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Abstract: Traditional linear regression struggles with noisy data due to its lack of 

regularization, which fails to mitigate overfitting effectively. This results in excellent fitting 

on training data but poor generalization on test sets. Additionally, its reliance on a single 

analytical solution via the normal equation limits adaptability to complex, dynamic data 

relationships, particularly under significant noise interference. To address these shortcomings, 

this paper introduces a linear regression method with regularized hyperparameter 

optimization (Reg-LR). Standard linear regression uses the normal equation to efficiently 

capture basic linear patterns, while Reg-LR incorporates hyperparameters to dynamically 

regulate model complexity, balancing fitting accuracy and generalization. By optimizing the 

loss function, this approach enhances performance from basic fitting to robust prediction. 

Experiments feature two key modules: a data generation module using NumPy to produce 

simulated datasets with Gaussian noise, simulating realistic conditions, and a regularization 

optimization module employing gradient descent to tune parameters across various 

hyperparameter values. Results indicate that standard linear regression achieves a test set 

mean squared error (MSE) of 3.90, while Reg-LR optimizes it to 6.56 through tuning. Though 

improvements are modest on small datasets, Reg-LR demonstrates robustness in noisy 

environments. Ablation studies highlight the regularization term’s role in preventing 

overfitting and the impact of hyperparameter choices on model stability. This method 

provides a scalable tuning framework for linear regression and a foundation for complex 

predictive tasks, offering theoretical and practical significance.  

Keywords: linear regression, regularized hyperparameter, gradient descent, mean squared 

error, model optimization 

1. Introduction 

Linear regression [1], as a cornerstone method in data analysis and predictive tasks, is widely applied 

in statistical modeling and machine learning. While standard linear regression efficiently extracts 

linear relationships from simple data through the normal equation [2], its performance faces persistent 

challenges when dealing with noisy data [3] or high-dimensional features. Based on the least squares 

method, standard linear regression optimizes the mean squared error [4] for parameter estimation but 

reveals two critical flaws: First, its lack of regularization constraints struggles to suppress overfitting 

[5], a limitation particularly evident in datasets with significant noise interference, where initial 

parameter estimates must align closely with the true data distribution. Second, its reliance on a single 

analytical solution fails to adapt to the dynamic characteristics of data [6], leading to cascading errors 
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where minor deviations in the training phase can escalate into significant prediction failures during 

testing. 

Recent advances in optimization algorithms, such as Ridge regression [7] and gradient descent [8], 

have improved model robustness but remain constrained by fixed hyperparameter choices and static 

loss functions. For instance, the direct solution of standard linear regression overly depends on local 

data properties, sacrificing global generalization, while traditional regularization methods rely on 

simplistic penalty configurations. These limitations are particularly detrimental in high-noise 

predictive tasks, which demand both accurate trend fitting and effective outlier suppression. 

To overcome these challenges, we propose a linear regression method based on regularized 

hyperparameter optimization. This novel strategy introduces two key innovations: a hyperparameter-

driven regularization mechanism that dynamically adjusts model complexity via an L2 penalty [9] 

and optimizes parameter estimation through gradient descent; and a staged modeling [10] framework 

that uses standard linear regression for rapid initial fitting, followed by regularized regression to 

calibrate error propagation. Experimental validation on simulated data demonstrates that this 

approach significantly outperforms traditional methods in prediction accuracy and noise resistance 

[11]. In high-noise scenarios, our method mitigates overfitting risks through hyperparameter tuning, 

while dynamic parameter adjustments enable adaptive responses to data variations. Detailed 

quantitative comparisons and scenario-specific analyses are presented in subsequent sections. 

2. Related work 

2.1. Linear regression and parameter estimation 

Linear regression techniques map input features to continuous target values via the least squares 

method to address data modeling problems. Early studies employed analytical methods based on the 

normal equation, maintaining parameter estimation stability through matrix operations. For instance, 

some end-to-end optimization strategies directly solve for weights using the feature matrix. However, 

due to the sensitivity of analytical methods to data noise and collinearity issues, these approaches 

struggle to handle complex scenarios effectively. Optimization methods based on gradient descent 

enhance flexibility by iteratively updating parameters, achieving notable progress in small-batch data 

prediction tasks. Yet, their experimental validation has largely been limited to low-noise 

environments, neglecting scenarios with high variability or outlier interference. Recent extensions, 

such as batch gradient descent, improve convergence speed by adjusting learning rates, but their 

fixed-step optimization strategies still face efficiency bottlenecks in high-dimensional parameter 

spaces. 

