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Abstract: Option pricing is a fundamental aspect of the financial derivatives markets, and ac-
curate models are essential for effective risk management and fair market pricing. While the
binomial model is widely used due to its simplicity, it has limitations in capturing the com-
plexity of real-world markets, especially when dealing with non-linear payoff functions or
multi-asset portfolios. The trinomial model allows the underlying asset price to go up, down,
or remain unchanged at each time step, providing a more flexible and accurate framework.
This paper discusses the application of the trinomial model in option pricing, focusing on the
premise of using the trinomial tree model under the assumption of no arbitrage market, and
derives the price boundary of options by constructing a portfolio consisting of bonds, stocks
and simple options using the risk-neutral method and the no-arbitrage principle. The results
provide valuable insights into option pricing and contribute to the theoretical understanding of
option valuation in the discrete-time model. The resulting price boundaries help market par-
ticipants identify potential arbitrage opportunities, ensure fair pricing, and ultimately enhance
market efficiency. This work underscores the importance of considering more sophisticated
models like the trinomial tree in option pricing, and sets the stage for further research into
multi-period models and real-world market constraints.
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1. Introduction

An option is an important financial derivative that gives the holder the right to buy or sell an asset at
a predetermined price within a specified period of time. Accurate pricing of options is essential for
traders and financial institutions. Because of its simplicity and intuitiveness, the binomial tree model
has long been a common tool for option pricing. However, the limitations of it appear gradually when
dealing with nonlinear payoff function options or multi-asset portfolios.

To overcome these limitations, the trinomial tree model was introduced. The model allows the
underlying asset price to go up, down, or stay the same at each time step. This improvement makes
the trinomial model more flexible and more reflective of actual market conditions, thus providing
greater accuracy when pricing options with nonlinear payoff functions.
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This paper aims to explore the application of the trinomial tree model in option pricing, focus-
ing on how to deduce the upper and lower limits of option prices by the risk-neutral method and the
no-arbitrage principle. Under the framework of the trinomial model, this paper establishes a reliable
method to determine the price boundary of any option, which is essential for effective risk manage-
ment and fair market pricing.

2. Related works

Since its introduction by Cox, Ross, and Rubinstein [1], the binomial model has been an important
tool for option pricing. The core idea is to construct a discrete price path tree by assuming that the
underlying asset price can rise or fall at each time step. This method is widely used in option pricing
because of its simplicity and ease of understanding. However, the binomial tree model has limitations
when dealing with complex option structures.

To overcome these limitations, the trinomial model was developed, introducing a third possible
price movement where the underlying asset price can remain unchanged at each time step. This en-
hancement makes the model more flexible in dealing with actual market conditions and improves
computational accuracy, especially for path-dependent options. Boyle [2] applied the trinomial tree
model to option pricing and demonstrated that it is more effective in capturing asset price volatility
compared to the binomial model.

In the development of option pricing theory, Black and Scholes [3] derived the theoretical price of
options by constructing a replicating portfolio and introducing risk-neutral probabilities. Merton [4]
further extended the mathematical foundations of the model. Subsequently, Ross [5] developed the
arbitrage pricing theory, expanding the application of arbitrage-free pricing in asset valuation.

As research progressed, it was found that the price characteristics of complex options could be
more accurately captured by introducing simple nonlinear options, such as standard call options,
as additional replication tools. Carr and Madan [6] proposed constructing portfolios using a series
of standard call and put options to more precisely price complex options with nonlinear payoffs.
Therefore, a standard European call option is utilized in this work to obtain arbitrage-free price bounds
for any option under the trinomial tree model.

3. Premise of unique solution in trinomial model

Similar to the actual market situation, in the trinomial model, the stock price is regarded as positive
at all periods, and no dividends are paid by the underlying stock throughout the option’s life.

