3

1 𝑏1 − 𝑎1 𝑎2 − 𝑎2 𝑎3 − 𝑎3

1 𝑎1 − 𝑎1 𝑏2 − 𝑎2 𝑎3 − 𝑎3

1 𝑎1 − 𝑎1 𝑎2 − 𝑎2 𝑏3 − 𝑎3

|

|
=

|

|

1 −𝑎1 −𝑎2 −𝑎3

1 𝑏1 − 𝑎1 0 0

1 0 𝑏2 − 𝑎2 0

1 0 0 𝑏3 − 𝑎3

|

|
. (20) 

This determinant is still complicated to calculate directly. However, obviously, the structure of 

this determinant is similar to an upper triangular determinant. The basic property of the determinant 

above can still be used to simplify this determinant. Add − 1 (𝑏1 − 𝑎1)⁄  times of corresponding 

elements in the second column, − 1 (𝑏2 − 𝑎2)⁄  times of corresponding elements in the third column 

and − 1 (𝑏3 − 𝑎3)⁄  times of corresponding elements in the third column to the corresponding 

elements in the first column. Hence, this determinant can be rewritten as 

𝐷3 =

|

|
1 +

𝑎1

𝑏1 − 𝑎1

+
𝑎2

𝑏2 − 𝑎2

+
𝑎3

𝑏3 − 𝑎3

−𝑎1 −𝑎2 −𝑎3

0 𝑏1 − 𝑎1 0 0

0 0 𝑏2 − 𝑎2 0

0 0 0 𝑏3 − 𝑎3

|

|

. (21) 

According to Krista King Math, the value of an upper triangular determinant is the product of all 

elements on the main diagonal of this determinant [9]. Hence, the value of 𝐴3 is calculated out: 

𝐷3 = (1 +
𝑎1

𝑏1 − 𝑎1

+
𝑎2

𝑏2 − 𝑎2

+
𝑎3

𝑏3 − 𝑎3

) (𝑏1 − 𝑎1) (𝑏2 − 𝑎2) (𝑏3 − 𝑎3) . (22) 

Another example for the order-increase method is shown as 

𝐴4 =
|
|

1 2 3 4

1 22 32 42

1 23 33 43

1 24 34 44

|
|

. (23) 

Notice that the structure of this determinant is similar to a Vandermonde determinant but misses 

some rows and columns. According to Li & Ding, Vandermonde determinant was named after 

Alexandre-Theophile Vandermonde, who is believed to be the founder of determinant theory [10]. 

For a positive integer 𝑛  2, the Vandermonde determinant of order n is defined as follows 

𝑉𝑛 =

|

|

1 1 1 ⋯ 1
𝑥1 𝑥2 𝑥3 ⋯ 𝑥𝑛

𝑥
1

2
𝑥

2

2
𝑥

3

2
⋯ 𝑥𝑛

2

⋮ ⋮ ⋮ ⋱ ⋮

𝑥
1

𝑛−1
𝑥

2

𝑛−1
𝑥

3

𝑛−1
⋯ 𝑥𝑛

𝑛−1

|

|

. (24) 
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The value of a Vandermonde determinant can be calculated by this formula 𝑉𝑛 = ∏ (𝑥𝑖−𝑥𝑗)1≤𝑗<𝑖≤𝑛 . 

Hence, to calculate determinant 𝐴4, researchers can try to add one row, which is (1, 1, 1, 1, 1), as the 

first row, and one column, which is (1, 0, 0, 0, 0) as the first column of 𝐴4, shown as 

𝑉𝑛 =

|

|

1 1 1 1 1

0 1 2 3 4

0 1 22 32 42

0 1 23 33 43

0 1 24 34 44

|

|

. (25) 

By adding one row and one column, 𝐴4 is transferred into a typical Vandermonde determinant. 𝐴4 

can be calculated according to the formula, shown as 

𝑉𝑛 = ∏ (𝑥𝑖−𝑥𝑗)

1≤𝑗<𝑖≤4

 

= (4 − 3)(4 − 2)(4 − 1)(4 − 0)(3 − 2)(3 − 1)(3 − 0)(2 − 1)(2 − 0) = 288 (26) 

where 𝑖, 𝑗 ∈ {1, 2, 3, 4}, 𝑥𝑖 is the element on the second row and the  𝑖th column, 𝑥𝑗 is the element on 

the second row and the 𝑗th column. Through the order-increase method, this class of determinants 

with special structures but missing several rows and columns can be simplified and calculated. 

4. Conclusion 

This paper explains two methods to calculate determinants based on Laplace Expansion with several 

cases respectively. One method is the reduction method, or recursion method, which is to reduce the 

order of determinants combined with the recursion idea. Another method is oder-increase method, or 

edge method, which is to add one row and one column to a special class of determinants and keep the 

value of the determinants unchanged. This method is suitable to calculate special 𝑚 -order 

determinants, after adding one suitable row and one suitable column as the first row and first column, 

these 𝑚 + 1-order determinants can be written into determinants with special structures that can be 

calculated directly or can be simplified. This paper shows some examples of this method step by step 

and points out properties of these two classes of determinants separately. This paper also concludes 

some basic computing skills in these two methods. However, there are still many questions that 

remain to be answered. For example, is there an easier and more generalized method to calculate 

determinants? Is there a better way to combine the calculation of determinants with computer science 

and technology? Is there a better strategy to apply determinant theory to other crossing fields? They 

are all valuable questions to research in the future. 
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