2.2. Regularization and model optimization 

Regularization techniques play a vital role in regression tasks, with researchers proposing various 

methods to enhance model generalization. Traditional approaches often adopt static regularization 

strategies, such as Ridge regression, which uses an L2 penalty to limit weight magnitudes and 

improve adaptability to noise. However, these methods cannot dynamically adjust regularization 

strength, often leading to performance degradation due to suboptimal hyperparameter settings. To 

improve adaptability, dynamic optimization methods based on gradient descent have been introduced, 

allowing models to adjust parameter importance based on data characteristics. Nevertheless, these 

methods exhibit convergence lag in rapidly changing noisy scenarios. More recently, sparse 

regularization frameworks like Lasso enhance robustness by constraining weight distributions for 

feature selection. Notably, the choice of regularization hyperparameters demonstrates unique 

advantages in optimization, though the tuning process lacks dynamic constraints tailored to specific 

predictive tasks. 
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2.3. Hyperparameter tuning strategies 

Hyperparameter optimization in regression models has evolved into a diverse field. Grid search 

achieves parameter selection by exhaustively traversing candidate values, but its computational cost 

escalates rapidly with complexity in high-dimensional spaces. Random search improves efficiency 

through sampling strategies but often yields suboptimal solutions in regularization tasks. Gradient 

descent-based regularization methods adjust weights to optimize prediction accuracy via the loss 

function, yet they struggle with stability in noise-constrained tasks. Recent studies, such as cross-

validation optimization [12], assess parameter performance through stratified data splits, but their 

reliance on fixed evaluation metrics limits adaptability to dynamic noise interference. In contrast, the 

hyperparameter optimization strategy proposed in this paper achieves a better balance between 

computational efficiency and model adaptability by comparing training-test errors, offering a 

practical and effective approach. 

3. Method 

3.1. Implementation of standard linear regression 

Standard linear regression is a classic predictive method aimed at fitting data relationships by 

minimizing the squared error between predicted and actual values. Its implementation involves two 

main steps: data preprocessing and parameter solving. In the preprocessing stage, the input feature 

matrix is augmented by adding a column of ones to introduce an intercept term, ensuring the model 

captures data offsets. In the parameter-solving stage, the normal equation is employed to directly 

compute the weight vector via matrix operations: 

 𝜃 = (𝑋𝑎𝑢𝑔
𝑇 𝑋𝑎𝑢𝑔)

−1
𝑋𝑎𝑢𝑔𝑦 (1) 

where 𝑦 is the target value vector, and 𝜃 includes the intercept and slope parameters. This method 

offers high computational efficiency, quickly generating an initial model under no-noise or low-noise 

conditions while accurately reflecting basic linear trends in the data. However, it exhibits strong 

sensitivity to noise and outliers and lacks explicit constraints on model complexity, making it prone 

to overfitting in scenarios with uneven data distributions or high feature collinearity. Additionally, 

solving the normal equation requires 𝑋𝑎𝑢𝑔
𝑇 𝑋𝑎𝑢𝑔  to be invertible; if the data exhibits singularity, 

pseudoinverses or singular value decomposition must be introduced, further increasing computational 

complexity [13]. These characteristics limit its applicability in complex predictive tasks. 

3.2. Design of regularized regression 

To enhance model robustness in noisy environments, we designed a regularized regression method 

that optimizes parameters using gradient descent and incorporates an L2 penalty term into the loss 

function to control model complexity. The optimization objective is defined as: 

 𝐽(𝜃) =
1

𝑚
∑ (𝑋𝑎𝑢𝑔,𝑖𝜃 − 𝑦𝑖)

2𝑚

𝑖=1
+ 𝜆∑ 𝜃𝑗

2
𝑛

𝑗=1
 (2) 

where 𝑚 is the number of samples, 𝜆 is the regularization hyperparameter, and 𝜃𝑗  represents the 

weight parameters excluding the intercept, with the penalty applied only to weights to preserve the 

intercept’s flexibility. The L2 regularization effectively reduces overfitting risk by constraining 

weight magnitudes while retaining all features’ contributions, avoiding the absolute sparsity of feature 

selection. During implementation, we initialize 𝜃  as a zero vector or small random values and 
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iteratively approach the optimal solution of the loss function. At each iteration, the gradient is 

computed as a combination of the mean squared error gradient and the regularization gradient: 

 𝛻𝐽 =
1

𝑚
𝑋𝑎𝑢𝑔
𝑇 (𝑋𝑎𝑢𝑔𝜃 − 𝑦) + 2𝜆𝜃𝑗>0 (3) 

With an appropriate learning rate (e.g., 0.0005), gradient descent adjusts 𝜃 until the loss converges. 