Theoretically, a unique solution for replicating an option exists only if the payoff function F is
linear. Non-linear payoff functions, such as those for typical options like European calls, can only be
replicated if all possible stock prices at maturity are either entirely above or below the strike price,
ensuring the linearity of the payoff over the relevant price range.

To apply the trinomial tree model in option pricing, we first need to define the portfolio weights
NS(number of stocks) and NB (number of bonds). The premise of unique solution of NS and NB is:

NB(1 + r) +NSS0u = F (S0u),

NB(1 + r) +NSS0m = F (S0m),

NB(1 + r) +NSS0d = F (S0d).

(1)

where S0 is the stock price at time 0 and r refers to the risk-free interest rate. Additionally, the
factors affecting the stock price satisfy the inequality: u > 1 + r > m > d > 0, with u representing
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the upward movement factor and the figures for middle and downward movement corresponding to
m and d respectively.

To ensure that NB and NS have a unique set of solutions, the rank of the coefficient matrix must
be equal to that of the augmented matrix, which should be 2. This condition leads to:

F (S0d)− F (S0m)

d−m
− F (S0m)− F (S0d)

m− d
= 0. (2)

This implies that F must be linear. If F is concave:

F (S0u)− F (S0m)

u−m
− F (S0m)− F (S0d)

m− d
> 0,

and if F is convex:

F (S0u)− F (S0m)

u−m
− F (S0m)− F (S0d)

m− d
< 0.

Both cases contradict the condition above, which implies that F must be linear. When F (S) =
AS +B, the option can be replicated exactly using NS = A stocks and NB = B

1+r
bonds. This exact

replication directly determines the option’s price.
However, for non-linear payoff functions, a unique solution for NS and NB does not exist, mean-

ing exact replication is not possible. In such cases, alternative pricing methods are needed. In the
following sections, the work will explore the use of the no-arbitrage principle and the risk-neutral
probability approach to determine the range of possible prices for options with non-linear payoffs.

4. No-arbitrage method

In this section, the work superreplicates and subreplicates an arbitrary option to calculate the range of
possible option prices consistent with the no-arbitrage principle.

Initially, focus is placed on a specific European call option with a strike price K = S0m. The
result obtained will then be generalized to arbitrary options in following.

4.1. Pricing a call option at K = S0m

Theorem 1. In the trinomial model, the price of an European call option with K = S0m is bounded
by: [

S0 −
S0m

1 + r
,
(1 + r − d)(u−m)

(1 + r)(u− d)
S0

]
.

Proof: The call option payoff under the condition of K = S0m is given by:

NB(1 + r) +NSS0u = F (S0u) = S0(u−m) (3)

NB(1 + r) +NSS0m = F (S0m) = 0 (4)

NB(1 + r) +NSS0d = F (S0d) = 0. (5)

The system of equations is overdetermined, which means that it is usually impossible to get an
exact solution for NB and NS that satisfies all three equations, but only the price range. The next
step is to prove the necessity and sufficiency of option price boundaries to ensure that accurate price
ranges are obtained.
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4.1.1. Necessary proof

By using (3) and (5), the NB and NS can be figured out as:

NS =
u− 1

u− d
, NB =

1

1 + r

−dS0(u−m)

u− d
.

Substituting these into the payoff for S0m:

F (S0m)(ud) = NB(1 + r) +NSS0 =
S0(u−m)(m− d)

u− d
≥ 0 = F (S0m).

This indicates that the portfolio is more valuable than the actual payoff when S = S0m, implying
that the calculated option price C0(ud) is an overestimate, leading to the upper bound:

C0 ≤
(1 + r − d)(u−m)

(1 + r)(u− d)
S0.

Similarly, with formula (3) and (4), a lower bound is derived:

C0 ≥ S0 −
S0m

1 + r
.

In summary, the upper and lower bounds are:

S0 −
S0m

1 + r
≤ C0 ≤

(1 + r − d)(u−m)

(1 + r)(u− d)
S0.

4.1.2. Sufficiency proof

Assume the option price lies within the interval [S0− S0m
1+r

, (1+r−d)(u−m)
(1+r)(u−d)

S0]. Let NC denote the number
of call options bought in the portfolio. Consider whether an arbitrage portfolio exists under these
conditions, where the cost is zero and the payoff is always positive. These conditions can be expressed
as:

NB +NSS0 +NCC0 = 0, (6)

NB(1 + r) +NSS0u+NC(S0(u−m)) > 0, (7)

NB(1 + r) +NSS0m > 0, (8)

NB(1 + r) +NSS0d > 0. (9)

In the first case, consider NC > 0
Eliminating NS using (6), and substituting the lower bound of C0 into (7), the inequality still

stands. Finally, it is obtained:

NB(1 + r − u) +NCS0m(
u− 1− r

1 + r
) > 0, (10)

(1 + r −m)NB

C0m
> NC , (11)

(1 + r − d)NB

C0d
> NC . (12)
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Given that NC > 0 and 1+ r > d, (12) implies NB > 0. Furthermore, from (11), 1+ r−m > 0.
Simplifying, we get:

(1 + r)NB

S0m
> NC >

(1 + r)NB

S0m
,

which is a contradiction.
In the second case, consider NC < 0

If NC is negative, similar reasoning shows that substituting the upper bound for C0 into the in-
equalities results in:

(1 + r)(u− d)NB

S0d(u−m)
> NC >

(1 + r)(u− d)NB

S0d(u−m)
,

which is also a contradiction.
In the third case, consider NC = 0

If NC = 0, the portfolio consists only of bonds and stocks, making it impossible to construct a
risk-free arbitrage portfolio.

Therefore, the necessary condition is also sufficient for determining the price bounds of the option.
This completes the proof.

4.2. Pricing an arbitrary option

Based on the results above, bonds, stocks, and a call option with K = S0m can be used to replicate
an arbitrary option and construct various portfolios.

According to the no-arbitrage principle, a portfolio can be constructed as follows:
NB(1 + r) +NSS0u+NCC(S0u) = F (S0u)

NB(1 + r) +NSS0m+NCC(S0m) = F (S0m)

NB(1 + r) +NSS0d+NCC(S0d) = F (S0d)

. (13)

Where C(S0u) = S0(u − m), C(S0m) = 0, and C(S0d) = 0, C(s) denotes the payoff of call
option when stock price is s. This system can be rewritten in matrix form as:(1 + r) S0u S0(u−m)

(1 + r) S0m 0
(1 + r) S0d 0

NB

NS

NC

 =

F (s0u)
F (s0m)
F (s0d)

 .

First, we calculate the determinant det of the coefficient matrix:

det = (1 + r)S2
0(u−m)(d−m).

For Cramer’s Rule to hold, the determinant must be non-zero:

det ̸= 0 =⇒ u ̸= m and d ̸= m.

Then, Using the Cramer’s Rule, the solution to the system is:
NB = mF (S0d)−dF (S0m)

(m−d)(1+r)

NS = F (S0m)−F (S0d)
S0(m−d)

NC = (m−d)F (S0u)−(u−d)F (S0m)−(m−u)F (S0d)
(m−d)S0(u−m)

.
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4.2.1. Compute by range of C0

By replicating the complex option, its price can be determined using the portfolio values obtained
from the solutions:

V0 = NB +NSS0 +NCC0

= [
C0

S0(u−m)
]F (S0u)

+ [
S0(u−m)(1 + r − d)− (1 + r)(u− d)C0

(1 + r)(m− d)(u−m)S0

]F (S0m)

+ [
(m− 1− r)S0 + (1 + r)C0

(m− d)(1 + r)S0

]F (S0d).

Substitute the lower bound C0 = S0 − mS0

1+r
into V0:

V0
∼

∣∣∣∣
C0=S0−mS0

1+r

=

[
1

u−m
− m

(u−m)(1 + r)

]
F (S0u)

+

[
(u−m)(1 + r − d)− (1 + r)(u− d) +m(u− d)

(1 + r)(m− d)(u−m)

]
F (S0m)

+ 0 · F (S0d).