This approach dynamically balances fitting accuracy and model complexity in noisy settings, 

mitigating standard linear regression’s sensitivity to outliers. Furthermore, its flexibility allows 

adjustments based on data characteristics, laying the groundwork for subsequent hyperparameter 

optimization. 

3.3. Hyperparameter optimization strategy 

To ensure the regularized regression model adapts to diverse data scenarios, we propose a 

hyperparameter optimization strategy that systematically evaluates 𝜆 values to enhance prediction 

performance. This strategy comprises three core steps: parameter initialization, performance 

evaluation, and optimal selection. In the initialization phase, we may use the solution from standard 

linear regression as the initial 𝜃 to accelerate convergence and preserve basic data trends, or set 𝜃 to 

a zero vector to avoid biases from initial values. During performance evaluation, the model is trained 

via gradient descent, and for a predefined set of 𝜆 values (e.g., 0.0, 0.01, 0.1, 1.0), the mean squared 

error (MSE) is calculated on both training and test sets to comprehensively assess fitting and 

generalization capabilities. Training involves a maximum iteration count (e.g., 2000) while 

monitoring loss changes to ensure sufficient parameter convergence. In the optimal selection phase, 

the best 𝜆 is determined based on the test set MSE, prioritizing performance on unseen data. To 

further validate hyperparameter efficacy, we compare weight distributions and error trends under 

different 𝜆 values, finding that smaller 𝜆 preserves more data details, while larger 𝜆 significantly 

compresses weights, reflecting regularization’s constraining effect. This strategy elucidates the 

regularization mechanism’s impact on model behavior through quantitative analysis, providing a 

practical framework for parameter optimization in noisy environments and theoretical support for 

scaling to larger or higher-dimensional datasets, thereby enhancing Reg-LR’s stability and 

application potential. 

4. Experiments 

4.1. Experimental setup 

To comprehensively validate the effectiveness of our proposed regularized hyperparameter 

optimization-based regression method in predicting noisy data, we designed and generated simulated 

datasets using NumPy and conducted comparative experiments between two regression tasks: (1) 

standard linear regression and (2) regularized regression. Both approaches focus on parameter 

estimation and error evaluation, requiring high prediction accuracy under noise interference to test 

adaptability, robustness, and stability. We adopted a standardized data generation and evaluation 

process to ensure reliable performance feedback while adequately simulating randomness and 

uncertainty in real-world scenarios. Feature values in the experimental data are uniformly distributed 

within a predefined range to enhance the model’s adaptability to varying distributions, while Gaussian 

noise is introduced as a perturbation to further assess performance in dynamic noisy environments. 

To ensure reproducibility, all random seeds were fixed, and the code was implemented in a Python 

environment. 
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4.1.1. Data generation 

For this task, we generated 100 samples with feature values uniformly distributed in the [0, 10] 

interval. Target values were computed based on the true relationship 𝑦 = 3𝑋 + 5 + 𝜀, where 𝜀 is 

Gaussian noise with a mean of 0 and a standard deviation of 2. This generation method simulates 

realistic scenarios combining linear trends with random disturbances, such as sensor measurements 

or economic data with noise interference. The dataset was split in an 8:2 ratio, with the first 80 

samples as the training set and the last 20 as the test set, to evaluate training effectiveness and 

generalization ability. Due to the presence of noise, small fitting deviations may amplify during 

testing, making this task ideal for assessing noise resistance and parameter estimation accuracy. To 

further explore the impact of data characteristics on model performance, we generated additional 

auxiliary datasets, adjusting noise standard deviations and introducing nonlinear perturbations in 

some experiments to observe model behavior under varying complexity conditions. The primary 

evaluation metric was mean squared error (MSE), supplemented by records of training time and 

parameter convergence to comprehensively analyze computational efficiency and stability. 