(14)

Substitute the upper bound C0 =
(1+r−d)(u−m)
(1+r)(u−d)

S0 into V0:

Ṽ0

∣∣∣∣
C0=

(1+r−d)(u−m)
(1+r)(u−d)

S0

=

[
1 + r − d

(1 + r)(u− d)

]
F (S0u) + 0 · F (S0m) +

[
1 + r − u

(d− u)(1 + r)

]
F (S0d). (15)

By considering the sign of NC , we can determine the upper and lower bounds:

· When F is concave, NC is positive, and the price of the complex option is minimized at V0
∼

with

C0 = S0 − mS0

1+r
and maximized at Ṽ0 with C0 =

(1+r−d)(u−m)
(1+r)(u−d)

S0.

· When F is convex, NC is negative, and the price is maximized at V0
∼

and minimized at Ṽ0.

· When F is linear, assume F (s) = As+B. Substituting into Ṽ0 and V0
∼

yields AS0 +
B

1+r
.

Because the arbitrary option’s price is a linear function of C0, the range of the arbitrary option’s
price obtained is both necessary and sufficient as C0.

5. Risk-neutral method

Based on the principle of risk-neutral valuation [7, 8], the price of an asset should be equal to the
present value of its expected future payoff under the risk-neutral probability measure. This is ex-
pressed as:

V0(S0) =
1

1 + r
EQ[F (S1)].
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Where Q represents the risk-neutral probabilities associated with the different possible outcomes
of the asset’s future value. The risk-neutral probabilities, denoted as qu, qm, and qd for the up, middle,
and down states, must satisfy the following equation:

S0 =
1

1 + r
[quF (S0u) + qmF (S0m) + qdF (S0d)].

Solve this equation set, the qu and qm represented by qm as following:{
qd =

1+r−u−qm(m−u)
d−u

qu = d−1−r+qm(m−d)
d−u

.

The values of qu, qm, and qd must all lie within the interval [0, 1], which constrains qm to:

0 ≤ qm ≤ 1 + r − u

m− u
. (16)

5.1. Pricing an at-the-money call

With the use of the risk-neutral probabilities, the price of a call option with strike price K = S0m is
given by:

1

1 + r
EQ[F (S1)] =

(d− 1)S0

(u− d)(1 + r)
qm +

(1 + r − d)(u− 1)S0

(u− d)(1 + r)
= Aqm +B. (17)

Since d−1
(u−d)(1+r)

< 0, the original function decreases monotonically. The result is obtained:

· Upper Bound: When qm = 0,

C0 =
1

1 + r
[
1 + r − d− qm(m− d)

u− d
S0(u−m)] =

(1 + r − d)(u−m)

(1 + r)(u− d)
S0. (18)

· Lower Bound: When qm = 1+r−u
m−u

,

C0 =
1

1 + r
[
1 + r − d− qm(m− d)

u− d
S0(u−m)] = S0 −

mS0

1 + r
. (19)

Therefore, it is apparent that the conclusion of two methods is consistent.

5.2. Pricing an arbitrary option

With regards to an arbitrary option, the price is similarly determined by:

V0 =
1

1 + r
[quF (S0u) + qmF (S0m) + qdF (S0d)]

=
1

1 + r

[
d− 1− r

d− u
F (S0u) +

1 + r − u

d− u
F (S0d)

]
+

[
(m− d)F (S0u)− (m− u)F (S0d) + F (S0m) (d− u)

(1 + r)(d− u)

]
qm = Cqm +D.

Where C and D are constants derived from the specific payoff function F .
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Then, substitute the lower bound qm = 0 into V0:

V0
∼

=
1

1 + r

[
d− 1− r

d− u
F (S0u) +

1 + r − u

d− u
F (S0d)

]
. (20)

Substitute the lower bound qm = 1+r−u
m−u

into V0:

Ṽ0 =
1

1 + r

[
d− 1− r + (1 + r − u)

(
m−d
m−u

)
d− u

F (S0u) +

(
1 + r − u

m− u

)
F (S0m)

]
. (21)

By considering the sign of the coefficient associated with qm, this step can determine the upper
and lower bounds for the option price:

· When F is concave, the coefficient of qm is negative. Thus, the price of the complex option is
maximized at V0

∼
when qm = 0 and minimized at Ṽ0 when qm = 1+r−u

m−u
.

· When F is convex, the coefficient of qm is positive. Consequently, the price is minimized at V0
∼

when

qm = 0 and maximized at Ṽ0 when qm = 1+r−u
m−u

.
· When F is linear, the price remains constant regardless of qm, as the function is affine. In this case,

substituting into Ṽ0 and V0
∼

results in the same value, confirming consistency with the earlier derived

bounds.

It should be noted that the key difference between the no arbitrage principle and the risk-neutral
probability approach lies in their assumptions and applications. The principle of no arbitrage ensures
that there is no risk-free profit by enforcing price consistency across markets. However, in real mar-
kets, transaction costs are unavoidable, and in some countries and regions, investors often cannot find
an accurate portfolio to replicate derivatives due to short selling restrictions and liquidity constraints.

The risk-neutral probability method prices derivatives by using an assumed risk-neutral probabil-
ity. The problem with this approach is that it does not provide investors with a portfolio to arbitrage
when derivatives are overvalued or undervalued. Moreover, most investors are generally risk-averse
rather than risk-neutral, which is reflected in the concavity of the utility function, and they usually
require a certain premium to compensate for possible risk.

6. Conclusion

This paper examines the application of the no-arbitrage principle and risk-neutral probability method
in determining the price range of options within the trinomial model framework. It is demonstrated
that for a linear payoff function, an option can be precisely replicated by a combination of stocks
and bonds, thus determining its price. However, for non-linear payoff functions, the upper and lower
bounds of option prices are derived using two methods.

The determination of these price ranges provides derivatives market participants with a reason-
able price expectation range, thereby mitigating the investment risk caused by price uncertainty. By
clarifying the upper and lower bounds of the price, investors can more intuitively determine whether
the option is overvalued or undervalued, and better control the risk.

On the other hand, these price ranges also help maintain the stability and efficiency of the market.
When the option price deviates from the theoretical range, arbitrageurs in the market can correct the
price deviation by buying or selling the relevant assets. This mechanism maintains the fairness and
efficiency of the market to a certain extent, and also provides investors with more flexible and less
risky investment choices.
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However, there are also some limitations in this paper. The model only considers the price range
of options under the one-period trinomial model. Future research should explore the boundaries over
longer periods. In addition, the model assumes that investors are risk neutral, and there are no transac-
tion costs and restrictions, which is still different from the real market. These simplifications highlight
the need for further refinement and adaptation of the model to better capture the difference of practical
market conditions.

References

[1] Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3),
229–263.

[2] Boyle, P. P. (1988). A lattice framework for option pricing with two state variables. The Journal of Financial and Quantitative
Analysis, 23(1), 1–12.

[3] Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.
[4] Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1), 141–183.
[5] Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360.
[6] Carr, P., & Madan, D. (1998). Towards a theory of volatility trading. In Volatility: New estimation techniques for pricing derivatives

(Vol. 29, pp. 417–427).
[7] Hull, J. C., & Basu, S. (2016). Options, Futures, and Other Derivatives (9th ed.). Pearson Education India.
[8] Bingham, N. H., & Kiesel, R. (2013). Risk-neutral valuation: Pricing and hedging of financial derivatives (2nd ed.). Springer

Science & Business Media.

Proceedings of  the 4th International  Conference on Computing Innovation and Applied Physics 
DOI:  10.54254/2753-8818/107/2025.22910 

313 