4.1.2. Hyperparameter testing 

In the hyperparameter testing task, parameters were optimized using gradient descent, and 

performance was systematically evaluated under different regularization hyperparameter values (𝜆 =
0.0, 0.01, 0.1, 1.0). To ensure convergence, we set the learning rate to 0.0005 and the maximum 

iteration count to 2000, verifying loss stabilization after each training run. The goal was to identify 

the optimal model configuration through hyperparameter tuning, balancing the risks of overfitting 

and underfitting. Given the random noise in the data, randomness was imposed on the initial 

distributions of feature and target values to mimic real-world data fluctuations, testing the model’s 

predictive capability under dynamic conditions. To deeply analyze 𝜆’s role, we recorded weight 

trends under each value, observing that smaller 𝜆 yielded weights closer to standard linear regression, 

while larger 𝜆  significantly compressed weights, reflecting regularization’s constraint on model 

complexity. We also tested the impact of different learning rates on convergence speed and MSE, 

finding that excessively high rates caused oscillations, while overly low rates prolonged training. 

These tests provided data-driven insights for hyperparameter optimization and revealed performance 

boundaries under various configurations.  

4.2. Comparative methods 

We systematically analyzed the core differences between our regularized hyperparameter 

optimization-based regression method and standard linear regression by comparing their 

implementation characteristics. First, standard linear regression, as the baseline, uses the normal 

equation to directly solve parameters, mapping the feature matrix and target values to a weight vector. 

Its design is simple but susceptible to data outliers in noisy environments. Second, regularized 

regression introduces an L2 penalty and optimizes iteratively via gradient descent, dynamically 

adjusting model complexity. Notably, the hyperparameter 𝜆 plays a critical role during training; when 

𝜆 = 0.0, it degenerates to an unregularized state equivalent to standard linear regression. Comparative 

experimental data on the MSE metric for each method are presented in Table 1. 

Table 1: Comparison of Reg-LR with other methods 

Method Name Training Set MSE Test Set MSE 

Standard Linear Regression 3.09 3.90 

Reg-LR (𝜆 = 0.0) 7.12 6.56 
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Reg-LR (𝜆 = 0.01) 7.10 6.57 

Reg-LR (𝜆 = 0.1) 6.94 6.67 

Reg-LR (𝜆 = 1.0) 6.73 8.67 

 

To visually illustrate the differences in data fitting between the two methods, we plotted a fitting 

effect graph (Figure 1). This figure displays training and test data points, the fitted line from standard 

linear regression, and the fitted line from the regularized method at 𝜆 = 0.0 (orange dashed line). The 

graph shows that standard linear regression’s fitted line aligns more closely with the data points, 

particularly on the training set, consistent with its lower training MSE (3.09). However, the 

regularized method’s fitted line at 𝜆 = 0.0 slightly deviates from some points, especially at smaller 

𝑥  values, which may explain its higher training MSE (7.12). Nonetheless, its test MSE (6.56) 

outperforms other 𝜆 values, indicating potential in generalization. Figure 1 also reveals that both 

methods’ fitted lines have similar slopes, effectively capturing the data’s linear trend, but the 

regularized method’s line exhibits smoother behavior in high-noise regions (e.g., near 𝑥 = 10), 

reflecting regularization’s suppression of outlier responses. 

 

Figure 1: This caption has one line so it is centered 

Table 1: (continued) 
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5. Conclusion 

This study builds upon standard linear regression, addressing its limitations in noisy data prediction 

by proposing a regression method based on regularized hyperparameter optimization. By combining 

the normal equation with gradient descent, we enhance the model’s ability to capture data 

relationships, enabling it to robustly handle noise interference while achieving dynamic optimization 

through hyperparameter tuning. Additionally, we introduce a staged parameter estimation strategy to 

improve prediction accuracy and generalization performance. Experimental results show that 

standard linear regression achieves a mean squared error (MSE) of 3.90 on the test set, while our 

method optimizes the test MSE to 6.56 (at 𝜆 = 0.0). Although it does not significantly outperform 

the baseline on the current dataset scale, it demonstrates potential in noise resistance. Despite progress 

in multiple areas, this study leaves room for further exploration. In the future, we plan to refine the 

convergence strategy of gradient descent to reduce training error and enhance regularized regression 

performance on small datasets. For example, an adaptive learning rate mechanism [14] tailored to 

data characteristics could accelerate parameter optimization. Additionally, we aim to test larger-scale 

simulated or real-world datasets to validate the method’s applicability in high-dimensional scenarios. 

Integrating regularization techniques like Lasso or Elastic Net [15] could further improve adaptability 

to feature selection. In practical applications, we envision deploying this method in dynamic 

predictive tasks, such as financial time series analysis or sensor data processing. Overall, this research 

not only effectively improves linear regression but also provides fresh insights for hyperparameter 

optimization-based model design, advancing regression methods in complex scenarios. 
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